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Falls in the elderly is a major public health concern due to its high prevalence, serious
consequences and heavy burden on the society. Many falls in older people happen
within a very short time, which makes it difficult to predict a fall before it occurs and then
to provide protection for the person who is falling. The primary objective of this study was
to develop deep neural networks for predicting a fall during its initiation and descending
but before the body impacts to the ground so that a safety mechanism can be enabled
to prevent fall-related injuries. We divided the falling process into three stages (non-fall,
pre-impact fall and fall) and developed deep neutral networks to perform three-class
classification. Three deep learning models, convolutional neural network (CNN), long
short term memory (LSTM), and a novel hybrid model integrating both convolution and
long short term memory (ConvLSTM) were proposed and evaluated on a large public
dataset of various falls and activities of daily living (ADL) acquired with wearable inertial
sensors (accelerometer and gyroscope). Fivefold cross validation results showed that
the hybrid ConvLSTM model had mean sensitivities of 93.15, 93.78, and 96.00% for
non-fall, pre-impact fall and fall, respectively, which were higher than both LSTM (except
the fall class) and CNN models. ConvLSTM model also showed higher specificities for
all three classes (96.59, 94.49, and 98.69%) than LSTM and CNN models. In addition,
latency test on a microcontroller unit showed that ConvLSTM model had a short latency
of 1.06 ms, which was much lower than LSTM model (3.15 ms) and comparable with
CNN model (0.77 ms). High prediction accuracy (especially for pre-impact fall) and
low latency on the microboard indicated that the proposed hybrid ConvLSTM model
outperformed both LSTM and CNN models. These findings suggest that our proposed
novel hybrid ConvLSTM model has great potential to be embedded into wearable inertial
sensor-based systems to predict pre-impact fall in real-time so that protective devices
could be triggered in time to prevent fall-related injuries for older people.
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INTRODUCTION

Falls are a major safety concern for the older people. Annual
fall rates range from 30% among those aged over 65 years old
to 50% for those over 85 (Rubenstein, 2006). Due to the high
prevalence, falls are the leading cause of both fatal and non-
fatal injuries among the older people (Bergen, 2016). The annual
medical costs for falls of the older adults have been estimated
at $31.3 billion in United States since 2015 (Burns et al., 2016).
Fall-related injuries are considered as “Global Burden of Disease”
by the World Health Organization (Murray et al., 2001). Aside
from the physical injury, falls can also cause post-fall syndrome
such as fear of falling and depression among the elderly (Fleming
and Brayne, 2008; Qiu and Xiong, 2015). Therefore, effective fall
prevention is critical to mitigate the negative consequences of falls
for the older people.

Much work has been done on developing context-aware
systems and wearable devices for post-fall detection so that
timely medical assistance can be initiated for the older fallers
to avoid losses caused by “long-lie” (Özdemir and Barshan,
2014; Yang et al., 2016). However, this approach is reactive
since injuries from impact falls have happened already. Recently,
researchers have shifted their efforts to a proactive approach-
fall prevention, which is performed through fall risk assessment
and intervention where the older individuals with high fall risks
can be screened out earlier and then treated with appropriate
interventions to reduce the risks of future falls (Choi et al., 2017;
Qiu et al., 2018). However, the developed fall risk assessment
tools and fall intervention programs are mainly focused on
predicting and reducing the overall risk of falling in a long
period (typically 1 year or more), not for the sudden falls. Many
falls in the elderly happen suddenly and are difficult to prevent
due to the complex multifactorial nature of falls and inevitably
increased fall risks with the elderly as their physical and cognitive
abilities deteriorate.

Pre-impact fall prediction can overcome aforementioned
limitations of post-fall detection and overall long-term fall risk
assessment and intervention. Pre-impact fall refers to a stage after
the fall initiation but before the body-ground impact (Hu and
Qu, 2016). Therefore, this method can predict sudden falls before
the body hits against the ground (e.g., pre-impact), which make
it possible to timely activate on-demand fall protection systems
such as wearable airbags to prevent fall-related injuries. Because
of very short period of falling (around 800 ms) and various types
of falls (Sucerquia et al., 2017; Tao and Yun, 2017), to predict the
fall before the ground impact accurately under different scenarios
is very challenging and worthy of research investigation. Some
researchers have recently attempted to tackle this challenge using
different approaches (Lee et al., 2015; Sabatini et al., 2016; Li
M. et al., 2018; Zhong et al., 2018; Ahn et al., 2019). In general,
wearable sensors or environmental cameras were utilized and
simple threshold-based algorithms were developed to predict
pre-impact falls using some selected fall indicators related to
human motions. Even though threshold-based algorithms are
easy to implement due to simple structure and low computation
cost, the thresholds are highly dependent on the certain types
of falls (e.g., forward fall, backward fall) and the tested subjects,

which can not fit well for other fall types (lateral fall, vertical
fall, etc.) and different older individuals in the real-world. In
other words, threshold-based algorithms lack the generalizability
and thus are difficult for practical applications. A few studies
utilized conventional machine learning methods such as Support
Vector Machine and Fisher Discriminant Analysis to predict
pre-impact falls (Aziz et al., 2014; Liang et al., 2018; Wu et al.,
2019). Tested by small amount of data from very limited types of
simulated falls (≤7), they reported good prediction accuracy and
reasonable lead time. However, conventional machine learning
methods heavily rely on hand-crafted features, which are usually
shallow and restricted by human domain knowledge (Wang
et al., 2019). Therefore, these approaches generated undermined
prediction performance on complex and various falls in the real
world as researchers have reported at least 15 common fall types
and 19 activities of daily living (ADL; Sucerquia et al., 2017;
Tao and Yun, 2017).

