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Although lncRNAs lack the potential to be translated into proteins directly, their
complicated and diversiform functions make them as a window into decoding the
mechanisms of human physiological activities. Accumulating experiment studies have
identified associations between lncRNA dysfunction and many important complex
diseases. However, known experimentally confirmed lncRNA functions are still very
limited. It is urgent to build effective computational models for rapid predicting of
unknown lncRNA functions on a large scale. To this end, valid similarity measure
between known and unknown lncRNAs plays a vital role. In this paper, an original
model was developed to calculate functional similarities between lncRNAs by integrating
heterogeneous network data. In this model, a novel integrated network was constructed
based on the data of four single lncRNA functional similarity networks (miRNA-based
similarity network, disease-based similarity network, GTEx expression-based network
and NONCODE expression-based network). Using the lncRNA pairs that share the
target mRNAs as the benchmark, the results show that this integrated network is more
effective than any single networks with an AUC of 0.736 in the cross validation, while
the AUC of four single networks were 0.703, 0.733, 0.611, and 0.602. To implement
our model, a web server named IHNLncSim was constructed for inferring lncRNA
functional similarity based on integrating heterogeneous network data. Moreover, the
modules of network visualization and disease-based lncRNA function enrichment
analysis were added into IHNLncSim. It is anticipated that IHNLncSim could be an
effective bioinformatics tool for the researches of lncRNA regulation function studies.
IHNLncSim is freely available at http://www.lirmed.com/ihnlncsim.

Keywords: lncRNAs, miRNAs, expression profiles, mRNAs, lncRNA functional similarity, integrated
heterogeneous network data, web server

INTRODUCTION

Long non-coding RNAs (lncRNAs) are a class of RNA abundant in the transcriptome of
eukaryotes with exceeding 200 nucleotides (Mercer et al., 2009). Although lncRNAs are
not equipped with complete open reading frame, they could interfere with downstream
gene expression via base complementary pairing, and play key regulatory roles in almost
every important life activity, including transcriptional regulation, epigenetic gene regulation,
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post-transcriptional control, protein activity regulation, and the
like (Ponting et al., 2009; Geisler and Coller, 2013). For example,
lncRNAs can act as decoys of RNA-binding proteins or miRNAs
to promote or inhibit the translation of target mRNAs through
the base-pairing (Yoon et al., 2013). More importantly, lncRNAs
also exhibit significant abnormal behaviors in the development of
some complex diseases like cancers (Kong et al., 2014; Shi et al.,
2014; Yao et al., 2014) and cardiovascular diseases (Congrains
et al., 2012). For example, mechanistic investigations showed that
lncRNA MALAT1 in renal cell carcinoma was over-expressed and
MALAT1 could emerge as a new gene regulator or prognostic
marker (Hirata et al., 2015). Additionally, lncRNA NEAT11
was identified as an oncogenic gene in non-small cell lung
cancer and acted as a competing endogenous RNA of miR-377-
3p to antagonize this miRNA function (Sun et al., 2016). The
emergence of these recent research results has provided new ideas
for some complex disease diagnosis, treatment and prognosis
at lncRNA level.

As high-throughput sequencing technology was gradually
mature, a number of lncRNA-related databases (Yotsukura et al.,
2017) had been established for different purposes. Nowadays,
how to verify the complex lncRNA function mechanism
by various computational methods has become a research
hotspot in the field of lncRNA regulation function studies
and understanding of complex disease mechanism. Although
the functions of some lncRNAs had been deeply explored in
previous experimental verifications, confirmed lncRNA functions
are still very limited. On the other hand, computational
methods for lncRNA function predictions had benefited both
disease biomarker detection and drug discovery. Furtherly,
most available computational lncRNA function prediction
methods heavily relied on the reasonable measurement of the
similarities between functionally known and unknown lncRNAs.
In addition, lncRNA functional similarity network data was
normally applied to other algorithms like the prediction of
lncRNA-disease associations. These computational models can
be a screening tool for biological experiments, which would
promote experimental efficiency for identifying the potential
function of lncRNAs in diseases. The models of lncRNA similarity
calculation, which were developed in previous studies, could
be mainly divided into three categories according to their
theoretic foundations. In order to state the different algorithms
comprehensively, we had established a table with their brief
descriptions (see Table 1).

