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Background: Robotic devices have been used to rehabilitate walking function

after stroke. Although results suggest that post-stroke patients benefit from this

non-conventional therapy, there is no agreement on the optimal robot-assisted

approaches to promote neurorecovery. Here we present a new robotic therapy protocol

using a grounded exoskeleton perturbing the ankle joint based on tacit learning control.

Method: Ten healthy individuals and a post-stroke patient participated in the study

and were enrolled in a pilot intervention protocol that involved performance of ankle

movements following different trajectories via video game visual feedback. The system

autonomously modulated task difficulty according to the performance to increase the

challenge. We hypothesized that motor learning throughout training sessions would

lead to increased corticospinal excitability of dorsi-plantarflexor muscles. Transcranial

Magnetic Stimulation was used to assess the effects on corticospinal excitability.

Results: Improvements have been observed on task performance and motor

outcomes in both healthy individuals and post-stroke patient case study. Tibialis Anterior

corticospinal excitability increased significantly after the training; however no significant

changes were observed on Soleus corticospinal excitability. Clinical scales showed

functional improvements in the stroke patient.

Discussion and Significance: Our findings both in neurophysiological and

performance assessment suggest improved motor learning. Some limitations of the

study include treatment duration and intensity, as well as the non-significant changes

in corticospinal excitability obtained for Soleus. Nonetheless, results suggest that this

robotic training framework is a potentially interesting approach that can be explored for

gait rehabilitation in post-stroke patients.
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1. INTRODUCTION

Stroke affects each year around 13.7 million people worldwide, is
the second leading cause of disability and may result in a series
of motor impairments including gait abnormalities (Barroso
et al., 2017; World Stroke Organization, 2018). Regarding
walking rehabilitation after stroke, there has been considerable
controversy and debate on the effectiveness of the various
approaches used (Pollock et al., 2014). In the past 20 years,
other rehabilitation modalities, such as robotic therapy have been
introduced to motor rehabilitation practice aiming at promoting
gait recovery in patients who suffered neural-impairments
(Moreno et al., 2013), including post-stroke patients. So far,
results suggest that robotic therapy may be beneficial to treat
acute and chronic post-stroke patients (Van der Loos et al.,
2016). Nonetheless, there is no agreement on the optimal
robot-assisted approaches to promote neurorecovery through
plasticity mechanisms following neural injury (Kim and You,
2017; Belas dos Santos et al., 2018; Gassert, 2018; Barroso et al.,
2019).

One of the most widely tested approaches is robotic guidance,
which supervises trajectories during motor tasks and prevents
the user from performing undesired (and possibly unsafe)
deviations from prescribed trajectories. This type of robotic
assistance is frequently implemented as a “tunnel” of allowed
deviation around the prescribed trajectory (Ren et al., 2011;
Bortole et al., 2015). Robotic guidance can be combined with
virtual environments or video games. Adding video games to
the therapy turns the potential motor learning into a transparent
process to the user. Moreover, engagement with the training
and entertainment are very important psychological aspects of
games (Patton and Mussa-Ivaldi, 2004). In fact, visual feedback
has been shown to improve robotic guidance therapy scenarios
(Liu et al., 2006; Tamburella et al., 2019) and video games
seem to be effective to improve motor function and health
after stroke (Swanson and Whittinghill, 2015). Thus, different
combinations of robotic guidance and video games have been
proposed. A possible shortcoming of robotic guidance is that
this approach might as well reduce patients’ effort, and thus, the
possible benefits of the therapy (Rowe et al., 2017). In this vein,
Goodman et al. (2014) designed a video game that decreased
the level of assistance delivered to the ankle joint by the robot
if the performance (assessed as a function of the smoothness of
trajectories) increased. Other strategies involve adding resistance
to make the task more challenging when the performance of the
user improves, which can potentially increase engagement in the
task (Ren et al., 2011). Interestingly, these two opposite strategies
found evidence of enhanced motor learning markers, although
there is still no consensus regarding the effects of using either type
of robotic guidance.

