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Aging was a biological process under regulations from both inherited genetic factors

and various molecular modifications within cells during the lifespan. Multiple studies

demonstrated that the chronological age may be accurately predicted using the

methylomic data. This study proposed a three-step feature selection algorithm AgeGuess

for the age regression problem. AgeGuess selected 107 methylomic features as the

gender-independent age biomarkers and the Support Vector Regressor (SVR) model

using these biomarkers achieved 2.0267 in themean absolute deviation (MAD) compared

with the real chronological ages. Another regression algorithm Ridge achieved a slightly

better MAD 1.9859 using the same biomarkers. The gender-independent age prediction

models may be further improved by establishing two gender-specific models. And it’s

interesting to observe that there were only two methylation biomarkers shared by the

two gender-specific biomarker sets and these two biomarkers were within the two known

age-associated biomarker genes CALB1 and KLF14.

Keywords: age prediction, methylomic biomarker, regression, support vector regressor, ridge

INTRODUCTION

Aging is a ubiquitous phenomenon in almost all the multi-cellular organisms (Horn and Schweppe,
2015). It is also a challenging issue concerned by citizens in many countries (Baltes and Smith,
2003; Banister et al., 2012). Evidences were accumulating about that aging is a biological process
strictly regulated by epigenetic modifications rather than random events (Fraga and Esteller, 2007;
Martino et al., 2011; Schellenberg et al., 2011; Pal and Tyler, 2016). So it’s technically reasonable
to estimate an individual’s biological age through the biomarkers like telomere length (Saeed et al.,
2012; Barrett et al., 2013), age-dependent changes in T cell DNA (Zubakov et al., 2010; Ou et al.,
2012), and RNA biomarkers (Alvarez and Ballantyne, 2006), etc. Recent studies also demonstrated
that DNA methylation levels at certain CpG residues were linearly associated with the biological
ages, and may serve well as age biomarkers (Zubakov et al., 2016).

DNA methylation has been implicated to be involved in various aging-associated biological
processes (Jones et al., 2015; Field et al., 2018). DNAmethylation is a biological process of selectively
adding a methyl group to a cytosine to form 5-cytosine facilitated by a DNA methyltransferase
(Moore et al., 2013). This epigenetic modification plays an essential role in transcriptional
regulation and other biological processes (Vaillancourt et al., 2017; Suzuki et al., 2019). Quite a
few age prediction models were proposed based on the methylation biomarkers. Besides clinical
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application, these models can also be used in forensic
investigation (Vidaki and Kayser, 2018; Alsaleh and Haddrill,
2019). Blood and other liquids are one of the most important
biological evidences found in the crime scene, so it’s necessary to
use the whole blood to establish an accurate age predictionmodel.

Themajor challenge is finding a subset of methylation features
with a good age prediction performance using the methylomic
datasets. About half a million methylation features may be
generated for one sample by the popular array-based methylome
profiling technologies like Illumina HumanMethylation450
BeadChip (450K) (Fernandez-Jimenez et al., 2019). The feature
number is much larger than the sample number, and a step
of feature selection has to be conducted to avoid the model
over-fitting (Feng et al., 2018).

The existingmethylome-based age prediction studies explored
different feature selection algorithms to find the best age-
associated biomarkers. Horvath used the elastic net algorithm
to select 353 methylomic features to predict the human ages
and the mean absolute error of the predicted age was about 3.6
years (Horvath, 2013). Yi et al. detected three age-related gene
fragments from the blood samples of 40 volunteers and used the
CpG locus of these fragments to train the age-regression model
with a prediction difference of 4 years compared with the real
ages (Yi et al., 2015). Hong et al. proposed a linear regression-
based age prediction model, which achieved 94.5% in correlation
and 3.13 years in the mean absolute deviation (Small et al., 2011)
from the chronological ages (Hong et al., 2017). Another study
investigated this forensic problem by selecting 23 methylomic
features and established a multi-variate regression model with an
age prediction deviation of about 4.6 years (Vidaki et al., 2017).

Feature selection algorithm has been utilized in many
biomedical research areas. Various biomedical high-throughput
data producing technologies were rapidly invented and
developed and may produce as many as millions of features per
sample (Diao and Vidyashankar, 2013; Ye et al., 2017; Ceglia
et al., 2018). But the number of samples collected in a study
was usually limited by the difficulty of patient recruitment and
the cost of generating the data. So a biomedical big data project
usually had a much larger number of features than the number of
samples. A feature selection algorithm may significantly reduce
the model complexity and the possibility of over-fitting (Le
et al., 2017; Ma and Fan, 2017). Feature selection was not only
widely used in the bioinformatics problems of genes (Tian et al.,
2019), proteins (Liu et al., 2019), and metabolism system (Grissa
et al., 2016), but also played an important role in the analysis
of biomedical images (Pan et al., 2019) and time series data (Li
et al., 2017).

This study proposed a three-step feature selection algorithm,
AgeGuess, to find the best age prediction biomarkers using
the methylomic profiles. The metrics Maximal Information
Coefficient (MIC) was a sensitive correlation measurement
(Reshef et al., 2011) and was utilized to remove those methylomic
features with small MIC association with ages. The remaining
features were recursively eliminated based on the evaluation of
a support vector regressor. The last step removed the features
iteratively based on an exhaustive screening. Our experimental
data demonstrated an improved prediction performance of

chronological ages. Gender information was also evaluated in
further optimizing the age prediction models.

MATERIALS AND METHODS

Dataset Summary
This study used the methylomic dataset GSE40279, which
was publicly available from the database Gene Expression
Omnibus (GEO) (Clough and Barrett, 2016). The dataset
GSE40279 was profiled using the methylomic platform Illumina
HumanMethylation450 BeadChip (accession GPL13534)
(Alsaleh and Haddrill, 2019). There were 656 samples with
chronological ages in this dataset, and each sample was profiled
for 485,577 methylomic resides (Alsaleh and Haddrill, 2019).
The methylome was generated using the human whole blood
samples, obtained from 426 Caucasians and 230 Hispanics
individuals with chronological ages 19–101. As similar to the
existing study (Hannum et al., 2013), sex chromosomes were
excluded from analysis in this study. So there were 473,034 CpG
features left for further analysis.

Feature Selection Algorithm AgeGuess
Not all of these half-million methylomic features were associated
with the aging process and all the existing studies selected a subset
of features for building their age prediction models (Horvath,
2013; Yi et al., 2015; Hong et al., 2017; Vidaki et al., 2017). So this
study proposed a feature selection algorithm AgeGuess to find a
feature subset with the best age prediction performance.

Single-step feature selection algorithm may be roughly
grouped as two major types, i.e., filters and wrappers (Suto
et al., 2016). A filter evaluated each feature’s association with the
class labels with the assumption of inter-feature independence
and can be easily scaled to a large number of features (Guyon
and Elisseeff, 2003; Solorio-Fernández et al., 2016). A wrapper
screened a feature subset by a heuristic rule for its classification
performance of a user-defined classifier. A wrapper usually
outperforms a filter in accuracy with the cost of a high
computational complexity (Guyon and Elisseeff, 2003; Solorio-
Fernández et al., 2016). In order to fully utilize the advantages of
both filters and wrappers, a multi-step feature selection algorithm
may significantly reduce the number of features in the first step.
Then more sophisticated and slow algorithms may be utilized.
The following algorithm AgeGuess was designed based on this
rule for the chronological ages.

Firstly, AgeGuess selected 10,000 methylomic features that
were highly correlated with the sample label, i.e., chronological
age. There were 473,034 methylomic features for each sample
in this dataset, and not all these features contributed to the
age prediction. The metrics Maximum Information Coefficient
(MIC) demonstrated a very sensitive power in detecting linear
and non-linear correlations between two variables (Reshef et al.,
2011). This study calculated the MIC correlation of each
methylated features with the chronological ages, and kept the
10,000 features with the largest MIC values for further analysis.

Then the Recursive Feature Elimination (RFE) strategy was
utilized to remove un-related features. The RFE strategy relied
on the feature ranking and iteratively removed the k least-ranked
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FIGURE 1 | The line plot of the regression metrics MAD of AgeGuess. (A) RFE strategy to removed 50 features in each iteration on [10000, 50] and (B) The scale was

zoomed to [2000, 50]. The horizontal axis was the number of features remained for building the classification model.

features. The investigated problem in this study was a regression
model, and the Support Vector Regressor (SVR) was used to
calculate the metrics to rank the features. The trained SVR
model produced a weight vector Feature Importance, and the
features were sorted by the descendent order of the weights.
This procedure was conducted iteratively until all the features
were removed. The feature subset with the best regression
performance was returned.

One more redundancy-removal step was conducted to further
refine the feature subset obtained in the above step. The
iterative exclusion of the feature with the least performance
decrease was carried out, which was the same as the backFS
strategy in the other studies (Feng et al., 2019; Zhang et al.,
2019). The performance was calculated by the 10-fold cross
validation strategy.

A good feature selection algorithm tended to select fewer
features and to achieve a higher prediction performance.
But these two performance metrics usually cannot achieved
simultaneously. So this study defined the integrated evaluation
index (EI) as the optimization goal. EI was defined as
(MAD+FNum/100), where MAD was the mean absolute
deviation and FNum was the number of features selected by
the feature selection algorithm. This regression performance
metrics suggested one more selected feature increased the overall
performance by 0.01. And the metrics EI was used to optimize
the above-mentioned backFS strategy.

Performance Evaluation Metrics
This study investigated the age prediction problem using the
656 samples from the platform GEO. Multiple regression
performance metrics were used to evaluate how the generated
regression model performed. The metrics Mean Absolute
Deviation (Small et al., 2011) was the averaged absolute error
value between the predicted age and the chronological age (Pan
et al., 2019). The Mean Squared Error (MSE) and the squared
root version of MSE (RMSE) were another two widely used
regression performancemetrics (Liu et al., 2019; Thompson et al.,
2019). The metrics Goodness of Fit (R2) quantitatively evaluated
how well the regression model fitted the data (Chong et al.,
2017). These regressionmetrics were implemented in the package
scikit-learn version 0.19.1 of Python version 3.6.4.

RESULTS

Optimizing the Proposed Algorithm
AgeGuess
The proposed feature selection algorithm AgeGuess selected
10,000 out of the 473,034 methylomic features with the largest
MIC coefficients (Reshef et al., 2011) with the chronological ages.
AgeGuess hypothesized that the contributions of the excluded
features may be neglected since their MIC coefficients with the
chronological ages were small.

The second step of AgeGuess utilized the RFE framework to
iteratively remove the features, as shown in Figure 1. Due to the
number of remaining features was still very large, this study set k
= 50, i.e., 50 features with the least Feature Importance weights
calculated by the trained SVR model were removed in each
iteration. Figure 1A illustrated that the majority of the 10,000
methylation features didn’t contribute to the age prediction
performance. And there was a “valley” smaller than 1,500 features
in the line plot in Figure 1A. So Figure 1B zoomed in the line plot
within the range [2000, 50]. The data showed that the small MAD
value was achieved between 900 and 500. And the minimum
value MAD= 0.5809 was achieved with 750 features.

The proposed algorithm AgeGuess further removed the
redundancies in the methylated features by the function backFS
(Feng et al., 2019; Zhang et al., 2019). The 750 methylation
features chosen in the above step was iteratively evaluated and
one feature was removed per iteration if its removal generated
the least contribution to the age prediction performance metrics
EI. Figure 2A illustrated that the valley was around 100 features
in the horizontal axis. The plot was further zoomed-in for the
number of features between 50 and 150, as shown in Figure 2B.
The age regressionmetrics EI reached the minimum 3.0316 when
107 features were selected.

The SVR regression model was trained using the 107
methylation features, and was evaluated by the following
regression performance metrics. Figure 3 illustrated that the
RealAge and the PredAge were very close to each other. The
prediction performance was averaged over the 10-fold cross
validations, and 10 random rusns were averaged to generate
the final results. The Mean Absolute Deviation (Small et al.,
2011) was 2.0267 years. AgeGuess’s model achieved the other two
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FIGURE 2 | Iterative elimination of redundant features by backFS. (A) The line plot for the numbers of features no more than 750 features. (B) The zoomed-in plot for

the numbers of features between [50, 150]. The horizontal axis was the number of features. And the vertical axis was the regression performance metrics EI.

FIGURE 3 | Dot plot between the real chronological age and the predicted

age of these samples. The horizontal axis was the chronological age of a

sample (RealAge) and the vertical axis was this sample’s age averaged over

the 10-fold cross validation (PredAge). The regressor was SVR. The perfect

prediction of age was represented by the gapped line y=x.

metrics RMSE and R2 were 1.6149 and 0.9672, respectively. The
regression coefficients of the methylomic features were given in
Supplementary Table 1.

Comparison With Other Commonly Used
Feature Selection Algorithms
This study compared the proposed AgeGuess with the existing
feature selection algorithms. Three filter algorithms were
evaluated, i.e., the uni-variate F-Regression (FR), Mutual
Information (MI), and Pearson Correlation Coefficient (PCC).
Filter algorithms returned an ordered list of all the features
and the same number of features as AgeGuess was used for

a fair comparison. Three recursive feature elimination (RFE)
algorithms were also compared with AgeGuess, i.e., L1-RFE,
L2-RFE, and SVR-RFE. An RFE algorithm eliminated a feature
if its removal induced the least regression performance loss.
And the regression performances of the above three RFE
algorithms were calculated by the L1-regularized, L2-regularized
and Support-Vector-based regressors, respectively. The number
of selected features was an importance factor of a feature selection
algorithm. So we also set the number of features selected by these
RFE algorithms to the same as AgeGuess.

Figure 4 demonstrated that AgeGuess outperformed the
existing feature selection algorithms in all the three regression
performance metrics. AgeGuess achieved 2.0267 in MAD, which
was 2.1142 smaller than that of FR and 2.1603 smaller than that
of MI. A larger R2 value suggested that a regressor performed
better. AgeGuess achieved the best R2 and outperformed the next
best algorithm L2-RFE by 0.0040 in R2. The smaller RMSE was
the better. And AgeGuess outperformed the next best algorithm
SVR-RFE by 0.0262 in RMSE.

We also compared our best model with the existing age
prediction models and AgeGuess performed the best on
estimating the chronological ages. Weidner et al. used 102
methylation features from the same dataset as this study to
establish their age predictor, which achieved 4.12 inMAD, 5.34 in
RMSE and 0.87 in R2 (Weidner et al., 2014). Another study also
used the same dataset as this study and detected 41 methylomic
features as the age biomarkers. They built the age predictor
achieving 10.69 in MAD (Sarac et al., 2017). The same features
from the study (Shadrina et al., 2018) were used to train the
regressor as in this study and the age predictor only achieved
9.9017 in MAD, 12.1120 in RMSE and 0.0521 in R2, respectively.

Gender Specificity of Age Prediction
The literature provided different ideas on the correlations
between aging and gender variations. Hannum et al. proposed
that aging was impacted by various factors and utilized the
information of gender and body mass index (BMI) together with
the methylomic features in building an age predictor (Hannum
et al., 2013). Their model achieved 3.9 years in the age prediction
errors and 96% in the correlations of the predicted ages with
the chronological ages. Their data suggested that gender was a
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FIGURE 4 | Performance comparison of AgeGuess with six existing feature selection algorithms. The regression performance metrics MAD, RMSE, and R2 were

Mean Absolute Error, squared root of mean squared error, and the Goodness of Fit (R2), respectively.

FIGURE 5 | Line plots of AgeGuess’s steps 2 and 3. (A) The second step of AgeGuess screened features using SVR-RFE. (B) The third step of AgeGuess further

eliminated redundant features by backFS.

significant factor to the aging rate. But professor Steve Horvath
hypothesized that an age-dependent CpG signatures may be
defined independent of genders and his group built a gender-
independent age predictor achieving 3.6 years in the metrics
median error.

We evaluated this hypothesis with the gender-specific models
using the same feature selection algorithm on the same dataset, as
shown in Figure 5. The original dataset was split into the dsMale
and dsFemale datasets, and the same feature selection procedure
AgeGuess was carried out on these two datasets. Figure 5A
suggested that AgeGuess achieved 0.5783 and 0.6287 in MAD
for the datasets dsMale and dsFemale, respectively. Figure 5B
demonstrated that the last step of AgeGuess further refined
the gender-specific models to achieve 2.2954 and 2.2148 in EI,
respectively. So the Male and Female models outperformed the
model using the dataset dsMale∪dsFemale by at least 0.6605 in
MAD. And the gender-specific models used the similar numbers
of features compared with the original model using the dataset
combined from both dsMale and dsFemale.

The SVR regression model trained on the dataset dsMale
achieved 1.5072 in MAD, 1.3804 in RMSE and 0.9832 in

R2. The three performance metrics of the model trained on
dsFemale were 1.1669, 1.2112, and 0.9881, respectively. So both
gender-specificmodels outperformed the best model trained over
dsFemale∪dsMale, which achieved 2.0267 in MAD, 1.6149 in
RMSE and 0.9672 in R2. The dot plots in Figure 6 illustrated
how well gender-specific age prediction models achieved on
estimating the chronological ages. The regression coefficients of
the methylomic features for the two gender-specific models were
given in Supplementary Tables 2, 3.

Evaluating AgeGuess on Another
Methylomic Dataset on the EPIC BeadChip
Anewmethylation probing array, the InfiniumMethylationEPIC
(EPIC array), was recently launched and provided 868564
methylomic features, which was almost two times as that of the
Illumina 450 k array. The EPIC array shared about 94% of the
probes in the 450 k array (McEwen et al., 2018; Alsaleh and
Haddrill, 2019).

AgeGuess was applied to an independent dataset GSE116339
generated on the EPIC arrays (Curtis et al., 2019). This dataset
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FIGURE 6 | Gender-specific age prediction performances. (A) Dot plot for male samples. (B) Dot plot for female samples. (C) Dot plot for the dataset combined both

male and female samples. The perfect prediction of age was represented by the gapped line y=x.

FIGURE 7 | The training dataset size was important for the age prediction performance. (A) The regression model was trained using the regressor SVR. (B) The

regression model was trained using the regressor Ridge. (C) The performance metrics of SVR minus those of Ridge. The horizontal axis was the percentage of the

training dataset used for training the model. The three regression performance metrics MAD, RMSE and R2 were calculated.

was publicly available from the database Gene Expression
Omnibus (Clough and Barrett, 2016) and provided the
methylomes of 679 whole blood samples with the chronological
ages (Curtis et al., 2019). AgeGuess finally selected 388 CpG
features to establish the age prediction model. Two hundred
fourteen of these 388 features were shared with the 450 k
array and the other 174 features were EPIC-specific. The Mean
Absolute Deviation (MAD) of this model was 2.4780, while
the other two metrics RMSE and R2 were 1.8101 and 0.9319,
respectively. So the EPIC array-based model performed slightly
worse in the metrics MAD than the model based on the 450 k
array. And it also used more than three times of features than
the 450 k array-based model. The experimental data suggested
that the EPIC array may need the 6% of the 450 k array-specific
methylomic features to precisely describe the aging process.