The first category of the models depended on lncRNA target
gene information, which were built based on the principle
that similar lncRNAs can interact with the similar sets of
mRNAs and/or miRNAs. For example, IntNetLncSim (Cheng
et al., 2016) integrated the data of four networks, which
were lncRNA-mRNA interaction network, lncRNA-miRNA
interaction network, miRNA-mRNA interaction network and
mRNA-mRNA interaction network. In this model, each lncRNA
may be represented by a vector of weights which was related to
target miRNAs/mRNAs of the lncRNA. Another model named
LFSCM was developed by Chen (2015). It was established
by following three steps: (1) calculating disease semantic
similarity based on MeSH; (2) calculating miRNA functional

TABLE 1 | Categories and corresponding models of lncRNA functional similarity
calculation.

Output

Input data Models data Description

lncRNA
interactions

IntNetLncSim,
LFSCM

Values of
lncRNA
functional
similarity

IntNetLncSim integrated four RNA
interaction network data to represent
lncRNAs as vectors, LFSCM
integrated lncRNA-miRNA interaction
and miRNA functional similarity
information

lncRNA-
disease
association

LNCSIM,
ILNCSIM,
FMLNCSIM

Values of
lncRNA
functional
similarity

These three models were all based
on the lncRNA-disease association
information and the directed acyclic
graph structure of disease
terminology

lncRNA
expression
profiles

IRWRLDA,
PLNRGO

Values of
lncRNA
functional
similarity

IRWRLDA utilized spearman
correlation coefficient analysis
between lncRNA expression profiles,
PLNRGO exploited the Pearson
correlation coefficient between
lncRNA expression profiles

All of above
data

IHNLncSim
(Our method)

Values of
lncRNA
functional
similarity,
Graphical
visualization

IHNLncSim exploited the AUC of four
single networks as the weight and
calculated the weighted average of
miRNA-based lncRNA similarity
network data, disease-based lncRNA
similarity network data and two
expression-based network data.

similarity based on disease semantic similarity and miRNA-
disease associations; (3) calculating lncRNA functional similarity
based on both miRNA functional similarity and lncRNA-
miRNA interactions. The second category of models adopted the
information of lncRNA-disease association as the key feature,
which was based on the assumption that functionally similar
lncRNAs tended to the same regulating functions in the same
kind of disease. Chen et al. (2015, 2016a) and Huang et al. (2016)
developed the models of LNCSIM, ILNCSIM and FMLNCSIM
for measuring lncRNA functional similarity successively. These
models were all based on the directed acyclic graph structure of
disease terminology, which described the semantic similarity of
diseases with the same node positions and quantity information,
and then lncRNA similarity scores were calculated. Finally, it
is well known that lncRNAs with similar expression patterns
may have similar regulating functions, so the third category
models gather similarities among the lncRNA expression profiles.
For example, spearman correlation coefficient analysis was
utilized to compute the lncRNA expression similarity between
the expression profiles of each lncRNA pair in the model of
IRWRLDA (Chen et al., 2016b). Deng et al. (2018) exploited
the Pearson correlation coefficient between lncRNA expression
profiles as lncRNA functional similarity.

Through analyzing the characters of these models carefully,
most of the models had been developed with the data
from single category, which only described lncRNA functional
similarity in one aspect. More experiments showed that lncRNAs
exhibit high comprehensiveness in highly complex physiological
environments, those models have certain limitations in the
respect of lncRNA characteristics descriptions. In order to get
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around this, we developed a novel model to calculate lncRNA
functional similarity by integrating heterogeneous network data
to predict lncRNA functional similarity effectively. This model
included four single networks: miRNA-based similarity network
described the lncRNA functional similarity in regulating the
downstream RNAs; disease-based similarity network described
the lncRNA functional similarity in the development of diseases;
GTEx expression-based network and NONCODE expression-
based network described the lncRNA expression similarity in
each organ and tissue. Finally, the model integrated the data of
four single lncRNA functional similarity networks with the Area
Under ROC Curve (AUC) of each network for predicting lncRNA
pairs with shared target mRNAs as the weights. On account
of this integrated network completely considered these aspects
described by four single networks, functional similarity values in
this network were more comprehensive and accurate. Moreover,
for facilitating users’ access, a web server named IHNLncSim
was developed based on this mode, the modules of network
visualization and disease-based lncRNA function enrichment
analysis were also added into it.

MATERIALS AND METHODS

In IHNLncSIm, four similarity network data about lncRNAs
had been integrated to comprehensively analyze lncRNA features
by using the AUC (for predicting lncRNAs with shared target
mRNAs) of each network as a weight, the weighted averages of the
similarity values of each network were taken as the final results of
the integrated network (see Figure 1 for the workflow).

MiRNA-Based lncRNA Similarity Network
Prior knowledge had shown that lncRNAs with more common
target miRNAs may have higher similarity (Tay et al., 2014).
According to this assumption, the miRNA-based similarity
network was developed by integrating lncRNA-miRNA
interaction and miRNA functional similarity datasets (see
Figure 2). Human lncRNA-miRNA interaction datasets were
downloaded from ENCORI (Li et al., 2014)1 in January 2019.
ENCORI is the updated version of StarBase database which
provides the most comprehensive network of miRNA-lncRNA
interactions supported by CLIP-Seq data sets. The collected
data contains 9664 experimentally validated lncRNA-miRNA
interactions which included 923 lncRNAs and 263 miRNAs.
And we also collected human miRNA functional similarity
data sets from MISIM v2.0 (Wang et al., 2010; Li et al., 2019)2

which is a bioinformatics tool not only for calculating human
miRNA functional similarity, but also for predicting potential
functions of miRNAs. Finally, 263 human miRNA functional
similarities were obtained.

For example, in order to calculate the similarity of two
interesting lncRNAs (lncRNA1 and lncRNA2), miRNAs interacted
with the two lncRNAs are gathered into two aggregates
(miRNA_list1 and miRNA_list2). And the union between

1http://starbase.sysu.edu.cn/
2http://www.lirmed.com/misim/

miRNA_list1 and miRNA_list2 are used to compile two miRNA
vectors (Vector1 and Vector2) to represent lncRNA1 and lncRNA2,
respectively (where 1 for presence of miRNA and 0 for absence).
Next step, miRNA functional similarity values from MISIM, Sim
(A, B) and Sim (B, A) were used to replace the values in Vector1
and Vector2.

After two feature vectors of the lncRNAs were constructed,
the association score of Vector1 and Vector2 can be calculated by
using cosine correlation as:

Sim(lncRNA1, lncRNA2) =
Vector1 · Vector2

||Vector1|| ||Vector2||
(1)

Disease-Based lncRNA Similarity
Network
Based on the assumption that lncRNAs associated with similar
diseases may have similar functions, lncRNA functional similarity
can be calculated by integrating disease similarity and known
lncRNA-disease association data sets, the flowchart of disease-
based lncRNA similarity network is shown in Figure 3. In
this network, we collected MeSH disease descriptors and MeSH
disease structure of Directed Acyclic Graph (DAG) (Lipscomb,
2000) from the National Library of Medicine3 in January 2019
to build disease semantic similarity matrix. The MeSH database
gave a universal disease classification system of diseases, and
MeSH descriptors were divided into 16 categories. Among these
categories, Category C for disease terms was extensive used
in displaying the relationship between various diseases because
of their DAG structures. In the DAG structures, each disease
term was considered as a node that connected with parent node
by a direct edge. Generally, one parent node showed a more
general term and generalized the common attributes shared
by its all child nodes, a child node showed a more specific
term and was descripted as its parent node’s extensions in the
DAG structures. In our study, human lncRNA-disease association
datasets were downloaded from LncRNADisease v2.04 (Bao
et al., 2019), which was a high-quality database for studying
lncRNA-disease associations and explored the potential function
of lncRNA in a wide variety of diseases. After transforming
disease names based on MeSH glossary, 2298 experimentally
validated lncRNA-disease associations were curated, covering 454
lncRNAs and 271 diseases.

The construction process of disease-based lncRNA similarity
network mainly includes the following steps. Firstly, semantic
similarity between each pair of diseases should be built. Wang
et al. (2010) provided a calculation method of disease semantic
values. Based on the MeSH disease structure of directed acyclic
graph (DAG), and the DAGi = (i,Ti,Ei), where i is a disease in
the DAG structure, Ti is a list including its all ancestor nodes
and itself, Ei is another list of links between them. Defining the
contribution of disease s in DAGi named Di(s) as follow:{

Di (i) = 1

Di (s) = max(1 ∗ Di(s′)|s′ ∈ children of s if s 6= i
(2)

3http://www.nlm.nih.gov/
4http://www.rnanut.net/lncrnadisease/
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FIGURE 1 | Flowchart of integrated network for predicting lncRNA functional similarity. In step 1, four separate lncRNA functional similarity networks were
constructed using heterogeneous data sources, respectively. In step 2, the AUC values of the four networks were used as the weight, and the weighted average was
taken as the final result of the integrated network.

where M is the decay factor of ancestor nodes’ semantic
contribution which is set between 0 and 1, usually 0.5 is more
suitable value. Obviously, the farther disease term s is from
disease i, the lower semantic contribution s has. The most
specific node i has the maximum semantic contribution 1. After
this step, calculating semantic value of disease i named DV (i)
as follow:

DV (i) =
∑

s∈Ti
Di(s) (3)

Directed acyclic graph can not only represent the disease
term structure, but also offer two diseases relative position
information. It is generally recognized that the more same or

closer nodes two disease terms contain, the more similar they are.
According to this theory, the semantic similarity of two diseases
i1 and i2 is defined as follow:

DS (i1, i2) =

∑
s∈Ti1 ∩ Ti2

(Di1 (s)+ Di2(s))

DV (i1)+ DV(i2)
(4)

The semantic similarity matrix of diseases is gained in the end and
it is convenient to fetch the semantic similarity between disease
i1 and i2 .

Secondly, based on the lncRNA-disease association from
the datasets in LncRNADisease v2.0, the matrix of semantic
feature of the lncRNA-disease association data is calculated.
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FIGURE 2 | Flowchart of miRNA-based lncRNA similarity network. It demonstrates the basic ideas of calculating the functional similarity of two lncRNAs by using
cosine correlation.

FIGURE 3 | Flowchart of disease-based lncRNA similarity network. Firstly, disease semantic similarity among all the diseases was calculated based on the MeSH
disease structure of DAG. Then, lncRNA semantic feature vector of each lncRNA was calculated. Finally, disease-based lncRNA similarity was calculated by using
cosine correlation.

Each lncRNA-disease association can be quantified as semantic
feature vector, which is defined as

Vectorlncd = [DV (id1) ,DV (id2) , . . . ,DV (idn)] (5)

where n is the total number of diseases associated with lncRNA
lncd. The Vectorlncd represents the global semantic features of
the diseases regulated by lncRNA lncd in the MeSH disease
structure of DAG.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 February 2020 | Volume 8 | Article 27

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00027 February 4, 2020 Time: 17:10 # 6

Li et al. Constructing Integrated lncRNA Similarity Network

At last, the functional similarity of two interesting lncRNAs,
their semantic feature vectors are Vectorlncd and Vectorlnct , can
be also calculated by using cosine correlation such as formula (1).

GTEx Expression-Based Network and
NONCODE Expression-Based Network
LncRNAs can be also characterized with expression profiles,
they have relative lower expression level and much more tissue-
specific pattern, which shows different expression level between
different tissues, organs and growth stages (Harrow et al., 2012;
Zhu et al., 2014). Prior knowledge has shown that co-expressed
genes often share common functions (Eisen et al., 1998; Chen
and Yan, 2013). Similarly, expression profiles of lncRNAs also
implicate their functions, and thus measuring lncRNA functional
similarity can be conducted through comparing their expression
profiles (Chen et al., 2019). Therefore, We collected the
expression profile datasets from GTEx v7 (The Genotype-Tissue
Expression)5 (Consortium, 2013) and NONCODE v5.06 (Fang
et al., 2018), respectively. GTEx v7 project is a continuous effort
to establish an integrated public database for the sake of studying
tissue-specific gene expression and regulation. NONCODE v5.0
is a comprehensive annotation database, which contributes to
non-coding RNA (excluding tRNA and rRNA). However, there
were different criterions in evaluation of gene expression between
two databases, GTEx used the TPM arithmetic and NONCODE
adapted the FPKM. Moreover, lncRNA expression data from
GTEx included 53 organs or tissues while NONCODE included
23, the two datasets cannot be combined simply. We constructed
the similarity networks for these two datasets separately and
acquired 4170 lncRNA expression profiles in GTEx v7 and 3073
lncRNA expression profiles in NONCODE v5.0. We defined
those two similarity networks, respectively, and calculated their
lncRNA expression similarity by utilizing the Spearman’s rank
correlation coefficient analysis.

Integrated Network Based on Above
Heterogeneous Network Data
After above steps, four heterogeneous lncRNA functional
similarity network data have been calculated successfully, but
these similarities could not be simply added to describe the
similarity between lncRNAs. The similarities from the integrating
heterogeneous network must be comprehensive consideration.
Therefore, a reasonable method to integrate these similarity
network data was needed. In our study, AUC of each functional
similarity network for discriminating the positive lncRNA pairs
(with common target mRNAs) from the negative pairs (without
common target mRNAs) was measured and exploited as the
weight of its own similarity, and the weighted average schema,
Sim, was the similarity of the integrated network, which is
defined as

Sim =
AUC1 ∗ S1 + AUC2 ∗ S2 + AUC3 ∗ S3 + AUC4 ∗ S4

n
(6)

5https://www.gtexportal.org/
6http://www.noncode.org/

where n is the number of integrating heterogeneous networks,
AUCi and Si represent the weight and the similarity of network i.

Server Construction
The framework of “Linux+ Bootstrap+MySQL+ Django” was
adopted to construct the web server named IHNLncSim. The
IHNLncSim is unrestricted (without a login procedure) and is
compatible with most web browsers, it is accessible from http:
//www.lirmed.com/ihnlncsim. To facilitate the annotation, it also
provided network visualization function which was implemented
by open source visjs package7.

RESULTS

lncRNA Functional Similarity Calculation
In total, we collected 7143 lncRNAs information from four
heterogeneous data sources and calculated the similarity
between two lncRNAs, respectively. Figure 4 shows the detailed
lncRNA distribution in four functional similarity networks from
IHNLncSim. Four single networks and the integrated network
based on heterogeneous data sources were constructed. The
lncRNA functional similarity values in each network were public
in the download page of IHNLncSim to benefit the biological
experimental validation8.

Performance Evaluation of IHNLncSim
It had been shown that lncRNAs could regulate a number of
key biological processes by pairing with their targeted RNAs,
lncRNAs with common target genes will have higher functional
similarity than lncRNAs without common target genes (Faghihi
et al., 2008, 2010). Therefore, it is reasonable to measure lncRNA
functional similarity by utilizing lncRNA-mRNA associations.
In order to validate the performance of IHNLncSim, human
lncRNA-mRNA interaction datasets were download from RISE9

(Gong et al., 2018). RISE was an excellent database of which
contains abundant experimentally confirmed RNA interactome
from sequencing experiments. After collecting and sorting data,
2462 experimentally verified lncRNA-mRNA interactions were
gathered and 1312 sets of lncRNA pairs were constructed
as positive samples, each set contained two lncRNAs sharing
the same target mRNAs. It is noteworthy that each single
similarity network did not cover all of these 1312 pairs. In our
study, there are 273 positive samples pairs in the miRNA-based
network, 323 pairs in the disease-based network, 850 pairs in
the GTEx network, and 200 pairs in the NONCODE network.
For constructing control sample pairs, we randomly selected a
corresponding number of lncRNA pairs as negative samples in
each network which had no shared target genes.

Firstly, we tested how each similarity network could be
used to discriminate lncRNAs with shared target mRNAs. The
discrimination accuracies were evaluated by the AUC, and the
experimental results showed that the miRNA-based network

7https://visjs.org/
8http://www.lirmed.com/ihnlncsim/download/
9http://rise.life.tsinghua.edu.cn/
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FIGURE 4 | Venn diagram showing the overlap of lncRNAs between four functional similarity network data.

obtained an AUC of 0.703, the disease-based network obtained
an AUC of 0.733, the GTEx network obtained an AUC of 0.611,
and the NONCODE network obtained an AUC of 0.602. These
AUC values were further exploited as the weight to construct
the integrated similarity network. Next, the integrated network
was also tested in similar fashion. There was a large difference in
sample size of each similarity network, to balance the impact of
each similarity network on the integrated network, we selected
the same numbers of positive and negative samples in each
similarity network data during verification experiments. Statistics
indicated that the NONCODE similarity network had the least
numbers of positive and negative samples, the number of samples
was only 200. Therefore, we also selected 200 positive samples and
200 negative in the other three network data. In the selection,
lncRNA pairs with similarity values in the more networks had
higher priority. After merging the same samples, we collected
466 comprehensive positive samples and 561 comprehensive
negative samples in the end. The validation experimental results
were shown in Figure 5, where integrated network showed an
improved AUC value of 0.736.

The most intuitive plots in experimental results were box-plots
of Figure 5 (P-value, Wilcoxon test). We can clearly see that
the functional similarity values between the positive lncRNA pair
samples were higher than that of negative samples on the whole,
which was consistent with the previous theory. In addition, as can
be seen from the ROC curves in the above figure, the integrated
network showed relatively better result in following two reasons.
Firstly, the AUC value of the integrated network was significantly
larger than that of the miRNA-based network, GTEx network
and NONCODE network, indicating that the integrated network
can better distinguish between positive and negative samples in
comparative experiments. Secondly, although the AUC value of
the disease-based network was extremely closed to the integrated
network, its ROC curve was much inferior than the ROC curve
of integrated network when FPR was small, which shown that

integrated network had better prediction accuracy when the false
positive rate was required to be low.

In order to further evaluate the effectiveness of IHNLncSim,
we compared its model with other existing lncRNA functional
similarity calculation models. The similarity values of
IntNetLncSim, LNCSIM1, LNCSIM2, ILNCSIM, and
FMLNCSIM models can be obtained, respectively, through
the corresponding web tools or data files. The number of
lncRNAs in each model was shown in Figure 6. Limited by this,
there were 1116 positive sample pairs in IntNetLncSim, 72 pairs
in LNCSIM1, 72 pairs in LNCSIM2, 135 pairs in ILNCSIM,
and 67 pairs in FMLNCSIM. Next step, negative sample pairs
were randomly selected and verification experiments were
performed as before. The validation experimental results were
shown in Figure 7, where the IntNetLncSim obtained an AUC
of 0.580, the LNCSIM1 obtained an AUC of 0.580, the LNCSIM2
obtained an AUC of 0.629, the ILNCSIM obtained an AUC
of 0.742, and the FMLNCSIM obtained an AUC of 0.632. In
the same experiment, the integrated network in IHNLncSim
obtained an AUC of 0.736, which was higher than most of other
models. Overall, it can be seen IHNLncSim performed well in
lncRNA functional similarity calculation. Although the model
of ILNCSIM obtained a comparable AUC of 0.742, the number
of lncRNA similarity values included in ILNCSIM was much
less than IHNLncSim. In general, after a series of comparative
verification experiments, we can conclude that the lncRNA
similarity model constructed in this paper is reliable, IHNLncSim
would be further improved when more data could be obtained in
the future.

Overview of IHNLncSim Web Server
In IHNLncSim, the lncRNA functional similarity analysis module
provided two input methods to users. One is “all vs. all,” users
can submit a lncRNA list. The tool will analyze the functional
similarity between lncRNAs in the input list. The other is “one

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 February 2020 | Volume 8 | Article 27

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00027 February 4, 2020 Time: 17:10 # 8

Li et al. Constructing Integrated lncRNA Similarity Network

FIGURE 5 | The performance of integrated similarity to discriminate lncRNA pairs with shared target mRNAs. (A) ROC curves of four single networks and integrated
network. (B) Box-plot comparing the similarities among lncRNAs with shared target mRNAs (positive samples) and those without (negative samples). The p-values
were derived via Wilcoxon test.
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FIGURE 6 | The number of lncRNAs in each lncRNA functional similarity calculation model.

FIGURE 7 | Performance evaluation for IHNLncSim and other existing lncRNA functional similarity calculation methods in terms of ROC curves and AUC.
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FIGURE 8 | The visualization of the constructed lncRNA functional similarity networks using four single similarity networks and the integrated similarity network.

vs. all,” and users just submit one lncRNA name each time.
IHNLncSim will analyze the functional similarities between
this lncRNA and one of all lncRNAs from four heterogeneous
network data. For the convenience of users, five types of
lncRNA names were allowed users to submit in the IHNLncSim,
which included gene symbol and alias, Ensembl ID, RefSeq
ID, NONCODE ID and chromosomal location. If users were
interested in our data, the download page provided the function
to download the calculated results.

The function for result visualization is enabled in the
IHNLncSim to facilitate the community. The nodes in the
network diagram represent lncRNAs, and the color of edges
represent the class of similarity network. Nodes can be freely
dragged to change the network layout by mouse. Moreover,
users can also click on the edges to show the values of
functional similarity between two lncRNAs with common
links. The networks could also be downloaded as text files,
which contained all similarities between two lncRNAs. Once
the networks were finalized, users also could download the
network pictures.

Example of Analyzing Functional
Similarity for a List of lncRNAs
To show the lncRNA similarity calculate function of IHNLncSim,
we choose one from lncRNA sample lists in “all vs. all” menu as
an example and then submit it to IHNLncSim. After analyzing
by IHNLncSim, the lncRNA functional similarity values of four
single networks and the integrated network are shown in a table
in the center of the page. Next, we can download the analyzed
results to a text file or visualize them as a network. At last, user

can adjust the position, size and shape of the nodes for a clear
and nice-looking effect. The visualization of all networks in this
example is shown as follow (see Figure 8).

DISCUSSION

Computation of functional similarity between lncRNAs shows
great significance in the study of the unknown function
of lncRNAs. Fortunately, a various lncRNA-related biological
databases have made it feasible to develop computational models
for predicting lncRNA functional similarities. Here, we present a
novel model that used heterogeneous network data which cover
the miRNA interactions, disease associations and expression
features of the lncRNAs. A web server named IHNLncSim was
constructed, it not only can calculate the functional similarities
with respect to the query lncRNAs but also can implement the
visualization of lncRNA functional similarity networks.

Of course, there are also some limitations existing in
IHNLncSim. One limitation is that the lncRNA-miRNA
interaction and lncRNA-disease association data are still
incomplete, which could produce bias when calculating miRNA-
based lncRNA functional similarity and disease-based lncRNA
functional similarity. With the growing of related biomedical
data, the similarity calculation of integrated network based
on heterogeneous network data would be further improved.
Another limitation is that the visualization of lncRNA functional
similarity networks fails to run properly for some internet
browsers. We will continue testing IHNLncSim in different
internet browsers to make it gain multi-browser support. The
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third limitation is that currently IHNLncSim only runs for
human but cannot be applied to other species, we will collect the
biological data from other species, for example, mouse and rat,
and update IHNLncSim as well in the future.
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