Very recently, with the fast advancement of deep learning and
computing hardware, a few studies explored deep neural network
based algorithms for pre-impact fall prediction. Li et al. (2019)
applied convolutional neural network (CNN) on RGB image data
recorded by Kinect for pre-impact fall prediction during gait
rehabilitation training. Even though they achieved a prediction
accuracy of 100% within 0.5 s after a fall initiation, they only
tested the model on one type of fall and normal walking. Tao
and Yun (2017) proposed a long short term memory (LSTM)
model using skeleton data captured by Kinect to predict pre-
impact fall. The developed model showed high sensitivity (91.7%)
but relatively low specificity (75%), indicating that the model
could recognize most of pre-impact falls but with high false alarm
rate. Both high sensitivity and specificity are essential for the
practical applications. In addition, this method is only restricted
in home environment due to the limitations of stationary settings
that Kinect cameras often suffer from. Torti et al. (2018) applied
an overlapping sliding window segmentation technique to label
falling process into three stages (non-fall, pre-impact fall or alert,
and fall) and utilized a LSTM model to perform three-class
classification based on the SisFall dataset (Sucerquia et al., 2017).
They achieved high classification accuracy on fall (98.7%) but
lower accuracy on non-fall (88.4%) and pre-impact fall (91.1%),
which showed that their algorithm missed ∼9% pre-impact falls
and misclassified many non-fall activities as other two classes
(most of instances are labeled as non-fall activities in the SisFall
dataset due to rarity of fall incidents). Furthermore, both studies
only applied one deep learning model-LSTM, comparisons with
other deep learning structures were not conducted.

This study aims to develop deep learning algorithms
for predicting pre-impact fall in real-time so that a safety
mechanism can be enabled to prevent fall induced injuries.
A novel hybrid deep neural network which integrates CNN and
LSTM architectures was proposed and evaluated on SisFall, a
large public dataset of various falls and ADL acquired with
accelerometer and gyroscope sensors. We also compared our
proposed hybrid model with CNN and LSTM models in terms of
model accuracy, latency and learning curve, which could provide
more insights about the characteristics of different deep learning
models in predicting pre-impact falls. The developed hybrid
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model is expected to be embedded into wearable inertial sensor
based systems, which would be promising to predict pre-impact
fall in real-time so that the protective device could be triggered in
time to prevent fall-induced injuries for older people.

MATERIALS AND METHODS

Dataset and Labeling
SisFall, a fall and movement dataset with various falls and ADLs
acquired with wearable inertial sensors of accelerometer and
gyroscope at a frequency of 200 Hz (Sucerquia et al., 2017), was
selected for developing and evaluating deep learning algorithms
due to two major reasons. First, it is a publicly available dataset
which consists of 15 fall types, 19 ADLs and 38 subjects, including
the largest amount of data in terms of number of subjects and
number of activities (Musci et al., 2018) when compared with
other public datasets such as MobiFall (Vavoulas et al., 2014) and
UMAFall (Casilari et al., 2017). Second, the protocol is validated
by a medical staff and there are 15 older subjects out of total 38
subjects in the SisFall dataset. Thus, the data pattern in SisFall

dataset should be close to the real-life ADLs and fall scenarios of
the older people.

To be consistent with the earlier studies, we adopted the same
criteria as Musci et al. (2018) for labeling data associated with
three classes of events.

1. Non-fall: the time interval when the person is
performing ADLs.

2. Pre-impact fall or alert: the time interval in which the person
is transiting from a controlled state to a dangerous state which
may lead to a fall.

3. Fall: the time interval when the person is experiencing a state
transition that leads to a fall.

One representative diagram for three classes of events is
illustrated in Figure 1, which shows the 3-axis acceleration data
of a forward fall while walking due to a slip. The last part of data is
removed for labeling because it is the state after the fall incident.

Design of Model Architecture
In this study, three models were applied to perform the
classification. These models are a CNN model, a LSTM model

FIGURE 1 | Illustration of labeling three classes during a fall. The beginning period is labeled as non-fall and the blue and orange areas indicate pre-impact fall and
fall, respectively; the remainder of the sequence is removed for the labeling.
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and our proposed hybrid ConvLSTM model. As shown in
Table 1, the CNN model consists of three convolutional blocks
and two fully connection layers. Each convolutional block
includes convolutional operation, batch normalization, relu and
max pooling. The LSTM model follows the similar design as

TABLE 1 | The design of CNN model.

Type Operations Filter shape Input size

Conv1 conv 3 × 64 256 × 6

batchNorm

relu

max pooling 3 × 64

Conv2 conv 3 × 64 127 × 64

batchNorm

relu

max pooling 3 × 64

Conv3 conv 3 × 64 62 × 64

batchNorm

relu

max pooling 3 × 64

FC1 fully connection 1920 × 512 1 × 1920

FC2 fully connection 512 × 3 1 × 512

Softmax softmax Classifier 1 × 3

Musci et al. (2018), which consists of LSTM cells, relu, dropout
and fully connected layers.

The architecture of our proposed ConvLSTM model mainly
combines convolutional and recurrent layers. The specific
structure of ConvLSTM was determined by the hyperparameter
tuning. For this task, we mainly considered three levels of the
width (output channels in each convolutional and LSTM layer),
two different numbers of layers for both convolutional and LSTM
structures, and two levels of dropout (probability of a neuron to
be ignored during training). Table 2 summarizes the results of
hyperparameter tuning experiments on one training-testing split.

As shown in Figure 2, the finalized ConvLSTM structure
after hyperparameter tuning consists of four convolutional
blocks and two LSTM cells with dropout operations. Each
convolutional block contains operations of convolution, batch
normalization, relu, and max pooling. The convolutional layers
act as feature extractors and provide abstract representations
of the input sensor data in feature maps. They could capture
short-term dependencies (spatial relationship) of the data. The
recurrent layers deal with the long-term temporal dynamics of
the activation of the feature maps and identify useful features
over time domain in sequential data. More importantly, this
structure could integrate advantages of CNN and LSTM on
accuracy and efficiency. In the CNN, features are extracted and
then used as inputs of fully connected network for classification.

TABLE 2 | Results of hyperparameter tuning for the structure of ConvLSTM model.

No. Width No. of Conv layers No. of LSTM layers Dropout Sensitivity (%)

Non-fall Pre-impact Fall Fall

1 32 2 2 0.5 88.99 93.31 96.31

2 32 2 2 0.8 91.49 93.31 96.31

3 32 2 4 0.5 91.64 91.21 96.77

4 32 2 4 0.8 92.84 90.79 96.31

5 32 4 2 0.5 92.41 89.12 96.77

6 32 4 2 0.8 90.51 93.72 96.77

7 32 4 4 0.5 94.84 89.54 94.47

8 32 4 4 0.8 91.28 90.38 95.85

9 64 2 2 0.5 90.93 91.63 97.70

10 64 2 2 0.8 91.65 92.89 97.24

11 64 2 4 0.5 88.54 92.05 98.16

12 64 2 4 0.8 85.78 93.51 97.24

13∗ 64 4 2 0.5 92.30 93.30 95.86

14 64 4 2 0.8 90.18 91.63 96.77

15 64 4 4 0.5 91.47 89.94 95.85

16 64 4 4 0.8 90.22 89.54 96.31

17 128 2 2 0.5 91.73 93.31 93.55

18 128 2 2 0.8 93.77 88.28 95.85

19 128 2 4 0.5 90.58 92.89 96.31

20 128 2 4 0.8 92.10 90.79 98.16

21 128 4 2 0.5 90.45 94.98 96.31

22 128 4 2 0.8 90.75 91.63 99.08

23 128 4 4 0.5 88.85 94.56 95.85

24 128 4 4 0.8 88.53 89.96 97.24

∗Finalized structure of ConvLSTM model.
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FIGURE 2 | The architecture design of hybrid ConvLSTM model.

However, it ignores long-term temporal relationships in the
time sequence, which is important for identifying actions or
behaviors. On the contrary, the LSTM uses the memory cell
to learn long-term temporal dependencies for the time-series
data. However, it is time consuming for running LSTM model
due to its complex structure. In the ConvLSTM, CNN layers
extract features from the raw data and send to LSTM layers for
identifying temporal relationships, which could save time for
computing when compared with LSTM model. It is expected that
ConvLSTM will outperform both CNN and LSTM models for
predicting different fall stages since it can capture both short-
term and long-term dependencies of the motion data.

Model Training
The architectures described in section “Design of Model
Architecture” were implemented using the PyTorch library on a
computer running Window 10 (64-bit). The models were trained
and tested on this computer, equipped with a 3.6 GHz CPU
i7-7700, 16GB RAM, and an Nvidia GTX 1080Ti GPU card.
Considering the practical applications in the future, we also
implemented the models on a microcontroller unit, Jetson Nano
(Nvidia, 2019) which runs in Ubuntu 18.04 and equipped with
a 64-bit Quad-core ARM A57 at 1.43 GHz CPU, 4GB RAM,
and 128-core NVIDIA Maxwell at 921 MHz GPU. During the
training, the input data has six dimensions including three-axis
accelerometer and three-axis gyroscope. The batch size is 64 and
the total epoch is 200. The learning rate is set as 0.0005 and the
loss function uses focal loss (Lin et al., 2017).

In order to assess the generalizability of proposed models and
prevent overfitting on one specific train/test split, fivefold cross
validation was used. There are 23 young and 15 older subjects in
SisFall dataset. In our experiment, older subjects were randomly
divided into five groups and each group included three older
subjects. Young subjects were also randomly divided into five
groups in where three groups had five subjects and remaining two
groups have four subjects. Each group of older subjects would be

randomly combined with one group of young subjects as onefold.
Therefore, there were total fivefold for the dataset. Each fold
would be the test set and the rest fourfold would be considered
as the training set. The ratio between the training and test set was
around 80%/20%. By this splitting, we could prevent the same
subject appearing in both the training and test sets and maintain
the homogeneity among folds at the same time.

All experiments were implemented for 200 epochs and all
general hyper-parameters were set exactly same among three
deep learning models for a fair comparison. In order to balance
classification accuracy of three classes but without losing our
focus on the pre-impact fall, the results of the epochs whose
summation sensitivity for three classes are within top three
and summation sensitivity is the highest for non-fall and pre-
impact fall were used for averaging the fivefold cross-validation
results. Because the accuracy can be biased by the majority class
when the dataset is highly imbalanced, sensitivity instead of
accuracy was used as the criteria to determine the best model
(Bekkar et al., 2013).

Torti et al. (2018) sets baseline for our study because they
also performed three-class classification (non-fall, pre-impact
fall, fall) based on the SisFall dataset.

RESULTS

Classification Performance
The classification performance is represented by different
metrics including sensitivity, specificity and accuracy, which are
calculated by equations 1, 2, and 3, respectively.

Sensitivity =
TP

TP+ FN
(1)

Specificity =
TN

TN+ FP
(2)

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(3)

where TP (True Positives) of non-fall is all non-fall instances that
are correctly classified as non-fall class; FN (False Negatives) of
non-fall is all non-fall instances that are not correctly classified
as non-fall class; TN (True Negatives) of non-fall is all instances
of other two classes are not classified as non-fall class; FP
(False Positives) of non-fall is all instances of other two classes
are wrongly classified as non-fall class. To find the four terms
for other two classes, we could replace non-fall with pre-
impact fall or fall.

Table 3 summarizes the classification performances of three
deep learning models along with the baseline study. The results
showed that CNN model had the poorest performance with the
mean accuracies of 90.01, 91.51, and 98.38% for non-fall, pre-
impact fall and fall, respectively. LSTM model demonstrated
higher accuracies (91.59, 93.98, and 97.52%) than CNN, and
our proposed hybrid ConvLSTM model achieved the highest
accuracies on all classes (93.22, 94.48, and 98.66%). With respect
to the sensitivity, the results showed that ConvLSTM model
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TABLE 3 | Classification results of three deep learning models on the test dataset.

Class CNN LSTM ConvLSTM Torti et al., 2018

Sensitivity (%) Non-fall 89.90 91.50 93.15 88.39

Pre-impact fall 90.33 91.48 93.78 91.08

Fall 93.76 96.22 96.00 98.73

Specificity (%) Non-fall 95.05 95.93 96.59 97.85

Pre-impact fall 91.52 94.00 94.49 90.77

Fall 98.42 97.54 98.69 97.93

Accuracy (%) Non-fall 90.01 91.59 93.22 93.12

Pre-impact fall 91.51 93.98 94.48 90.93

Fall 98.38 97.52 98.66 98.33

had the mean sensitivities of 93.15, 93.78, and 96.00% for non-
fall, pre-impact fall and fall, respectively, which were higher
than CNN (89.90, 90.33, and 93.76%) and LSTM models (91.50,
91.48, and 96.22%) except the fall class. For the specificity, the
ConvLSTM model had the mean specificities of 96.59, 94.49, and
98.69% for non-fall, pre-impact fall and fall, respectively, which

were higher than both LSTM (95.93, 94.00, and 97.54%) and CNN
models (95.05, 91.52, and 98.42%).

Learning Curve
Figure 3 presents the representative learning curves of three
deep learning models on the same training set. All three models

FIGURE 3 | Learning curves of CNN (A), LSTM (B), and ConvLSTM (C) models on the training dataset.
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converged after certain number of epochs. Both CNN and
ConvLSTM models can quickly learn and achieve the stable status
(Figures 3A,C) while LSTM model needs more time to train
(Figure 3B). In terms of training sensitivity, the performance of
CNN was similar to LSTM on non-fall and pre-impact fall classes.
The sensitivities of both models on these two classes fluctuated
around 90%; while for the fall class, LSTM model was obviously
better than CNN model (Figures 3A,B). For ConvLSTM model,
the learning curves on all three classes were above 90%, especially
for the pre-impact fall class (Figure 3C).

Figure 4 depicts the representative learning curves of three
deep learning models on the same test set. CNN model failed
to learn the features of pre-impact fall data well because
there was a large fluctuation on sensitivity even at the end of
training (Figure 4A). Figure 4B shows that LSTM model can
gradually learn the features of three classes and achieved good
sensitivity in the last 50 epochs. Compared to the LSTM model,
ConvLSTM model can perform well after only first 20 epochs and
maintain the high sensitivity for all three classes until the end of
training (Figure 4C).

Model Latency
The latencies were evaluated with the same training and test sets
among three deep learning models. For the practical applications,
only processing time on each instance in the test set was summed
and averaged over 200 epochs. Models tested on the computer
showed average latencies of 0.61, 0.70, and 0.97 ms for CNN,
ConvLSTM, and LSTM models, respectively. Further tests on a
microcontroller unit (Nvidia Jetson Nano) showed the averaged
latency of ConvLSTM model was 1.06 ms, which was slightly
higher or comparable with CNN model (0.77 ms) but much lower
than LSTM model (3.15 ms).