Impact of Training Dataset Sizes on Age
Prediction Performances
An experiment series was carried out to evaluate how different
numbers of training samples may impact the age prediction

performances, as shown in Figure 7. Firstly, 30% of the whole
dataset was randomly selected as the test dataset. Then we
randomly selected 20, 40, 60, 80, and 100% of the remaining
samples to train the regression models, and tested the model
prediction performances on the test dataset. Figure 7A suggested
that more training samples did improve the regression model’s
performances. The 40% model improved the 20% model by
33.94% in MAD, but the 60% model only achieved a 14.94%
improvement in MAD compared with the 40% model. And
even smaller improvements were achieved when more training
samples were added. Similar patterns were observed for the other
two regression performance metrics RMSE and R2.

Another regression algorithm Ridge was evaluated for its
age prediction performances using the same features, as shown
in Figures 7B,C. The Ridge-based age prediction models also
demonstrated a similar pattern on different numbers of training
samples, as shown in Figure 7B. After 60% of samples in the
training dataset was used to train the model, more training
samples didn’t facilitate a major model improvement. We
calculated the metrics differences between SVR and Ridge, as
shown in Figure 7C. A small value of MAD or RMSE suggested
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FIGURE 8 | Gender-specific methylomic biomarkers for age prediction. (A) Venn plot of the three sets of methylomic biomarkers. The dataset “Both” included both

male and female samples. The two datasets “Male” and “Female” consisted of male and female samples, respectively. (B) Each column gave the metrics MAD values

of the age regression SVR model trained by the biomarker set denoted on the first row. BothModel, MaleModel and FemaleModel denoted the sets of biomarkers

detected using the datasets Both, Male, and Female.

a good age prediction model, and Figure 7C illustrated that
the MAD or RMSE values of Ridge were always smaller than
those of SVR. And a large R2 value suggested a good regression
model. Figure 7C illustrated that Ridge was always larger than
SVR in the performance metrics R2. So the regression algorithm
Ridge outperformed SVR in all the three regression performance
metrics MAD, RMSE, and R2.

The Biological Relevance of Age
Biomarkers to the Aging Process
Figure 8 illustrated that there were little overlaps between
the gender-specific methylomic biomarkers, and there were
no methylomic biomarkers shared among the three sets
of biomarkers BothModel/MaleModel/FemaleModel. The data
suggested that there existed differences in aging biomarkers
between males and females. Even the aging biomarkers of
the BothModel performed worse on the individual genders
(datasets dsMale and dsFemale). And the cross-gender validation
demonstrated much worse age regression performances, as
shown in Figure 8B.

Some of the gender-specific age methylomic biomarkers were
known to have gender-biased expression patterns (Gershoni
and Pietrokovski, 2017). There were two female-biased age
methylomic biomarkers were cg06419846 (gene CD248) and
cg25371036 (gene AMOTL1), which were from the chromosome
11 (Gershoni and Pietrokovski, 2017). CD248 was observed to
be hypermethylated during aging and suggested the impaired T
cell functionality in the aged adults (Tserel et al., 2015). AMOTL1
(Angiomotin Like 1) was also differentially expressed in different
age groups of females, which was verified by the quantitative
real-time PCR (qRT-PCR) (Pelissier et al., 2014).

Some of the male-specific age methylomic biomarkers in
this study were also supported by the literature. Both of the
two biomarkers cg25478614 (gene SST) and cg04084157 (gene
VGF) were observed to exhibit male-biased expression patterns

(Gershoni and Pietrokovski, 2017). The gene SST received
hypermethylation to decline its expressions gradually with age
(McKinney et al., 2015). The SST+ neuronsmay also be impacted
with chronic exposures to different photoperiods and resulted
in behavioral alternations (Pritchard et al., 2019). The gene
VGF encoded the Nerve Growth Factor Inducible protein and
gradually increased its expressions in the T lymphocytes when
the host age increases (Busse et al., 2014).

These gender-specific biomarker genes were screened by the
online GO (Gene Ontology) analysis system DAVID version
6.8 (Huang da et al., 2009a,b). The biomarker genes were
input as the foreground and the species Homo sapiens was

chosen as the background. The enriched terms with P ≤

0.05 in the functional annotation chart were collected for
further analysis, as shown in Supplementary Table 4. Figure 8A
suggested that the three datasets dsBoth, dsFemale and dsMale

shared very few biomarkers. Supplementary Table 4 further
supported the observationwith that only oneGO term (biological
process “regulation of catalytic activity”) was shared by two
datasets dsBoth and dsMale. The top two ranked terms in the
female biomarkers were two molecular function terms “RNA

polymerase II transcription factor activity, ligand-activated
sequence-specific DNA binding” and “RNA polymerase II core
promoter proximal region sequence-specific DNA binding.” The
female-specific aging associated RNA polymerase II activities
were supported by the experimental evidences observed from
the female rat brain (Shults et al., 2015) and the female
rat liver (Spindler et al., 1991). While we focused on the
aging biomarkers from the dataset dsBoth, the top-ranked
enriched GO term was the biological process “homophilic cell
adhesion via plasma membrane adhesion molecules,” as shown
in Supplementary Table 4. It is well-known that the growth
hormone was actively involved in the aging process and some
of the state-of-the-art results were reviewed in Allshouse et al.
(2018) and Bartke (2019).
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DISCUSSION

The aging process was impacted by both inherited genetic and
environmental factors. Multiple studies demonstrated that the
methylomic biomarkers served as a rich information source for
predicting the chronological ages (Hong et al., 2017; Shadrina
et al., 2018). Most of the existing studies selected their age
biomarkers based on these biomarkers’ biological relevance to the
aging process (Zubakov et al., 2016) or statistically correlations
with the chronological ages (Shadrina et al., 2018).

This study hypothesized that the chronological age may be
more accurately predicted using delicately chosen methylomic
biomarkers. A three-step feature selection algorithm AgeGuess
was proposed and evaluated for the age regression problem
based on the methylomic features. The SVR model using the
AgeGuess-selected methylomic biomarkers outperformed the
existing age prediction models. Our experimental data suggested
that another regression algorithm Ridge achieved a slightly better
age regression performance compared with the SVR model.
So the AgeGuess-selected features represented important age
biomarkers independent of regression algorithms.

This study further investigated whether the age process
was gender-specific. The proposed algorithm AgeGuess selected
97 methylomic biomarkers for the male samples, and 110
biomarkers for the females. But there were only two methylomic
biomarkers cg26290632 (gene CALB1) and cg07955995 (gene
KLF14) selected by AgeGuess in both the male and females
samples. Both CALB1 (Loerch et al., 2008) and KLF14 (Small
et al., 2011) were known age-related biomarkers. CALB1
demonstrated robustly down-regulated expression across rhesus
monkeys and humans (Loerch et al., 2008; Pabba et al., 2017).
While KLF14 served as a master regulator of many genes and
its altered methylation patterns were associated with the aging
process (Spolnicka et al., 2018). But both of these two genes
didn’t demonstrate gender-specific patterns. So these two genes
may be robust age biomarkers without gender-bias. Some of the
gender-specific age methylomic biomarkers were also supported
by the literature.

The age prediction models proposed in this study may need
further validated by various tissue samples. Gene expression
patterns differred across tissues, so did patterns of DNA
methylation (Decato et al., 2017; Zhou et al., 2017; Slieker et al.,
2018). Only whole blood methylation samples were used in
this study. Considering the influence factors such as tissues and

environments, the age prediction models in this study may have
reduced prediction capabilities for forensic samples other than
whole blood. In addition, Hannum et al., demonstrated that some
electronic health record (EHR) data like BMI may be integrated
with the methylomic data to achieve a better age prediction
(Hannum et al., 2013). So more types of biomedical data of the
participants may further improve the proposed models.
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