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Lysine decarboxylase (CadA) can directly convert L-lysine to cadaverine, which is
an important platform chemical that can be used to produce polyamides. However,
the non-recyclable and the poor pH tolerance of pure CadA hampered its practical
application. Herein, a one-step purification and immobilization procedure of CadA
was established to investigate the cadaverine production from L-lysine. Renewable
biomass chitin was used as a carrier for lysine decarboxylase (CadA) immobilization via
fusion of a chitin-binding domain (ChBD). Scanning electron microscopy, laser scanning
confocal microscopy, fourier transform infrared spectra, elemental analysis, and thermal
gravimetric analysis proved that the fusion protein ChBD-CadA can be adsorbed on
chitin effectively. Furthermore, the fusion protein (ChBD-CadA) existed better pH stability
compared to wild CadA, and kept over 73% of the highest activity at pH 8.0. Meanwhile,
the ChBD-CadA showed high specificity toward chitin and reached 93% immobilization
yield within 10 min under the optimum conditions. The immobilized ChBD-CadA (I-
ChBD-CadA) could efficiently converted L-lysine at 200.0 g/L to cadaverine at 135.6 g/L
in a batch conversion within 120 min, achieving a 97% molar yield of the substrate
L-lysine. In addition, the I-ChBD-CadA was able to be reused under a high concentration
of L-lysine and retained over 57% of its original activity after four cycles of use
without acid addition to maintain pH. These results demonstrate that immobilization
of CadA using chitin-binding domain has the potential in cadaverine production on an
industrial scale.

Keywords: cadaverine, lysine decarboxylase, chitin-binding domain, immobilization, chitin

INTRODUCTION

Polyamides (PA) are an essential polymer and widely used in engineering plastics, sportswear,
sutures and catheters, owing to the excellent mechanical and thermal strength (Park et al., 2014;
Jiang and Loos, 2016; Kim et al., 2018). Polyamides are mostly produced from chemicals extracted
from fossil fuels (6.6 million tons per year), which contributes to the greenhouse effect and serious
environmental pollution (Hong et al., 2004; Kind et al., 2011). Thus, environmentally friendly PA
synthetic procedures have drawn increasing attention (Wang et al., 2018).
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GRAPHICAL ABSTRACT | One-step purification and immobilization of lysine decarboxylase for converting L-lysine to cadaverine via fusion of chitin binding domain.

Cadaverine (1,5-diaminopentane), a bio-based chemical, can
be combined with various bio-based diacids for the production
of fully bio-based PAs, such as PA 5.4, PA 5.6, PA 5.10, and PA
5.12, which exhibit properties consistent with petroleum-based
PAs (Buschke et al., 2011; Jiang and Loos, 2016; Seo et al., 2016).

To date, the bio-production of cadaverine has mainly
been achieved by microbial fermentation and whole cell
conversion from renewable resources. Microbial fermentation
using engineered E. coli (Qian et al., 2011) and C. glutamicum
(Kind et al., 2010; Kim et al., 2018) is a promising approach,
which can produce relatively high yields and results in
less impact on the environment. Whole-cell overexpressed
lysine decarboxylase (LdcC or CadA) used as a catalyst
is another attractive and greener approach (Park et al.,
2015; Kloss et al., 2018); this method has the capability of
producing cadaverine with high yields and high efficiency,
and is environmentally friendly. In our previous study,
recombinant E. coli overexpressing CadA was able to produce
cadaverine at concentration of 228.0 g/L, which was the
highest concentration reported to date (Ma et al., 2015b). In
addition, biocatalysis using pure enzyme is also an efficient
and well-established approach. However, the increase of pH
and accumulation of product cadaverine during the reaction
process could cause inactivation of CadA (Ma et al., 2017).
Further, non-recyclable of free enzyme increases the cost, which
inhibits its practical application (Singh and Kayastha, 2012;
Guo et al., 2018).

Immobilization is an efficient method to enhance stability
and reusability of enzymes, and this method allows for the easy
separation of products (Liang et al., 2020). Several literatures
involving immobilization of CadA for cadaverine production
have been reported, while the loss of enzyme active and the low
immobilization efficiency were observed (Seo et al., 2016; Park
et al., 2017). Immobilization of enzymes via affinity adsorption
is now recognized as a favorable method due to a simple and
mild preparation procedure, strong binding affinity, and proper

exposure of the enzyme active site (Chiang et al., 2009). This
method is also capable of simultaneous enzyme purification
and immobilization.

The chitin-binding domain (ChBD) is a portion of some
chitin hydrolysis enzymes and can specifically bind to chitin (the
second most abundant natural polysaccharide after cellulose) via
an affinity tag, which makes ChBD a popular choice for enzyme
immobilization via protein fusion (Hashimoto et al., 2000; Simsek
et al., 2013). ChBD has been employed to immobilize trehalose,
levansucrase, β-galactosidase, and heparinase on chitin with
excellent enzymatic outcomes (Chiang et al., 2009; Pham et al.,
2017; Xu et al., 2017; Jiang et al., 2018).

In our previous study, a multi-functional chitinase (CmChi1)
that contained two ChBDs from the bacterium Chitinolyticbacter
meiyuanensis SYBC-H1 was expressed and characterized and
showed excellent affinity toward the substrate chitin (Zhang et al.,
2018). Here, we investigated cadaverine production from L-lysine
by CadA immobilization on chitin based on fusion with ChBD
from CmChi1. The characteristics and immobilization of the
ChBD-CadA fusion protein were studied. In addition, repeated
utilization of immobilized ChBD-CadA was also investigated.

MATERIALS AND METHODS

Chemicals
L-Lysine hydrochloride, cadaverine, and chitin were purchased
from Sigma-Aldrich (Shanghai, China). The molecular reagents
were purchased from Takara Bio (Dalian, China). Other
analytical grade chemicals and solvents were purchased from
local suppliers.

Strains, Plasmid, and Primers
The previously constructed plasmids pETDuet-CadA (Ma
et al., 2015a), pET28a(+)-Cmchi1 (Zhang et al., 2018), and
pET28a(+)-gfp were used as templates for cloning of the CadA
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gene, chitin binding domain (ChBD) gene, and green fluorescent
protein (GFP) gene, respectively. The plasmid pETDuet-CadA
was used as the expression vector for gene fusion. E. coli DH5α

and E. coli BL21(DE3) cells (Novagen Co., Shanghai, China)
were used as cloning and expression host, respectively, which
were cultivated in Luria-Bertani (LB) broth or on 2% agar plates
containing 50 µg/mL kanamycin.

Oligonucleotide primers used for PCR amplification were
designed using Snap GeneTM 1.1.3 software1 and synthesized
by Genscript Biotech (Nanjing, China). The forward and reverse
primers containing endonuclease restriction sites used in this
study are listed in Supplementary Table S1.

Genes Cloning and Recombinant
Plasmid Construction
PCR amplification with DNA polymerase was performed in a
50 µL reaction system and included 4 µL dNTPs, 0.5 µL of
each primer, 1 µL fast Pfu DNA polymerase, 1 µL plasmid
template, and the remaining volume was sterile water. The PCR
amplification conditions were 95◦C for 2 min, followed by 30
cycles of 95◦C for 20 s, 53◦C for 20 s, 72◦C for 20 s; the extension
procedure was carried out at 72◦C for 5 min.

To construct the expression plasmid of the fusion gene ChBD-
CadA, the fragment of CadA from plasmid pETDuet-CadA
was amplified with DNA polymerase using primers F1 and R1.
The fragment of ChBD from plasmid pET28a (+)-ChBD was
amplified with the primers F3 and R3. The ChBD products
were purified with the TIANquick MiDi Purification Kit and
then digested using BamHI and HindIII restriction enzymes
and inserted into the BamHI and HindIII sites of pET28a
(+) expression plasmid to obtain the recombinant plasmid
pET28a (+)-ChBD. The purified CadA product was digested
using HindIII and NotI and inserted downstream of ChBD in
pET28a (+)-ChBD to obtain the recombinant plasmid pET28a
(+)-ChBD-CadA.

The construction of expression plasmid of fusion gene CadA-
ChBD was the same as that for pET28a (+)-ChBD-CadA. The
CadA fragment was amplified with primers F2 and R2 and
digested using NcoI and BamHI and inserted upstream of ChBD
in pET28a (+)-ChBD to obtain the recombinant plasmid pET28a
(+)-CadA-ChBD.

For construction of the expression plasmid for pET29a (+)-
gfp -ChBD-CadA, the gfp fragment from pET28a(+)-gfp was
amplified using primers F4 and R4, and then the purified
PCR product was double digested by NdeI and BamHI and
ligated upstream of ChBD-CadA plasmid pET28a (+)-ChBD-
CadA, resulting in plasmid pET28a (+)-gfp-ChBD-CadA. The
transformants were characterized via colony PCR tests and
sequenced by Genscript Biotech (Nanjing, China).

Expression and Preparation of CadA,
ChBD-CadA, and GFP-ChBD-CadA
The recombinant plasmids were transformed into E. coli BL21
(DE3) cells, and colonies were picked from agar plates and

1http://www.snapgene.com/

incubated in 100 mL fresh LB medium containing 50 µg/mL
kanamycin) in a 500 mL shake flask at 37◦C for 8–10 h with
shaking at 200 rpm. Then, 20 mL of the pre-culture was used
as the seed culture and was inoculated in a 1.4-L INFORS HT
Multifors fermenter (Infors Biotechnology Co., Ltd., Beijing,
China) containing 1 L LB medium and 50 µg/mL kanamycin
at 37◦C, with an aeration ratio of 1 vvm (vessel volume per
minute) and agitation speed of 250 rpm, until the optical
density at 600 nm (OD600) reached 0.6–0.8. The recombinant
CadA, ChBD-CadA, and GFP-ChBD-CadA were induced at
37◦C, 30◦C, and 18◦C, respectively, with a final concentration
of 0.1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) for
20 h. Consequently, the harvested cells were suspended with
100 mM acid-disodium hydrogen phosphate buffer at pH 6.2
for controlling the OD600 to 10 and disrupted by JY92-IIN
ultrasonication (Ningbo xinzhi biotechnology, Ltd., Ningbo,
China), and the lysate was centrifuged at 8000 × g for 10 min.
The supernatant was used as a crude enzyme and was preserved
at−20◦C prior to use.

Optimization Experiments of the
ChBD-CadA Immobilization on Chitin
The adsorption experiments were performed in a 1 mL reaction
volume containing 10 g/L chitin and 1.50 mg/mL of the crude
enzyme with activity of 68.67 U/mL in a 2 mL centrifuge tube at
200 rpm stirring under various conditions.

The effects of varying temperatures (20◦C, 25◦C, 30◦C,
35◦C, and 40◦C), times (2 min, 5 min, 10 min, 30 min,
60 min, and 120 min), pH (5.0, 5.6, 6.2, 6.8, 7.4, and 8.0), and
protein concentrations (0.40 mg/mL, 0.80 mg/mL, 1.20 mg/mL,
1.60 mg/mL, and 2.00 mg/mL) on enzyme immobilization were
investigated. The supernatant was collected after centrifugation
at 6000 × g for 5 min at 4◦C. The concentrations of protein and
CadA activities before and after immobilization were assayed.
Each assay was carried out in triplicate and the averages with
standard deviations are presented.

Characterization of Chitin Before and
After ChBD-CadA Immobilization
Scanning electron microscopy (Hitachi S-3400, Tokyo, Japan)
was conducted to investigate the immobilized ChBD-CadA on
chitin. The chitin before and after ChBD-CadA immobilization
was dried by an auto critical-point dryer and spread on copper
grids coated with a carbon support film, followed by coating with
gold prior to observation at 10 kV.

Laser scanning confocal microscopy (Zeiss LSM880,
Ostalbkreis, Germany) was performed to explore the chitin
before and after GFP-ChBD-CadA immobilization.

Fourier transform infrared spectra (FTIR) of chitin before
and after immobilization with ChBD-CadA were performed by
a Nicolet NEXUS 670 FT-IR instrument.

The elemental analysis (EA) of the chitin, ChBD-CadA,
and I-ChBD-CadA were determined using a Vario EL
Cube instrument (Elementar Analysensysteme GmbH,
Hanau, Germany).
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Measurements of Thermal gravimetric analysis (TGA) were
conducted using a NETZSCH TG 209 F1 Libra thermo
gravimetric analyzer. The heating rate was 10◦C /min from 30◦C
to 800◦C under nitrogen atmospheres (100 mL/min).

Comparison of Properties of Free CadA,
ChBD-CadA and I-ChBD-CadA
The optimum temperature for activity of CadA, ChBD-CadA,
and I-ChBD-CadA were examined in the range of 25–
65◦C. For thermal stability, enzymes without substrate were
incubated in 100 mM acid-disodium hydrogen phosphate buffer
(pH 6.2) at 30–55◦C for 2 h and the residual activities
were determined.

The effect of pH on the enzymes was tested using 100 mM
citric acid-disodium hydrogen phosphate buffer at pH 5.0–8.0
and 45◦C. To determine pH stability, the enzymes without
substrate were incubated at various pH values and 45◦C for 3 h,
and the residual activities were determined.

To estimate the kinetic parameters of CadA, ChBD-CadA,
and I-ChBD-CadA, the initial velocities were determined
by incubating 10 µg/mL purified enzyme with L-lysine
concentrations ranging from 1 to 8 mM at 45◦C in 1 mL
reaction volume containing 100 mM citric acid hydrogen
phosphate disodium buffer (pH 6.2) and 0.1 mM PLP for
20 min, and then terminated by heating at 100◦C for 5 min.
The determination of enzyme activity was according to the
release of cadaverine.

FIGURE 1 | SDS-PAGE analysis of ChBD-CadA immobilization. Lane M,
protein Marker; lane 1, the crude enzyme of ChBD-CadA; lane 2, the crude
enzyme of ChBD-CadA after chitin adsorption; lane 3, rinsing fractions of
complex of chitin of ChBD-CadA immobilized. lane 4, the eluent of the
ChBD-CadA immobilized on chitin by SDS (1.0 M). The adsorption condition
was conducted with chitin at 10 g/L and 25◦C for 30 min at pH 6.8 and a
protein concentration of 1.60 mg/mL.

The Km and Vmax values were obtained by Lineweaver–Burk
Plots (Price, 1985), when the reaction of CadA was linearly with
concentration of L-lysine (1–8 mM).

The Batch Production of Cadaverine
Using I-ChBD-CadA
To investigate the optimal substrate concentration, conversion
was performed in 20 mL reaction mixture containing a final
concentration of 100 mM citric acid hydrogen phosphate
disodium buffer (pH 6.2), 0.1 mM PLP, and various
concentrations of L-lysine (100.0, 150.0, 200.0, and 250.0 g/L) in
a 200 rpm shaking incubator at 45◦C for 60 min.

Batch production of cadaverine was performed with 200.0 g/L
L-lysine under the same conditions. The concentration of L-lysine
and cadaverine were measured at different time intervals.

The molar (M) yield of cadaverine was calculated according to
the following equation:

Cadaverine yield (%)

= cadaverine (M) produced/L− lysine (M) addition

Repeated Use of the I-ChBD-CadA
The initial concentration of L-lysine (200.0 g/L) was used to
test the reusability of I-ChBD-CadA. When the production rate
of cadaverine slowed in each reaction, the reaction solution
was centrifugation at 6000 × g for 10 min, and the precipitate
was washed two times with ddH2O. The sediment was re-
suspended in buffer (100 mM citric acid-disodium hydrogen
phosphate buffer, pH 6.2) and then fresh substrate was fed into
the bioconversion system for the next reaction.

Analytical Method
All recombinant protein samples were analyzed by reductive
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) with 20 mM β-mercaptoethanol incubation. A premixed
protein marker (Takara Biotechnology Co., Ltd., Nanjing, China)
containing 180-, 140-, 100-, 75-, 60-, and 45-kDa protein bands
was used as the molecular mass standard.

The molecular mass of recombinant proteins was calculated
using the ExPASy Protparam tool.2 The deduced amino acid
sequence of the fusion protein was used to predict the 3D
structures using the RaptorX tool.3

The L-lysine concentration was determined using an SBA-
40E immobilized enzyme biosensor (Institute of Biology,
Shandong, China).

High-performance liquid chromatographic (HPLC) analysis
of cadaverine was performed on an Agilent 1290 Infinity system
(Agilent Technologies, Santa Clara, CA, United States) equipped
with fluorescence detector (FLD G1321B; Agilent Technologies,
Santa Clara, CA, United States). Specific steps were conducted
according to our previous study (Ma et al., 2015b).

Protein concentrations were determined by absorption at
280 nm using the Bradford method with bovine serum albumin
as the standard (Bradford, 1976).

2http://web.expasy.org/protparam/
3http://raptorx.uchicago.edu/
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FIGURE 2 | (A) The effect of time on CadA adsorption (temperature, 25◦C; pH, 6.8; protein concentration, 1.50 mg/mL). (B) The effect of temperature on CadA
adsorption (time, 10 min; pH, 6.8; protein concentration, 1.50 mg/mL). (C) The effect of pH on CadA adsorption (time, 10 min; temperature, 25◦C; protein
concentration, 1.50 mg/mL); (D) The effect of protein concentration on CadA adsorption (time, 10 min; temperature, 25◦C; pH, 6.2). Data listed were performed in
triplicate and reported as the average with standard deviations for assays.

FIGURE 3 | Scanning electron images (10 KV, 50000×) showing the morphology image of chitin before (A) and after (B) ChBD-CadA immobilization.

The CadA activity assay used L-lysine hydrochloride as
the substrate. A mixture (1 mL) containing 500 µL enzyme,
100 mM citric acid hydrogen phosphate disodium buffer (pH

6.2), 0.1 mM PLP, and 450 mM (100.0 g/L) L-lysine was
incubated at 45◦C and 200 rpm was incubated for 20 min,
and then terminated by heating at 100◦C for 5 min. One
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FIGURE 4 | (A) Photograph of chitin under the UV lamp (365 nm) before and
after enzyme adsorption. Samples (2 mL) were centrifuged at 12,000 r/min.
(B) Laser scanning confocal microscope image (excitation: 488 nm, emission:
507 nm, at 25 × magnification) of chitin powder after ChBD-CadA adsorption.

unit of CadA activity (U) was defined as the amount of
enzyme required to produce 1 mmol cadaverine per minute at
45◦C and pH 6.2.

RESULTS AND DISCUSSION

Construction and Expression of Fusion
Gene
Four expression plasmids pETDuet-CadA, pET28a(+)-ChBD-
CadA, pET28a(+)-CadA-ChBD, and pET28a (+)-gfp-ChBD-
CadA, containing the sequences of the recombinant CadA,
ChBD-CadA, CadA-ChBD, and GFP-ChBD-CadA, respectively,
were constructed and successfully transformed into E. coli
BL21(DE3) cells.

The expression of four genes was analyzed by SDS-PAGE.
As shown in Supplementary Figure S1, the crude enzyme of
E. coli BL21(DE3) harboring pET28a(+)-CadA-ChBD shows no
target band (lane 3), which suggests CadA-ChBD cannot be
expressed in E. coli BL21(DE3). E. coli BL21(DE3) harboring
the pETDuet-CadA, pET28a(+)-ChBD-CadA, and pET28a(+)-
gfp-ChBD-CadA indicates clear bands at approximately 80.0 kDa
(lane 2) for CadA, 95.0 kDa (lane 4) for ChBD-CadA, and
119.0 kDa (lane 5) for GFP-ChBD-CadA. These sizes are in
agreement with those calculated from the amino acid sequence
of CadA (80.4 kDa), ChBD-CadA (96.2 kDa), and GFP-ChBD-
CadA (∼119.4 kDa), respectively, and correspond to those of
ChBD (∼15.3 kDa) and CadA (∼80.5 kDa)(Park et al., 2017) and
GFP (∼24.1 kDa) (Zhang et al., 2017).

The optimal temperature of CadA expression in E. coli
BL21(DE3) was 37◦C, which was consistent with other reports
and our previous studies (Ma et al., 2015a; Seo et al., 2016).
However, ChBD-CadA formed inclusion bodies at 37◦C, and its
optimal temperature of expression was 30◦C in this study (data
not shown). Meanwhile, the expression level of ChBD-CadA
decreased by around 1/3 (68.67 U/mL crude enzyme) compared
to that of CadA (99.57 U/mL crude enzyme) according to analysis
of SDS-PAGE and CadA activity (Supplementary Figure S1 and
Supplementary Table S2). These results suggested that the fusion
of ChBD affected the expression of CadA gene. Other studies

also reported that the gene expression will decline after fusion
of ChBD or other genes (Pham et al., 2017), which are similar
with this study.

Simultaneous Purification and
Immobilization of ChBD-CadA by Chitin
The immobilization of ChBD-CadA on chitin was analyzed by
SDS-PAGE. As shown in Figure 1, the band of ChBD-CadA can
be seen in lanes of crude enzyme (lane 1) and was significantly
reduced after chitin adsorption (lane 2). Meanwhile, the single
band of ChBD-CadA was obtained after SDS elution (lane 4).
These results suggest that the majority of ChBD-CadA can be
efficiently bound to chitin due to the high specific affinity of
ChBD for chitin. Other studies also reported that ChBD possesses
significant binding affinity for various enzyme immobilizations
(Pham et al., 2017; Xu et al., 2017).

The external environment will have various effects on enzyme
immobilization (Huang et al., 2018). The relevance between
chitin and immobilization time is shown in Figure 2A. The
ChBD-CadA was almost completely immobilized on chitin
within 10 min with a maximum specific activity of 86.33 U/mg,
which was consistent with our previous result of chitinase
(CmChi1) adsorption by chitin. Skujins et al. (1973) reported
the adsorption reaction between chitin and ChBD in chitinase
was very fast and was nearly accomplished within 2 min (Skujins
et al., 1973). With extended adsorption time, the concentration
of protein adsorbed didn’t obviously increase, nor did the specific
activity or CadA activity. These observations may be the result of
an adsorption equilibrium of chitin being established at 10 g/L.

The adsorption of ChBD-CadA on chitin at various
temperatures is compared in Figure 2B. The results show the
protein adsorption increased with increasing temperature. The
CadA activity adsorbed from 20–40◦C possessed no obvious
differences to the maximum reached at 25◦C (58.13 U/mL) with
specific activity of 86.33 U/mg. A previous report indicated that
temperature of 10–25◦C was favorable for the ChBD of chitinase
adsorption on chitin (Pang et al., 2007). Thus, 25◦C was chosen
for subsequent experiments due to the optimal adsorption and
specific activity.

The effect of various pH values on ChBD-CadA
immobilization is illustrated in Figure 2C. Both the
concentration of protein and immobilized CadA activity
increased from pH 5.0 to 6.2 and decreased after pH 6.2.
The maximum concentration of protein (0.72 mg/mL) and
immobilized CadA activity (62.93 U/mL) was obtained at pH
6.2, with the highest specific activity of 87.28 U/mg. This result
suggested that the affinity adsorption between chitin and ChBD-
CadA was most favorable under weak acidic conditions. The
phenomenon could be explained that the chitinase (CmChi1)
showed a better activity at weak acidic conditions (Zhang
et al., 2018). Thus, the ChBD from CmChi1 also possessed a
similar property.

As shown in Figure 2D, the protein concentration absorbed
was enhanced as the protein concentration increased. The
absorbed CadA activity also increased from 17.78 U/mL to
63.62 U/mL relative to a shift in protein concentration from
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FIGURE 5 | (A) The optimum temperature for CadA (�), ChBD-CadA (•), and I-ChBD-CadA (©). The optimal temperature was performed at various temperatures
under their optimum pH (100 mM acid-disodium hydrogen phosphate buffer, pH 5.6 for CadA, pH 6.2 for free and immobilized ChBD-CadA). Relative activity was
expressed as a percentage of maximum activity (99.57 U/mL for CadA and 68.67 U/mL for both free and immobilized ChBD-CadA) under the reaction conditions.
(B) The temperature stability for CadA (�), ChBD-CadA (•), and I-ChBD-CadA (©). To determine the thermostability, the residual activity was measured in their
optimum pH (same as in Figure 7A legend) after the enzyme was treated for 3 h at different temperatures. The original activity without pre-incubation was taken to
be 100% (87.54 U/mL for wild-type free CadA and 61.33 U/mL for both free and immobilized ChBD-CadA). (C) The optimum pH for CadA (�), ChBD-CadA (•), and
I-ChBD-CadA (©). The optimum pH was measured at 45◦C in 100 mM acid-disodium hydrogen phosphate buffer with various pH values. Relative activity was
expressed as a percentage of maximum activity (104.22 U/mL for wild-type free CadA, 84.79 U/mL for free and immobilized ChBD-CadA) under the reaction
conditions. (D) The pH stability for CadA (�), ChBD-CadA (•), and I-ChBD-CadA (©). The optimum pH was incubated at 45◦C for 3 h in 100 mM acid-disodium
hydrogen phosphate buffer with various pH values. Residual activity was expressed as a percentage of the initial activity measured without pre-incubation.

0.40 mg/mL to 1.20 mg/mL. Following this increase, the protein
concentration and CadA absorbed remained constant, showing
that the optimized concentration of protein using chitin of 10 g/L
as carrier was 1.20 mg/mL.

Based on the above results, the optimal immobilized
conditions were as follows: temperature, 25◦C; time, 10 min; pH,
6.2; protein concentration, 1.20 mg/mL, which can bind with
CadA activity of 68.67 U/mL and 93% immobilized ratio. Pham
et al. (2017) also reported that the immobilized ratio of fusion
protein can reach 99% and 91.0% using the ChBD of chitinase
A1, respectively.

Characterization of Immobilized Enzyme
on Chitin
The ChBD-CadA immobilization on chitin was confirmed by
scanning electron microscopy, as shown in Figure 3. The

chitin without immobilized enzyme presented as a fibrous and
porous structure. Some aggregates of protein (ChBD-CadA) were
observed on the surface of chitin after immobilization. Our
previous study also showed that the protein molecules were
clearly found on the surface of chitin in the affinity adsorption
of chitinase containing ChBD on chitin (Zhang et al., 2016).

The I-ChBD-CadA was also investigated with laser
scanning confocal microscopy via fusion with GFP. As
shown in Figure 4A, chitin appears white without green
fluorescence and green fluorescence was apparent under a
UV lamp before and after GFP-ChBD-CadA immobilization.
In addition, laser scanning confocal microscopy was used
to assess the GFP-ChBD-CadA immobilization. No green
fluorescence was present in chitin before the enzyme
immobilization (Supplementary Figure S2), and the surface
of chitin showed significant green fluorescence after enzyme
immobilization (Figure 4B).
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TABLE 1 | Kinetic parameters of CadA, ChBD-CadA, and I-ChBD-CadA.

Kinetic parameter CadA ChBD-CadA I-ChBD-CadA

Vmax (nmol product/min/µg) 24.57 ± 1.16 23.04 ± 1.32 14.57 ± 0.08

Km (mM) 0.64 ± 0.03 0.66 ± 0.08 0.81 ± 0.17

Kcat (min−1) 0.13 ± 0.01 0.12 ± 0.01 0.07 ± 0.01

Fourier transform infrared spectra of chitin, ChBD-CadA,
and I-ChBD-CadA were studied (Supplementary Figure S3).
The characteristic absorption bands of chitin were at 1554 cm−1

(amide II bond), 1619 cm−1, and 1655 cm−1 (amide I,
single H-bond, and double H-bond, respectively), 3255 cm−1

(N-H-stretching) and 3424 cm−1 (O-H-stretching band) (J.
Brugnerotto et al., 2001). ChBD-CadA possessed characteristic
peaks at 1554 cm−1 and 1660 cm−1, which correspond to the
stretching vibration of the protein-specific amide II bond (-NH-
) and amide II bond (C = O), respectively (Liang et al., 2015).
After immobilization, the peaks (1619 cm−1 and 1655 cm−1) of
chitin were covered by peak (1660 cm−1) of ChBD-CadA, which
indicated that ChBD-CadA had been immobilized on chitin.

The TGA curves of CadA, ChBD-CadA, and I-ChBD-CadA
are shown in Supplementary Figure S4. The TGA curve of
I-ChBD-CadA was different from that of chitin but shared similar
tendency with ChBD-CadA. For chitin, a weight loss of ∼5%
was observed in the range 30–110◦C due to the evaporation
of water (Kaya et al., 2016). While in the range 280–400◦C,
most of the weight loss has been accomplished, leading to a
carbonaceous material residue (Qiao et al., 2015). In the range
30–200◦C, the weight of ChBD-CadA and I-ChBD-CadA slowly
declined about 14wt% and 12wt% because of the removal of
water. In the range 200–270◦C, ChBD-CadA had an obviously
weight loss (∼10wt%), as well as I-ChBD-CadA, which indicated
the decomposition of the enzyme molecule.

The elemental analysis of chitin and I-ChBD-CadA shows that
the C, H, N of I-ChBD-CadA are 41.52%, 6.42%, and 6.55%,
respectively, which are between that of chitin and ChBD-CadA
(Supplementary Table S3). These results also confirmed the
effective immobilization of the ChBD-CadA on chitin.

The Effect of ChBD on 3D Structure of
CadA
The 3D structure prediction of CadA was investigated in this
study. The prediction showed that the 3D structure of CadA was
a decamer (Supplementary Figure S5A) in its active structure,
which agreed with other reports (Kanjee et al., 2011). The
predictions of ChBD and CadA monomer structures are shown
in Supplementary Figure S5B and Supplementary Figure S5C,
respectively. The 3D structure of ChBD-CadA showed the
structures of ChBD and CadA were not significantly different
than before the fusion. The result can be explained by the
sequence of 4 residues (VVGG) in the C-terminus of ChBD,
and the restriction sites (KL) between ChBD and CadA might
be a flexible linkage between ChBD to CadA. Meanwhile, the
prediction indicated that the two ChBD domains were both
arranged well separated from the CadA monomer (located at the
right and inner), whether viewed from the front (Supplementary
Figure S5D) or from a rotation of 90◦ (Supplementary
Figure S5E). This indicates that the ChBD domain is free to
maintain the original adsorption function while in associated
with CadA, and at the same time does not affect the formation
of CadA decamer (active form), which are in agreement with the
results of this study.

The binding mechanism of ChBD-CadA on chitin was also
studied. The amino acids residues (His31, Thr32, Trp39, Trp126,
and Trp127) in the functional domains of ChBD from CmChi1
are highly conserved, compared with that of reported ChBD
(Hashimoto et al., 2000). Among, these residues (His31, Thr32,
Trp39, and Trp127) are located on one face of the conformation
and are much exposed to the chitin surface (Supplementary
Figure S6), which are proposed to bind with the GlcNAc residues
of chitin chains through hydrophobic and π/π interactions
(Bernard et al., 2004; Kikkawa et al., 2014).

The Comparison of CadA, ChBD-CadA,
and I-ChBD-CadA
The effect of temperature on the activity of CadA, ChBD-CadA,
and I-ChBD-CadA were next examined. As shown in Figure 5A,

FIGURE 6 | (A) The effect of L-lysine initial concentration on cadaverine production. (B) The batch production of cadaverine using I-ChBD-CadA.
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FIGURE 7 | The repeated use of I-ChBD-CadA.

the optimal temperature of CadA was 55◦C, which agreed well
with a previous report (Kou et al., 2018). The free ChBD-CadA
showed an optimal temperature at 45◦C, which demonstrated
that the optimal temperature of CadA changed after fusion with
ChBD. In addition, immobilization of ChBD-CadA did not affect
its optimal temperature, but increased the temperature arrange.

For prolonged enzyme reactions, the thermal stability was
tested. As shown in Figure 5B, the temperature stability of CadA
decreased after fusion with ChBD. However, the immobilization
of ChBD-CadA enhanced its temperature stability, especially at
temperatures above 50◦C.

The effect of pH on the CadA, ChBD-CadA, and I-ChBD-
CadA were also tested, and the results can be seen in Figure 5C.
The optimal pH of CadA was 5.6, and the activity dropped
quickly when pH > 7.5, which was consistent with the previous
study (Kou et al., 2018). The phenomenon may be the result of
a loss of quaternary structure in which the decamer of CadA
(high activity) transforms to the dimer structure (low activity)
at pH > 7.5. ChBD-CadA and immobilized ChBD-CadA both
showed maximum activity at pH 6.2, but maintain more than
73% of their highest activity at pH 8.0, which showed that the
alkali resistance of CadA was improved after fusion with ChBD.
Meanwhile, the pH range of ChBD-CadA showed no obvious
change after immobilization.

Compared to CadA, the stability of ChBD-CadA was
improved from pH 6.8 to 8.0 (Figure 5D). In addition,
immobilization of ChBD-CadA can further enhance its pH
stability; more than 75% of the highest activity can be
obtained at pH 8.0.

The kinetic parameters of CadA, ChBD-CadA and I-ChBD-
CadA for L-lysine were provided (Table 1). Vmax, Km, and
Kcat of ChBD-CadA were 23.04 nmol/min/µg, 0.66 mM, and
0.13 min−1, respectively, which were similar with that of CadA.
The result suggested that the fusion of ChBD possessed little effect
on the activity of CadA. However, the Vmax (14.57 nmol/min/µg)
and Kcat (0.07 min−1) of I-ChBD-CadA were lower than that of
ChBD-CadA, which indicated that the activity of ChBD-CadA
decreased after immobilization. Pham et al. (2017) also found
the activity of β-galactosidases declined after immobilization on
chitin, which was similar with our study.

The Batch Production of Cadaverine
Using Immobilized ChBD-CadA
Achieving a high concentration of product is very important
in the industrial production of chemicals (Guo et al., 2018).
Thus, the effects of L-lysine concentration on batch production of
cadaverine using immobilized ChBD-CadA were first evaluated.
Cadaverine increased from 68.3 g/L to 114.5 g/L as the
concentration of L-lysine increased from 100.0 to 200.0 g/L along
with a weak decline of yield from 98 to 84%, as shown in
Figure 6A. With the further increase of L-lysine (250.0 g/L), the
concentration and yield both decreased significantly to 50.2 g/L
and 25%, respectively, which suggests that the immobilized
ChBD-CadA exhibited apparent substrate inhibition at high
concentrations of L-lysine. Thus, the initial concentration of
L-lysine (200.0 g/L) was used to study the batch production
of cadaverine using immobilized ChBD-CadA. As shown in
Figure 6B, the concentration of cadaverine increased rapidly
in the first 30 min, and was followed by a gradual decrease in
production intensity. This result may be explained by the CadA
activity being inhibited at high concentrations of cadaverine.
Finally, a cadaverine concentration of 135.6 g/L with a molar
yield of 97% was achieved in 120 min. Especially, the conversion
can be conducted without pH control, compared with other
reports (Park et al., 2015; Kloss et al., 2018). In their studies,
the production of cadaverine by whole-cell biotransformation
need extra acid to maintain the pH around 6.0. The reason can
be explained that immobilized ChBD-CadA maintained good
activity under the final pH (8.0) as described above.

The Repeated Use of Immobilized
ChBD-CadA
The reusability of immobilized enzymes plays an important
role in industrial bioconversions (Sheldon and van Pelt, 2013).
Thus, the reusability of the I-ChBD-CadA was determined using
L-lysine at 200.0 g/L. As shown in Figure 7, the concentration

TABLE 2 | Results of the I-ChBD-CadA reuse.

Cycle times Time (h) Cadaverine yield (%) Residual enzyme activity (U/mL) Residual protein amount (mg/mL) Specific activity (U/mg)

1 2 97.23 ± 2.12 65.40 ± 1.48 0.71 ± 0.05 92.12 ± 3.2

2 2 95.25 ± 1.89 61.04 ± 3.10 0.70 ± 0.03 87.28 ± 4.5

3 2.5 96.30 ± 1.91 51.79 ± 2.58 0.67 ± 0.06 77.30 ± 3.7

4 3.5 97.11 ± 2.47 37.28 ± 1.09 0.64 ± 0.04 58.25 ± 1.1
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of cadaverine increased over time and the substrate was almost
completely transformed to cadaverine with approximately 95–
97% yield every batch. From cycle 1 to cycle 4, the time to
completely convert was gradually increased from 2 to 3.5 h, along
with the decline of residual enzyme activity from 65.40 U/mL to
39.14 U/mL. However, the residual protein maintained similar
amount (Table 2). These results indicated that the loss of enzyme
activity after reuse led to the extension of conversion time from
cycle 1 to cycle 4, not the release of ChBD-CadA from chitin.
Consequently, an average concentration of cadaverine (135.1 g/L)
was obtained within 10 h and an activity of 57% was retained
through four cycles, and a total of 540.4 g of cadaverine in 4 L
conversion reactions was achieved. Seo et al. (2016) reported
a 75–80% conversion yield over five reaction cycles by fusion
with phasin immobilization of CadA on intracellular PHA (Seo
et al., 2016). Park et al. (2017) reported that a 53% residual
activity was obtained after the 10th recycle using cross-linked
enzyme aggregates of CadA (Park et al., 2017). These results
demonstrated that the immobilization of CadA on chitin permits
enzyme reuse. However, the concentrations of cadaverine used in
their studies were both far lower than that of this study.

The microscopy surface of chitin after repeated use was also
investigated. As shown in Supplementary Figure S7, the surface
of chitin after reuse maintained an original structure, which
suggested that the chitin possesses a good stability.

These results showed that the immobilized ChBD-
CadA on chitin for cadaverine enzymatic production is
feasible and possesses potential industrial application for
cadaverine production.

CONCLUSION

In this study, chitin was used as the carrier for efficient
CadA immobilization via fusion with ChBD for the production
of cadaverine from L-lysine. The ChBD-CadA fusion protein
showed better pH stability compared with wild type of CadA.
Further, it was capable of being directly immobilized from crude
enzyme with CadA activity of 93% under optimal conditions,
and the I-ChBD-CadA was used to convert L-lysine at 200.0 g/L,
achieving 135.6 g/L of cadaverine with a 97% molar yield. In

addition, the I-ChBD-CadA can be reused in high substrate
concentration without the addition of any acids. This is first
report of lysine decarboxylase immobilization via ChBD fusion
aimed at the industrial production of cadaverine. The process
provides the others to design similar immobilization with
various applications.
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