DISCUSSION

We developed a hybrid deep learning model (ConvLSTM) that
integrates the CNN and LSTM architectures to predict the
pre-impact fall from accelerometer and gyroscope sensor data.
The performance of this hybrid model was comprehensively
compared with CNN and LSTM deep learning models. The
experimental results showed that the hybrid ConvLSTM model
outperformed CNN and LSTM models in terms of sensitivity,
specificity and overall accuracy. The hybrid ConvLSTM model
obtained ∼2% higher sensitivities than LSTM and ∼3% higher
sensitivities than CNN for all three classes except the fall
class. Considering our study aimed to predict the pre-impact
fall accurately for preventing fall induced injuries, the high
sensitivities for non-fall and pre-impact fall were of significant
importance in two perspectives. On the one hand, higher
classification sensitivity on non-fall class reflected lower false
alarm rate and 2% improvement was very meaningful because
dominant instances in the SisFall dataset and real-world scenarios
are non-falls or ADLs, and fall instances are very rare. On the
other hand, higher classification sensitivity for the pre-impact fall
directly indicated the superiority of the ConvLSTM model. In
addition, the ConvLSTM model obtained the highest specificities

for non-fall (96.59%), pre-impact fall (94.49%), and fall (98.69%)
among three deep learning models. A more detailed investigation
showed that although the difference on the specificity between
ConvLSTM model and LSTM model was marginal, both models
had∼3 and 2.5% higher specificities on pre-impact fall prediction
than CNN model. This result indicated that CNN model had the
highest rate of misclassifying other two classes as pre-impact fall.

It is understandable that the hybrid ConvLSTM model
outperformed individual CNN or LSTM models. CNN could
capture local dependency of human motion data (Zeng et al.,
2014). For the given time point, the neighboring accelerometer
and gyroscope readings are likely to be correlated. However, this
dependency is short-term due to the constraint by the size of
convolutional kernels (Li F. et al., 2018). On the contrary, LSTM
with memory cells could learn to store and output information
based on the training, easing the learning of long-term time
dependency of motion data (Hochreiter and Schmidhuber,
1997). Therefore, integration of both short-term and long-term
dependencies could enhance the ability to distinguish different
fall stages that vary in time span and signal distribution.

Our experimental results indicated that the motion features
in the long term were more significant in classifying three fall
stages (non-fall, pre-impact fall, fall) than those in the short term.
This finding was consistent with those of earlier studies using
deep learning approaches for human motion recognition (Yao
et al., 2017; Li F. et al., 2018). Long-term motion features were
also widely used in the conventional machine learning methods
for human movement analysis. For example, Su et al. (2016)
achieved high accuracy to distinguish falls from non-falls by
extracting twelve time-domain features from angular velocity and
angle data into a hierarchical classifier. Similarly, Panahandeh
et al. (2013) suggested that long-term features of sensor data such
as magnitude-squared discrete Fourier transform coefficient and
variance were critical for pedestrian activity classification and
gait analysis. Furthermore, researchers reported the classification
with an integration of time domain (mean, variance, kurtosis,
etc.) and gait temporal features (stride time, stance time, double-
limb support, etc.) showed better results to differentiate stroke
and other neurological disorders than using them separately
(Hsu et al., 2018). Compared with conventional machine learning
methods, our proposed deep neural networks can eliminate the
need of manually designed motion features and can fully utilize
the useful information in the raw data for classification.

Two earlier studies utilized CNN and LSTM alone to predict
pre-impact falls (Tao and Yun, 2017; Li et al., 2019). Both studies
divided the motion data into non-fall and pre-impact fall, and
pre-impact fall included several frames before and after the fall
initiation so that they could predict the pre-impact fall. However,
the data of remaining part of falling (fall class in the three
classifications) was not considered, thus these kinds of simple
binary classification models can not be used for predicting the fall
class. In addition, both studies only tested classification models
on a small dataset with limited types of falls (≤4) and ADLs
(≤4). To the best of our knowledge, there was only one published
study utilizing the LSTM-based three-class classification model
to predict the pre-impact fall based on a large dataset-SisFall
(Torti et al., 2018). To compare our proposed deep learning
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FIGURE 4 | Learning curves of CNN (A), LSTM (B), and ConvLSTM (C) models on the test dataset.

models with this baseline study, we also used the SisFall dataset
and strictly followed the same criteria for labeling three different
classes. Comparison to the benchmark (Table 3) showed that our
hybrid ConvLSTM model achieved higher sensitivity of ∼5 and
3% for the non-fall and pre-impact fall, respectively, indicating
considerably lower false alarm rate but higher true alarm rate for
the pre-impact fall prediction. However, our ConvLSTM model
had ∼3% lower sensitivity than the benchmark on predicting
the fall class. This could be caused by the different strategy we
used to choose the best model. We prioritized the high sensitivity
on classes of non-fall and pre-impact fall because the primary
objective of this study was to predict a fall with a reasonable lead
time before the body impacts to the ground rather than detect a
fall after it happens. For the specificity, even though there was
no considerable difference on classes of non-fall and fall, our
ConvLSTM model outperformed the benchmark on the class of
pre-impact fall (higher specificity by 3.7%), which demonstrated
lower misclassification rate on pre-impact fall prediction.

In terms of latency, LSTM model is time consuming due to
its complex structure and difficulty in parallel computing. In

the proposed hybrid ConvLSTM model, the first CNN layers
which are appropriate for parallel computation would extract
features hierarchically from the raw motion sensor data. The
extracted features would be inputted to following LSTM layers
for identifying temporal dependencies. Compared with the raw
data as the input in LSTM model, these features are in a much
lower dimensional space and thus far more concise. Therefore,
inserting CNN layers ahead of LSTM layers could save significant
amount of time for computation. Interestingly, even tested on
a microcontroller unit of the Jetson Nano with the exact same
model tested on the computer, the latency of our proposed
hybrid model still maintained very short and within 1.1 ms,
demonstrating a great potential to implement our developed
hybrid model into predicting the pre-impact falls in real-time
so that the on-demand fall protection systems (e.g., wearable
airbags) can be timely activated to prevent fall-related injuries.

The present study has several limitations worth noting. First,
because the SisFall dataset did not provide the video references
about the simulated falls and ADLs of each subject, the pre-
impact fall and fall intervals of the sensor signal labeled by
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authors of the baseline study may not be very consistent.
Considering Xsens wearable motion capture system could record
motion data and reconstruct graphical videos of human motions
synchronously, we will use it to build a new fall dataset and
further verify the developed deep learning algorithms. Second, for
some types of falls such as a lateral fall, the duration of falling is
very short and the time interval of pre-impact fall is too short to
specify. Therefore, for these fall cases, pre-impact fall instances
may not be labeled reliably due to the much larger width of
sliding window. Further analysis on different window sizes could
be conducted. Third, the development of the CovnLSTM model
was based on the SisFall dataset with simulated falls performed
by limited subjects. Caution is thus needed in directly applying
this model into practice. Large-scale fall simulations and real-
life tests with good protection need to be conducted further. Last
but not least, non-fall instances are very dominant in the SisFall
dataset compared with instances for other two classes, which
induces challenges in training the deep learning models. More
scientific techniques such as data argumentation to cope with
highly imbalanced data should be explored further.

CONCLUSION

We proposed a hybrid deep learning model (ConvLSTM) which
integrates the CNN and LSTM architectures to predict the
pre-impact fall for older people based on accelerometer and
gyroscope data. The performance of this hybrid model was
evaluated on SisFall, a large public dataset of various falls
and ADL. We also comprehensively compared the proposed
hybrid ConvLSTM model with CNN and LSTM deep learning
models in terms of model accuracy, latency and learning curve.
Experimental results showed that the hybrid ConvLSTM model
obtained both high sensitivities (>93%) and specificities (>94%)
for all three fall stages (non-fall, pre-impact fall and fall), which
were higher than LSTM and CNN models. In addition, latency
test on a microcontroller unit (Nvidia Jetson Nano) showed that
ConvLSTM model had a short latency of 1.06 ms, which was
much lower than LSTM model (3.15 ms) and comparable with

CNN model (0.77 ms). High prediction accuracy (especially for
pre-impact fall) and low latency on the micro board indicated
that the proposed hybrid ConvLSTM model outperformed both
LSTM and CNN models. These findings suggested that our
proposed novel hybrid ConvLSTM model has great potential
to be embedded into wearable inertial sensor-based systems to
predict pre-impact fall in real-time so that protective devices
could be triggered in time to prevent fall-related injuries
for older people.

DATA AVAILABILITY STATEMENT

The pre-processed datasets used in this study for fivefold cross
validation are available from the corresponding author upon
reasonable request.

AUTHOR CONTRIBUTIONS

SX conceptualized the study, obtained the funding, and reviewed
and edited the manuscript. HQ and SX designed the neural
networks. XY did the data pre-processing and implemented the
training and testing of deep neural networks. XY and HQ wrote
the original draft.

FUNDING

The Basic Science Research Program through the National
Research Foundation of Korea (NRF-2017R1C1B2006811) and
K-Vally RED&B Project (N11190074) funded this research.

ACKNOWLEDGMENTS

We thank the developers of SisFall for publicly sharing the
dataset. We also thank the authors of the baseline study (Torti
et al., 2018) for sharing the temporal labeling of the SisFall dataset.

REFERENCES
Ahn, S., Kim, J., Koo, B., and Kim, Y. (2019). Evaluation of inertial sensor-based

pre-impact fall detection algorithms using public dataset. Sensors 19:774. doi:
10.3390/s19040774

Aziz, O., Russell, C. M., Park, E. J., and Robinovitch, S. N. (2014). “The
effect of window size and lead time on pre-impact fall detection accuracy
using support vector machine analysis of waist mounted inertial sensor
data,” in Proceedings of the Engineering in Medicine and Biology Society
(EMBC), 2014 36th Annual International Conference, (Piscataway, NJ:
IEEE), 30–33.

Bekkar, M., Djemaa, H. K., and Alitouche, T. A. (2013). Evaluation measures for
models assessment over imbalanced data sets. J. Inform. Eng. Appl. 3, 27–38.

Bergen, G. (2016). Falls and fall injuries among adults aged ≥ 65 years—
United States, 2014. MMWR 65, 993–998. doi: 10.15585/mmwr.mm
6537a2

Burns, E. R., Stevens, J. A., and Lee, R. (2016). The direct costs of fatal and non-
fatal falls among older adults—United States. J. Saf. Res. 58, 99–103. doi:
10.1016/j.jsr.2016.05.001

Casilari, E., Santoyo-Ramón, J. A., and Cano-García, J. M. (2017). UMAFall: a
multisensor dataset for the research on automatic fall detection. Proc. Comput.
Sci. 110, 32–39. doi: 10.1016/j.procs.2017.06.110

Choi, S. D., Guo, L., Kang, D., and Xiong, S. (2017). Exergame technology and
interactive interventions for elderly fall prevention: a systematic literature
review. Appl. Ergon. 65, 570–581. doi: 10.1016/j.apergo.2016.10.013

Fleming, J., and Brayne, C. (2008). Inability to get up after falling, subsequent time
on floor, and summoning help: prospective cohort study in people over 90. BMJ
337:a2227. doi: 10.1136/bmj.a2227

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Hsu, W.-C., Sugiarto, T., Lin, Y.-J., Yang, F.-C., Lin, Z.-Y., Sun, C.-T., et al. (2018).
Multiple-wearable-sensor-based gait classification and analysis in patients with
neurological disorders. Sensors 18:3397. doi: 10.3390/s18103397

Hu, X., and Qu, X. (2016). Pre-impact fall detection. Biomed. Eng. Online 15:61.
doi: 10.1186/s12938-016-0194-x

Lee, J. K., Robinovitch, S. N., and Park, E. J. (2015). Inertial sensing-based pre-
impact detection of falls involving near-fall scenarios. IEEE Trans. Neural Syst.
Rehabil. Eng. 23, 258–266. doi: 10.1109/TNSRE.2014.2357806

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 February 2020 | Volume 8 | Article 63

https://doi.org/10.3390/s19040774
https://doi.org/10.3390/s19040774
https://doi.org/10.15585/mmwr.mm6537a2
https://doi.org/10.15585/mmwr.mm6537a2
https://doi.org/10.1016/j.jsr.2016.05.001
https://doi.org/10.1016/j.jsr.2016.05.001
https://doi.org/10.1016/j.procs.2017.06.110
https://doi.org/10.1016/j.apergo.2016.10.013
https://doi.org/10.1136/bmj.a2227
https://doi.org/10.3390/s18103397
https://doi.org/10.1186/s12938-016-0194-x
https://doi.org/10.1109/TNSRE.2014.2357806
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00063 February 10, 2020 Time: 14:58 # 10

Yu et al. Deep-Learning for Pre-impact Fall Prediction

Li, F., Shirahama, K., Nisar, M., Köping, L., and Grzegorzek, M. (2018).
Comparison of feature learning methods for human activity recognition using
wearable sensors. Sensors 18:E679.

Li, M., Xu, G., He, B., Ma, X., and Xie, J. (2018). Pre-impact fall detection based on
a modified zero moment point criterion using data from kinect sensors. IEEE
Sens. J. 18, 5522–5531. doi: 10.1109/jsen.2018.2833451

Li, S., Xiong, H., and Diao, X. (2019). “Pre-impact fall detection using
3D convolutional neural network,” in Proceedings of the 2019 IEEE 16th
International Conference on Rehabilitation Robotics (ICORR), (Piscataway, NJ:
IEEE), 1173–1178.

Liang, S., Chu, T., Lin, D., Ning, Y., Li, H., and Zhao, G. (2018). “Pre-impact alarm
system for fall detection using MEMS sensors and HMM-based SVM classifier,”
in Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), (Piscataway, NJ: IEEE),
4401–4405.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). “Focal loss for
dense object detection,” in Proceedings of the IEEE International Conference on
Computer Vision, (Piscataway, NJ: IEEE), 2980–2988.

Murray, C. J., Lopez, A. D., Mathers, C. D., and Stein, C. (2001). The Global
Burden of Disease 2000 Project: Aims, Methods and Data Sources. Piscataway,
NJ: CiteseerX.

Musci, M., De Martini, D., Blago, N., Facchinetti, T., and Piastra, M. (2018).
Online fall detection using recurrent neural networks. arXiv, arXiv:1804.04976.
Available at: https://arxiv.org/abs/1804.04976 (accessed March 28, 2019).

Nvidia (2019). Jetson Nano Developer Kit [Online]. Available at: https://developer.
nvidia.com/embedded/jetson-nano-developer-kit (accessed September 10,
2019).

Özdemir, A. T., and Barshan, B. (2014). Detecting falls with wearable sensors
using machine learning techniques. Sensors 14, 10691–10708. doi: 10.3390/
s140610691

Panahandeh, G., Mohammadiha, N., Leijon, A., and Händel, P. (2013). Continuous
hidden Markov model for pedestrian activity classification and gait analysis.
IEEE Trans. Instrum. Meas. 62, 1073–1083. doi: 10.1109/tim.2012.223
6792

Qiu, H., Rehman, R. Z. U., Yu, X., and Xiong, S. (2018). Application of Wearable
inertial sensors and a new test battery for distinguishing retrospective fallers
from non-fallers among community-dwelling older people. Sci. Rep. 8:16349.
doi: 10.1038/s41598-018-34671-6

Qiu, H., and Xiong, S. (2015). Center-of-pressure based postural sway measures:
reliability and ability to distinguish between age, fear of falling and
fall history. Int. J. Ind. Ergon. 47, 37–44. doi: 10.1016/j.ergon.2015.
02.004

Rubenstein, L. Z. (2006). Falls in older people: epidemiology, risk factors and
strategies for prevention. Age Ageing 35, ii37–ii41. doi: 10.1093/ageing/afl084

Sabatini, A. M., Ligorio, G., Mannini, A., Genovese, V., and Pinna, L. (2016).
Prior-to- and post-impact fall detection using inertial and barometric altimeter
measurements. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 774–783. doi: 10.1109/
TNSRE.2015.2460373

Su, Y., Liu, D., and Wu, Y. (2016). “A multi-sensor based pre-impact fall detection
system with a hierarchical classifier,” in Proceedings of the Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI), International
Congress, (Piscataway, NJ: IEEE), 1727–1731.

Sucerquia, A., López, J. D., and Vargas-Bonilla, J. F. (2017). SisFall: a fall and
movement dataset. Sensors 17:198. doi: 10.3390/s17010198

Tao, X., and Yun, Z. (2017). Fall prediction based on biomechanics equilibrium
using kinect. Int. J. Distrib. Sens. Netw. 13, 1–9.

Torti, E., Fontanella, A., Musci, M., Blago, N., Pau, D., Leporati, F., et al. (2018).
“Embedded real-time fall detection with deep learning on wearable devices,”
in Proceedings of the 2018 21st Euromicro Conference on Digital System Design
(DSD), (Piscataway, NJ: IEEE), 405–412.

Vavoulas, G., Pediaditis, M., Chatzaki, C., Spanakis, E. G., and Tsiknakis, M. (2014).
The mobifall dataset: fall detection and classification with a smartphone. Int. J.
Monit. Surveill. Technol. Res. 2, 44–56. doi: 10.4018/ijmstr.2014010103

Wang, J., Chen, Y., Hao, S., Peng, X., and Hu, L. (2019). Deep learning for
sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11.
doi: 10.1016/j.patrec.2018.02.010

Wu, Y., Su, Y., Feng, R., Yu, N., and Zang, X. (2019). Wearable-sensor-based pre-
impact fall detection system with a hierarchical classifier. Measurement 140,
283–292. doi: 10.1016/j.measurement.2019.04.002

Yang, L., Ren, Y., and Zhang, W. (2016). 3D depth image analysis for indoor fall
detection of elderly people. Dig. Commun. Netw. 2, 24–34. doi: 10.1016/j.dcan.
2015.12.001

Yao, S., Hu, S., Zhao, Y., Zhang, A., and Abdelzaher, T. (2017). “Deepsense:
a unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th International Conference on World
Wide Web: International World Wide Web Conferences Steering Committee,
(Piscataway, NJ: IEEE), 351–360.

Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., Wu, P., et al.
(2014). “Convolutional neural networks for human activity recognition using
mobile sensors,” in Proceedings of the 6th International Conference on Mobile
Computing, Applications and Services, (Piscataway, NJ: IEEE), 197–205.

Zhong, Z., Chen, F., Zhai, Q., Fu, Z., Ferreira, J. P., Liu, Y., et al. (2018). “A real-
time pre-impact fall detection and protection system,” in Proceedings of the 2018
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), (Piscataway, NJ: IEEE), 1039–1044.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yu, Qiu and Xiong. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 February 2020 | Volume 8 | Article 63

https://doi.org/10.1109/jsen.2018.2833451
https://arxiv.org/abs/1804.04976
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://doi.org/10.3390/s140610691
https://doi.org/10.3390/s140610691
https://doi.org/10.1109/tim.2012.2236792
https://doi.org/10.1109/tim.2012.2236792
https://doi.org/10.1038/s41598-018-34671-6
https://doi.org/10.1016/j.ergon.2015.02.004
https://doi.org/10.1016/j.ergon.2015.02.004
https://doi.org/10.1093/ageing/afl084
https://doi.org/10.1109/TNSRE.2015.2460373
https://doi.org/10.1109/TNSRE.2015.2460373
https://doi.org/10.3390/s17010198
https://doi.org/10.4018/ijmstr.2014010103
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1016/j.measurement.2019.04.002
https://doi.org/10.1016/j.dcan.2015.12.001
https://doi.org/10.1016/j.dcan.2015.12.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors
	Introduction
	Materials and Methods
	Dataset and Labeling
	Design of Model Architecture
	Model Training

	Results
	Classification Performance
	Learning Curve
	Model Latency

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