As a counterpart of robotic guidance, error-augmentation
based approaches have been also proposed to enhance motor
learning. Emken and Reinkensmeyer (2005) used movement-
perturbation approach with a robotic device while the user was
performing the target task and concluded thatmotor learning can
be accelerated by exploiting the error-based learning mechanism.
Reinkensmeyer and Patton (2009) suggested that starting with
guidance force and gradually removing it and increasing

error-augmentation approaches may lead to motor learning.
Marchal-Crespo et al. (2014) showed that adding random
disturbances while executing a simple dorsi-plantarflexion task
improved motor learning and suggested that the variability
introduced to the task may increase recovery due to increased
effort and attention needed to perform the task. Moreover,
another study showed that “challenge-based” controllers (where
guidance force is given on the first stages of the recovery
and error-augmentation is given later on the rehabilitation)
were more beneficial for the recovery, since this represents an
adaptation of the therapy to the patients’ motor learning process
(Marchal-Crespo et al., 2017). These functional benefits observed
in these studies suggest that the nervous system learns by forming
the internal model of the dynamics of the environment via error
reduction (Emken and Reinkensmeyer, 2005), leading to plastic
changes presumably at the cortical level (Perez et al., 2004).

Given the aforementioned literature on different approaches
tested in robotic therapy, there is evidence supporting the
integration of video games in challenge-based therapies, that
are able to adapt the difficulty of the task to the patient’s skills,
always trying to keep the user motivated and engaged. This
might help promoting motor learning via activity-dependent
neuroplasticity (Sweatt, 2016; Gassert, 2018). In this context, the
present study proposes a novel therapy protocol that combines
a grounded exoskeleton perturbing the ankle joint motion with
a video game based visual feedback. Ankle joint is fundamental
for gait and balance as plantarflexor passive stiffness causes
reduced plantarflexion torque before starting the swing phase
in gait, and may as well limit dorsiflexion, compromising foot
clearance in post-stroke patients (Lamontagne et al., 2002).
The major novelty that this therapy protocol introduces is the
autonomous modulation of the perturbations provided to the
user via haptic adaptive feedback approach based on the task
performance. This protocol was first tested on a validation study
with healthy subjects, and later on as an usability case study with
a post-stroke patient.

We hypothesized that the use of the proposed ankle
rehabilitation robot would promote motor learning and increase
corticospinal excitability of the dorsi-plantarflexor muscles.
Although there is not a clear relationship betweenmotor learning
and corticospinal excitability (Bestmann and Krakauer, 2015),
several authors have established a relation between them (Perez
et al., 2004; Kida et al., 2016; Naros et al., 2016; Mawase
et al., 2017; Christiansen et al., 2018; Raffin and Siebner, 2018;
Mrachacz-Kersting et al., 2019). Corticospinal excitability can
be assessed with Transcranial Magnetic Stimulation (TMS),
by eliciting Motor Evoked Potentials (MEPs) (Rotenberg
et al., 2014). Validation of our hypotheses would provide
preliminary evidence of the usefulness of this novel robotic
therapy to promote motor learning in the context of a pre-
gait mobilization task, i.e., mobilization before undergoing
gait-centered rehabilitation.

2. MATERIALS AND METHODS

2.1. Participants
Ten healthy subjects (29.80 ± 6.32 years old) participated in
the study. They signed an informed consent for the experiment.
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Experiments were conducted in accordance with the declaration
of Helsinki. All experimental procedures were approved by
the Bioethical subcommittee of the Ethical committee of CSIC
(Spanish National Research Council), reference 008/2016.

We also performed an usability case study with one post-
stroke patient (age 37). The patient suffered an haemorrhagic
transformation of ischemic stroke, affecting the right middle
cerebral artery, thus the most affected side of the body was
the left. The experiment with the patient was performed in
the facilities, and under the supervision of the professionals
of Centro de Referencia Estatal de Atención Al Daño Cerebral
(CEADAC). The patient was assessed by a physician using
the most common scales: the Disability Rating Scale (DRS),
Functional Independence Measure (FIM) and the Barthel Index
(BI). For the DRS, the value was 2, corresponding with a partial
level of disability. The BI score was 100, reflecting independence
in the activities of daily living, while for the FIM it was 119
(85 for motor subscale and 34 for cognitive scale). The patient
signed the Informed Consent, acknowledging the risks and the
inclusion criteria (he was previously examined by a physician,
who validated the suitability for the training). These experimental
procedures were approved by the local scientific committee
in CEADAC.

2.2. Experimental Platform
The Biomot ankle robot (Moltedo et al., 2016) was used in this
study. Footedness preference for each subject was established
according to the Waterloo footedness test (Elias et al., 1998).

This actuator is based on the MACCEPA (mechanically
adjustable compliance and controllable equilibrium position
actuator) concept (Bacek et al., 2015), which is driven by
a joint torque control. MACCEPA concept is based on a
torque-controlled rotational actuator with adjustable compliance
(Figure 1). The motor is rigidly connected to the Lever Arm
(LA), which is in turn connected to the Fixed Link (FL) via
a spring (K). FL is attached to the wearer’s foot and thus
its angle represents the user’s ankle angular position, and LA
represents the robot position. Both LA and FL move with respect
to the Output Link (OL), which is attached to the wearer’s
shank. Consequently, if the motor reference is set to a particular
position, the wearer still has the possibility to pivot the ankle by
compressing the spring. This permits to calculate the interaction
torque between the wearer and the actuator by measuring the
subsequent deflection of the spring (α angle= LA− FL).

MACCEPA actuator allows to provide controlled torque
profiles by using a simple position controller without the
need of a complex torque sensor, and with the reliability of
position sensors.

2.3. Robot Control
The controller of this robotic platform comprises a zero torque
controller (based on a classic Proportional/Integral/Derivative
(PID) implementation) and the haptic adaptive feedback (HAF)
component based on tacit adaptability—a symbiotic control
strategy on exoskeletons inspired by biomimetic mechanisms,
which, in turn, is based on the “tacit learning” approach for

bipeds (Shimoda et al., 2015; Asín-Prieto, 2016), adapted by the
performance of the user in the experimental task.

The HAF module is schematically introduced in the control
architecture, depicted in Figure 2. The controller is described by
Equation (1).

u = τPID + uHAF (1)

where u is the output of the controller (pulse width modulation),
τPID corresponds to the output of the torque controller (Equation
2), and uHAF to the output of the haptic adaptive feedbackmodule
(Equation 3).

τPID = Kp · error + Ki ·

∫ t

0
error · dt + Kd ·

d

dt
error (2)

uHAF = KHAFi ·

∫ t

0
α · dt + KHAFp · α (3)

where Kp, Ki, and Kd are respectively the PID constants;
KHAFi and KHAFp are respectively the integral and proportional
constants of the HAF module; α angle is proportional to the
interaction torque between human and robot; and error =

LAref − LA. LA is the actual sensor information for the Lever
Arm angle, whereas LAref is the calculated reference LA angle.
This reference LA angle is calculated with the approximation of
the MACCEPA actuator to a torsion spring actuator described by
Equation (4).

LAref =
τref

Kts
+ FL (4)

where τref is the reference disturbance torque to the controller,
Kts is the empirically obtained torsional stiffness constant, and
FL is the Fixed Link angle, i.e., the user’s ankle angle.

The objective of the controller is to apply higher disturbance
torques when higher performance is reached (consequently
adding more difficulty to the task), and vice versa (rendering
the task easier with lower performances). To do this, KHAFi and
KHAFp are empirically set to KHAF

1000 and KHAF
5 , where KHAF provides

the modulation of the disturbance torque following this simple
rule: KHAF = 100 − performance [%], thus, the value of the
constant KHAF is updated based on task performance. Section
2.5.1 explains how this constant is modulated.

2.4. