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Metabolic regulation of gene expression for the microbial production of fine chemicals,
such as organic acids, is an important research topic in post-genomic metabolic
engineering. In particular, the ability of transcription factors (TFs) to respond precisely
in time and space to various small molecules, signals and stimuli from the internal
and external environment is essential for metabolic pathway engineering and strain
development. As a key component, TFs are used to construct many biosensors in
vivo using synthetic biology methods, which can be used to monitor the concentration
of intracellular metabolites in organic acid production that would otherwise remain
“invisible” within the intracellular environment. TF-based biosensors also provide a high-
throughput screening method for rapid strain evolution. Furthermore, TFs are important
global regulators that control the expression levels of key enzymes in organic acid
biosynthesis pathways, therefore determining the outcome of metabolic networks.
Here we review recent advances in TF identification, engineering, and applications for
metabolic engineering, with an emphasis on metabolite monitoring and high-throughput
strain evolution for the organic acid bioproduction.

Keywords: transcription factor, biosensor, metabolic engineering, synthetic biology, organic acid, high-
throughput screening

INTRODUCTION

In nature, transcription factors (TFs) control the rate of gene transcription by recognizing specific
DNA sequences, thus regulating expression of the genome. In addition to the normal biological
and physiological roles that TFs play in human cells, they can be used as building blocks and
regulatory tools in metabolic engineering and synthetic biology (Yadav et al., 2012; Shi et al.,
2018; Yang et al., 2019). For example, in one study 55 TFs and 750 metabolic genes were used
to construct a regulatory network for controlling metabolism in Saccharomyces cerevisiae (S.
cerevisiae) (Herrgård et al., 2006). There are a wide range of TFs available from diverse microbes,
and TF engineering is a very flexible approach, which makes TFs a particularly useful resource
for biotechnology. Functional screening is used to identify novel TFs that can then be engineered
in host cells to control the expression of key enzymes in biosynthetic gene clusters (BGCs) (Liu
et al., 2013). In past decades, researchers have designed and optimized many biosynthetic pathways
for natural products (Yadav et al., 2012), such as artemisinin (Paddon and Keasling, 2014). When
constructing such pathways, over-expressing positive regulators or knocking down/out negative
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regulators are two important ways of activating BGCs (Xie et al.,
2015; Thanapipatsiri et al., 2016). As an example, over-expressing
the global TF AdpA in Streptomyces hygroscopicus enhances gene
cluster transcription and antibiotic synthesis (Tan et al., 2013).
Novel genomic editing and protein engineering tools have been
applied to synthesize target products via TF-mediated activation
of silent BGCs (Tong et al., 2015; Zhang et al., 2017; Grau et al.,
2018). Because TFs are sensitive to their corresponding signal
molecules, they can also be used to construct highly sensitive
biosensors for use in high-throughput screening for improved
strains (Yu et al., 2019). Protein engineering can be used to
alter the ligand specificity of TFs such that they can detect new
signaling molecules (Machado et al., 2019), furthering expanding
their applications in metabolic engineering.

With the rapid development of bioinformatics and genomic
editing tools, TFs are playing more important roles in improving
the microbial production of valuable chemicals. In this paper, we
will briefly review recent advances in the use of microbial TFs
to regulate metabolic production of valuable chemical products,
with a particular focus on the production of organic acids. We will
also summarize strategies for identifying new TFs and review the
use of TFs as biosensors for monitoring metabolites in vivo and
performing high-throughput screening for overproducers, which
are important methods used to obtain a strain with the desired
phenotype from a library of mutants containing a wide variety of
genomic alterations.

METHODS FOR IDENTIFYING TFs

Transcription factors are sequence-specific DNA-binding
proteins that bind to promoters to either activate or repress
transcription (Figure 1). So far, TFs in prokaryotes can be
grouped into a dozen families identified on the basis of sequence
analysis, with the LacI, AraC, LysR, CRP, TetR, and OmpR
families being characterized best (Browning and Busby, 2004).
New TFs continue to be identified by experimental methods
such as transcriptome analysis (Raghavan et al., 2019), one-
hybrid assays (Reece-Hoyes and Walhout, 2012), electrophoretic
mobility shift assay (EMSA, Hellman and Fried, 2007), DNA
affinity purification-mass spectrometry (AP-MS, Tacheny et al.,
2013), and protein microarrays (Hu et al., 2009).

In general, TFs have a DNA-binding domain (DBD) and a
regulatory domain (RD). Knowledge of binding sites, ligand-
protein interaction and binding affinity can help identify
an unknown DNA-binding protein. DBDs have been widely
characterized both experimentally and bioinformatically, so
today, most newly discovered and putative TFs can be identified
and grouped by sequence homology to a previously characterized
DBD. Now, information on the DBD structures in complex with
DNA can be found in the Protein Data Bank1. Bacterial TF
binding sites and related information are also available in some
open databases such as CollecTF (Kilic et al., 2014). RD, also
called “effector binding domain,” performs many tasks including
ligand binding, protein-protein interactions and modulating the

1https://www.rcsb.org

DNA-binding affinity of TFs. The diversity, abundance and
structure variability of RD have been identified and investigated
systematically for transcription regulation (Perez-Rueda et al.,
2018; Sanchez et al., 2020). In particular, the high variability
of RDs and recognition promiscuity may have evolutionary
implications that they can be targeted for engineering to change
the ligand specificity and/or improve the sensing dynamics.

USING TFs AS BIOSENSORS IN
METABOLIC ENGINEERING

Monitoring Metabolites in vivo
Due to the inherent complexity of biological systems, it
is desirable to quantitatively or semi-quantitatively evaluate
metabolites of interest in vivo. By binding metabolites of
interest, TFs can either activate the expression of reporter genes
in a genetic circuit as an activator (Figure 2A), or induce
the downstream gene expression by reducing the repression
of RNA polymerase-promoter binding (Figure 2B), resulting
in a detectable signal that can be easily assayed (Dietrich
et al., 2010; Mahr and Frunzke, 2016; D’Ambrosio and Jensen,
2017; Liu Y. et al., 2017). TFs can be used to detect small
molecules, ion accumulation, and changes in physiological
parameters. A wide variety of TF-based biosensors have been
constructed and characterized that recognize different small
molecules, including but not limited to glutarate (Thompson
et al., 2019), 3-hydroxypropionic acid (Rogers and Church, 2016;
Seok et al., 2018; Nguyen et al., 2019), itaconic acid (Hanko
et al., 2018), flavonoids (Siedler et al., 2014a; Trabelsi et al., 2018),
anhydrotetracycline (Lutz and Bujard, 1997), arabinose (Lee and
Keasling, 2006), lactam (Zhang et al., 2016), mevalonate (Tang
and Cirino, 2011), L-methionine (Mustafi et al., 2012), amino
acids (Binder et al., 2012; Mustafi et al., 2012; Leavitt et al.,
2016), acrylic acid (Raghavan et al., 2019), isoprene (Kim et al.,
2018), shikimate (Liu C. et al., 2017), and aromatic compounds
(Willardson et al., 1998; Kim et al., 2005; Jha et al., 2016). Some
typical biosensors with sensing kinetics are listed in Table 1.

Although wild-type TFs are sensitive to their corresponding
metabolites, they have narrow dynamic ranges, which limits their
practical applications. Thus, TFs are often engineered to increase
their dynamic ranges (Figure 2C). LuxR, a TF that is involved
in quorum sensing in many bacteria, has been engineered
to respond to butanoyl-homoserine lactone at concentrations
as low as 10 nM (Hawkins et al., 2007). Structural analysis
and site-directed mutagenesis were used to engineer a BmoR
mutant that has a wider detection range (0–100 mM) for
intracellular isobutanol than the wild-type protein (Yu et al.,
2019). Promoter binding sites can also influence the dynamic
range of TFs. The maximum dynamic range of a bacterial TF-
based biosensor in S. cerevisiae was expanded by modifying
promoter sequences (Dabirian et al., 2019a). Leavitt et al.
(2016) engineered both wild-type TFs and promoters involved in
aromatic amino acid induction and regulation in S. cerevisiae to
obtain a transcriptional output 15-fold greater than the off-state.
Similarly, TyrR, a TF that is activated in response to increased
intracellular L-Phe concentrations in E. coli, exhibited higher
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FIGURE 1 | Illustration of bacterial transcription factors (TFs). A transcription factor subunit (denoted as a dumbbell shape) usually contains a regulatory domain and
a DNA-binding domain. Normally two subunits dimerize to form a TF which interacts with a bacterial promoter region to either activate or repress transcription
initiation. Here, only one activation mode (TF contacts domain 4 of the RNA polymerase σ subunit) and one repression mode (via steric hindrance) were shown to
illustrate this process.

sensitivity when combined with optimized promoters, with a
dynamic range up to 15 times greater than when it was used in
a strain with wild-type promoter sequences (Liu Y.F. et al., 2017).

In addition to naturally occurring metabolite-responsive
biosensors, there are many metabolites for which a natural
TF does not exist, or for which the detection limit is too
high. To address this problem, a known TF, such as PcaV
(Machado et al., 2019), can be engineered by directed evolution
to expand is sensing profile (Figure 2D). Another example
is the switch in the effector specificity of an L-arabinose-
responsive TF, AraC, which was modified by molecular evolution
to respond to D-arabinose concentrations as low as 1 mM
(Tang et al., 2008). Biosensor engineering by random domain
insertion (BERDI) is another technique that can be used to
generate new metabolite-responsive TFs. In this case, in vitro
transposon-mediated mutagenesis was used to construct a TF
library, followed by fluorescence-activated cell sorting (FACS)
to isolate functional biosensors (Younger et al., 2017). Recently,
MphR was found to bind promiscuously to macrolides, and
was then engineered to improve its sensitivity, specificity, and
selectivity for these small molecules (Kasey et al., 2017). The
tailored MphR biosensors provide a useful means of screening
key enzymes involved in complex macrolide biosynthesis,
demonstrating the power of protein engineering in creating new
metabolite-responsive TFs. Similarly, an Acinetobacter TF, PobR,
was engineered to switch its specificity from the native effector
4-hydroxybenzoate to p-nitrophenol (pNP) (Jha et al., 2016).
Given the significant similarity between the two effectors, the
high specificity of this engineered TF for pNP (detection limit
of 2 µM) demonstrates the importance of engineering TFs by
directed evolution.

TF-Biosensor Based Strain Screening
Since only a few metabolites are natural chromophores or
fluorophores, high-throughput screening (HTS) methods are
needed to identify engineered microorganisms that produce
the desired products. The application of TF-based biosensors
to high-throughput screening has recently been reviewed in

detail (Bott, 2015; Mahr and Frunzke, 2016; Cheng et al.,
2018). Here, we focus on combining random genomic mutation
with high-throughput screening to obtain high-yield strains.
Cells contain sophisticated metabolic networks, which can make
it challenging to rationally engineer metabolic pathways that
produce large amounts of target compounds. Although genomic
editing tools enable the rapid and precise tuning of gene
expression, our ability to rewire cellular metabolism is still limited
(Yadav et al., 2012). Therefore, genome-wide approaches for
introducing random mutations, followed by high-throughput
screening, provide an efficient way to evolve strains (Figure 2E).
Chou and Keasling (2013) developed a feedback-controlled
system that contains different TFs for sensing isopentenyl
diphosphate in bacteria and yeast. Several rounds of adaptive
laboratory evolution (ALE) resulted in a strain that produces
more tyrosine and isoprenoid than the original strain (Chou
and Keasling, 2013). Recently, a cooperative two-factor ALE was
developed to enhance lipid production in Schizochytrium sp.
by 57.5% relative to the parent strain after 30 adaption cycles
(Sun et al., 2018).

Transcription factor-based biosensors turn a chemical input,
which normally does not have an observable phenotype, into
a detectable output, such as fluorescence, which can be easily
coupled to FACS, an ultra-throughput method capable of
screening of more than 50,000 cells per second, thereby greatly
accelerating the optimization of production strains. The power
of TF sensor–based FACS screening is clear. For example, using
an L-lysine sensor, a library of 10 million mutated E. coli cells
was screened by FACS in 30 min (Wang Y. et al., 2016). The
best mutant was selected and evaluated in a 5-L fermenter within
2 weeks after one round of HTS, which is 104–105 times faster
than traditional selection methods. The number of studies that
have applied this strategy is increasing rapidly (Binder et al., 2012,
2013; Mustafi et al., 2012; Siedler et al., 2014b, 2017; Jha et al.,
2016; Wang Y. et al., 2016; Liu Y.F. et al., 2017; Schulte et al.,
2017; Flachbart et al., 2019; Kortmann et al., 2019). In practice,
cross-talk between cells should be noted, as it may lead to false
positive results, decreasing the screening efficiency; this can be
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FIGURE 2 | Genetically encoded TF-based biosensors and their applications in metabolic engineering. Metabolic molecules can be transformed into a detectable
reporter molecule through the initiation of reporter transcription by an activator (A) or a repressor (B). The correlation between input (product concentration) and
output (AU, arbitrary reporter units) provides the dynamic range (C) and ligand specificity of transfer function (D). The wild-type TFs can be engineered so that the
mutant can have a higher dynamic range (C) or sense a new type of molecule (D). TF-based biosensors can be coupled to HTS methods such as FACS (E) or to
growth (F) for screening overproducers. TFs can also be engineered to optimize biosynthetic pathways of target products (G).

minimized by optimizing expression and cultivation conditions
(Flachbart et al., 2019).

In contrast to the use of fluorescence-coupled biosensors,
growth-coupled screening is a high-throughput method that
can be performed without expensive equipment (Figure 2F;
Dietrich et al., 2010). Lee and Oh (2015) developed a suicide
riboswitch, glmS, for the high-throughput screening of
metabolites in S. cerevisiae. Growth of the strain harboring
the suicide riboswitch was restored when the level of the
metabolite of interest level increased. An N-acetyl glucosamine
producer strain was isolated after screening. Liu S.D. et al.
(2017) coupled the microbial production of L-tryptophan
(L-Trp) to cell growth with maltose as the sole carbon

source. The selection of mutated producers led to a strain
with up to 65% increased L-Trp production. An approach
combining growth recovery with a fluorescent reporter
protein has also been developed for enzyme-directed evolution
(Michener and Smolke, 2012).

TF ENGINEERING FOR THE MICROBIAL
PRODUCTION OF ORGANIC ACIDS

Organic acids and their derivatives have a wide range of
industrial applications, and can be used as food additives,
pharmaceuticals, antimicrobial agents, biomaterials, biofuels,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 February 2020 | Volume 8 | Article 98

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00098 February 17, 2020 Time: 16:22 # 5

Li et al. TFs Review

TABLE 1 | Overview of some TF-based biosensors with sensing kinetics.

Host chassis TFs Analyte Detection range Reporter References

E. coli LuxR Butanoyl-homoserine lactone 10 nM-1 µm GFP Hawkins et al., 2007

E. coli XL1-Blue BmoR Isobutanol 0–100 mM GFP Yu et al., 2019

Saccharomyces cerevisiae FapR Glucose 95-fold to 2.4-fold GFP Dabirian et al., 2019a

E. coli AraC D-Arabinose 100 mM GFP Tang et al., 2008

E. coli PobR p-Nitrophenol <2 µM GFP Jha et al., 2016

Pseudomonas putida GcdR Glutarate 2.5 mM RFP Thompson et al., 2019

E. coli HucR Shikimic Acid 3–20 mM RFP Li et al., 2017

E. coli LysR 3-Hydroxypropionic acid 0.01–100 mM GFP Seok et al., 2018

E. coli YpItcR Itaconic acid 0.07–0.7 nM RFP Hanko et al., 2018

E. coli DH5 FdeR Naringenin 100 µM RFP Trabelsi et al., 2018

E. coli DH10B ChnR Lactams 3–12.5 mM RFP Zhang et al., 2016

E. coli AraC Mevalonate <1 mM GFP Tang and Cirino, 2011

E. coli Lrp L-Methionine >0.2–23.5 mM eYFP Mustafi et al., 2012

E. coli LysR L-Lysine <5 mM eYFP Binder et al., 2012

E. coli PyHCN Acrylic acid 500 µM eGFP Raghavan et al., 2019

E. coli TbuT Isoprene 0.1 mM eGFP Kim et al., 2018

Corynebacterium glutamicum LysR Shikimic acid 19.5–120.9 mM eGFP Liu C. et al., 2017

TABLE 2 | Strain evolution for the enhanced production of organic acids.

Host chassis TF Screening/
Analysis

Method Product Enhancement References

E. coli LysR Growth
selection

Enzyme directed evolution 3-HP 2.79-fold in catalytic efficiency
of α-ketoglutaric semialdehyde
dehydrogenase

Seok et al., 2018

E. coli SoxR FACS Genome-wide mutagenesis by
CRISPR

3-HP 7- and 8-fold increase in
productivity

Liu et al., 2018

E. coli PyHCN FACS Enzyme directed evolution Acrylic acid 50% increase in catalytic
efficiency of an amidase

Raghavan et al., 2019

E. coli JM109 HIF-1 HPLC TF engineering Pyruvic acid Titer increased to 53.1 g/L Luo et al., 2020

E. coli LysR HPLC TF engineering Itaconic acid 215-fold in itaconic acid
detection

Hanko et al., 2018

E. coli ARO1 FACS Combined ALE and metabolic
engineering

Muconic acid Titer increased to 2.1 g/L Leavitt et al., 2017

Corynebacterium
glutamicum

ShiR FACS RBS engineering Shikimic acid Titer increased to 3.72 mM Liu C. et al., 2017

E. coli pfkA HPLC Dynamic control of metabolic
fluxes

D-Glucaric acid Titer improved by up to 42% Reizman et al., 2015

E. coli acuR/prpR FACS Design–build–test cycle 3-HP Titer increased to 4.2 g/L Rogers and Church, 2016

S. cerevisiae FadR FACS Gene library Fatty acid 30% increased fatty acid level
observed

Dabirian et al., 2019b

and more (reviewed in Chen and Nielsen, 2016; Liu J.J.
et al., 2017). Due to recent concerns about climate change
and limited fossil reserves, the use of renewable biomass
for the biological production of fuels and chemicals has
received increasing attention as an alternative to chemical
production (Sarria et al., 2017). Large-scale production using
microorganisms requires the development of HTS tools for strain
engineering and techniques for analyzing strain performance
and the efficiency of biological processes. Many TF-based
biosensors for measuring the intracellular concentrations of
organic acids are currently available (Sint Fiet et al., 2006;
Uchiyama and Miyazaki, 2010; Dietrich et al., 2013; Tang
et al., 2013; Raman et al., 2014; Chen et al., 2015; Zhou

et al., 2015; Leavitt et al., 2017; Liu C. et al., 2017; Hanko
et al., 2018; Nguyen et al., 2019; Raghavan et al., 2019;
Thompson et al., 2019) that provide a HTS method when
combined with FACS. Alternatively, TFs can activate or repress
the expression of target genes, which can be used to rewire
microbial metabolic pathways, thus leading to an increase
in the production of organic acids (Figure 2G). Compared
with HTS-based strain evolution, engineering TFs for pathway
reconstruction requires extensive knowledge of cellular metabolic
machinery. Here, we discuss some recent examples of studies
that have improved organic acid production using the above
two strategies, with an emphasis on the role TFs play in this
process (Table 2).
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3-Hydroxypropionic Acid (3-HP)
3-Hydroxypropionic acid is a platform molecule for the
production of 3-carbon chemicals; in particular, it can easily
be converted to acrylic acid upon dehydration. However, it is
difficult to detect intracellular 3-HP. To address this problem,
Rogers and co-workers developed a system that uses the TF
CdaR to generate a fluorescent readout in proportion to the
intracellular concentration of a target metabolite (Rogers and
Church, 2016). Using this sensor, the authors were able to
identify a strain that produced 4.2 g/L 3-HP, a level that is
23-fold higher than any previously reported. Liu et al. (2018)
introduced genome-wide mutations to target 30 genes including a
TF SoxR that plays important roles in genome-level transcription.
The mutant SoxRS26G,E32V conferred high furfural and acetate
resistance to the engineered strain, leading to a 7- and 8-
fold increase in 3-HP productivity relative to the parent strain
under high furfural and high acetate hydrolyzate fermentation,
respectively, demonstrating the importance of the TF-mediated
global regulation of gene expression.

Acrylic Acid (AA)
As mentioned above, AA biosynthesis via enzymatic dehydration
of 3-HP has been demonstrated in engineered E. coli (Chu et al.,
2015; Liu and Liu, 2016). However, the yields are low, which
led Raghavan et al. (2019) to apply HTS to identify strains the
exhibited greater activity of key enzymes in the AA synthesis
pathway. By identifying E. coli genes that were selectively up-
regulated in the presence of AA, this group found that the
gene yhcN encodes a protein that can respond specifically to
AA at low concentrations when it was coupled to an eGFP
reporter (Raghavan et al., 2019). This biosensor was used to find
an amidase variant that converted acrylamide to AA with 1.6-
fold improvement in catalytic efficiency, which is important to
enhance AA production.

Pyruvic Acid (PA)
Pyruvic acid is widely used as additive in food and cosmetics,
and as a starting material for the biosynthesis of pharmaceuticals
such as L-tyrosine and (R)-phenylacetylcarbinol (Song et al.,
2016). Currently, the microbial production of PA from renewable
biomass requires high levels of dissolved oxygen (DO). To
remove this restriction, hypoxia-inducible factor 1 (H1F-1) was
engineered to increase the transcription of key enzymes involved
in PA synthesis under low DO levels (Luo et al., 2020). The
stability of H1F1 was further optimized, resulting in a titer of
53.1 g/L for PA production in a 5-L bioreactor under 10% DO.

Itaconic Acid (IA)
As an unsaturated 5-carbon dicarboxylic acid, IA is a useful
monomer for constructing synthetic polymers. IA can also be
used as a precursor for the production of high-value chemicals
(Thakker et al., 2015). Variants of a number of microorganisms,
such as Aspergillus terreus, E. coli, and S. cerevisiae, have been
developed that produce IA. To further improve production titers,
it is important to be able to quantify intracellular levels of
IA. Recently, Hanko et al. (2018) reported the development of

the first IA biosensor based on identifying LysR-type TFs and
their promoters in Yersinia pseudotuberculosis and Pseudomonas
aeruginosa. The YpItcR/Pccl inducible system was used in E. coli
to identify the optimum expression level of a key enzyme in the
IA synthesis pathway. The dynamic range was 5–100 µM, which
could be improved further by protein engineering. This biosensor
displayed the potential to facilitate improved IA biosynthesis
through high-throughput strain development.

Muconic Acid (MA)
Microbial production of MA was first demonstrated in E. coli
(Niu et al., 2002), and achieved a level of 18 g/L. Later, to simplify
downstream separations and reduce high alkali loads, S. cerevisiae
was used to produce MA at a low pH, although the titers were low
(Weber et al., 2012; Curran et al., 2013). By combining metabolic
engineering and electrocatalysis, Suastegui et al. (2016) were able
to engineer a strain that produces an MA titer of nearly 560 mg/L.
To further improve the productivity, Leavitt et al. (2016, 2017)
applied a combined ALE and rational engineering strategy, in
which an aromatic amino acid (AAA) biosensor was coupled
to anti-metabolite selection to increase the activity of the AAA
biosynthetic pathway. Activating this pathway led to a significant
improvement in MA production titer to 2.1 g/L in a fed-batch
bioreactor, representing the highest titer obtained to date.

Shikimic Acid (SA)
Shikimic acid is an important metabolic intermediate of
the shikimate pathway. Various microorganisms have been
engineered to produce SA (Licona-Cassani et al., 2014; Martínez
et al., 2015; Kogure et al., 2016). Liu C. et al. (2017)
developed an SA biosensor constructed from a LysR-type
transcriptional regulator ShiR to monitor the SA production
of different Corynebacterium glutamicum strains (Schulte et al.,
2017). This biosensor was used to identify a high-yield SA-
producing strain with 2.4-fold improvement in titer over low-
yield strains identified by FACS. Taking another approach, Li et al.
(2017) performed directed evolution of a uric acid–responsive
regulatory protein, HucR, to switch its specificity to SA, which
the mutant sensor can detect in the range of 3–20 mM. The
biosensor was used to monitor metabolic flux and improve the
specific activity of a key enzyme in the SA biosynthetic pathway.

Glucaric Acid (GA)
Glucaric acid is a promising platform molecule for making
synthetic polymers such as nylons and plastics. The microbial
production of GA was first demonstrated in E. coli, and
subsequently developed strains produce titers of up to 4.85 g/L
(B strain) and 2 g/L (K strain) (Moon et al., 2009, 2010; Shiue
and Prather, 2014; Reizman et al., 2015; Doong et al., 2018;
Qu et al., 2018). More recently, to overcome the limitation of
acid-induced toxicity, an S. cerevisiae strain was engineered to
produce GA (Gupta et al., 2016; Chen et al., 2018). Raman
et al. (2014) described the development of a selection system
that uses a biosensor to couple metabolite concentrations to cell
fitness. A negative selection scheme was also developed to rule
out false positives. After four rounds of evolution, GA production
was increased 22-fold, although the absolute titer was lower
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than that produced by the E. coli K strain. Later, another
group developed a general GA-responsive biosensor (Rogers
and Church, 2016). Recently, Zheng et al. (2018) employed this
biosensor to construct a two-strain system for rapid screening
of myo-inositol oxygenase mutants, which play a key role in
the GA synthesis pathway (Zheng et al., 2018), and found that
fine-tuning the cofactor balance resulted in an increase in GA
production in yeast.

Fatty Acid (FA)
Due to the lack of techniques available for monitoring fatty acyl-
CoA levels in vivo, historically it has been very challenging to
design rational approaches to identifying genes that modulate
the production of these compounds. Recently, a FadR-based
biosensor was developed to screen for S. cerevisiae genes
that increase the fatty acyl-CoA pool using FACS (Dabirian
et al., 2019b). Using this biosensor, this group found that the
overexpression of GGA2 could increase fatty acid levels by 30
and 24% at 8 and 24 h after inoculation, respectively, which was
mainly due to a significant increase in the C16:1 and C16:0 fatty
acid levels. In addition, Bergman et al. (2019) used to HTS to find
that overexpressing the TF Stb5 can enhance FA production in S.
cerevisiae. This increase in FA production could be because of the
consumption of excess NADPH, which would alleviate a potential
redox imbalance.

CONCLUSION AND PERSPECTIVE

In a context of growing concerns regarding climate change,
environmental protection, and sustainable development, the
biological production of chemicals, pharmaceutical products,
fuels, and materials through microbial fermentation of renewable
biomass has developed rapidly in the past decade, providing
promising solutions for these issues. To make this approach
economically feasible in practice, however, the titer, yield, and
productivity of organic acid bioproduction, for example, need to
be improved further (Chen and Nielsen, 2016). As a metabolite
sensor and gene expression regulator, TFs play an important
role in determining the end-product productivity in a cell
factory. Therefore, the importance of TFs engineering is that
it is a critical tool in optimizing phenotypes. In particular,
the explosive development of genomic editing tools in a wide
variety of prokaryotic and eukaryotic microorganisms since
2012 (reviewed in Csörgő et al., 2016; Wang H.F. et al.,
2016; Tian et al., 2017; Shapiro et al., 2018), together with
various high-throughput strategies for mutagenesis, screening,
sorting, and sequencing, has facilitated and accelerated the
strain improvement significantly. Researchers have begun to
engineer TFs systematically to improve bioproduction efficiency.

TFs are key components used to construct synthetic genetic
circuits in vivo, and can be used to detect intracellular
metabolites and even the activity of entire pathways that
would otherwise remain “invisible.” TF-based biosensors also
provide a HTS method for use in rapid strain evolution, as
they enable overproducers to be identified quickly from a
genome-wide mutant library using FACS and other technologies
(e.g., microfluidics). The combination of genome-wide genomic
editing and HTS technologies has drawn increasing attention
in the field of strain development. In addition, TFs are also
important global regulators that control the expression levels
of key enzymes in biosynthesis pathways, therefore determining
the direction, flux, balance, and outcome of metabolic networks.
Identifying, engineering, and using TFs for applications such
as biosensors can help fine-tune gene expression, improve the
activity and stability of key enzymes, and direct metabolic flux,
thus providing flexible tools for metabolic engineering, as has
been demonstrated in the many works reviewed above.

Although there are many examples of successful TF
engineering in metabolic engineering and synthetic biology,
some challenges remain. To date, the majority of TF-based
biosensors have been demonstrated in “proof-of-concept”
experiments, with few examples showing real improvement in
bioproduction. This is because the type, function, performance,
specificity and number of TFs are still limited compared with
the large number of host cells, pathways, and metabolites
that need to be engineered. The development of novel,
high-quality TFs with more functions relies on the further
utilization of advanced bioinformatics, computational biology,
and protein engineering. In addition, the molecular mechanism,
compatibility, robustness, interaction, and quantification of
heterogeneous TFs in regulating metabolic networks in host cells
need to be understood and thoroughly elucidated to enhance the
efficiency of TF-based strain development.
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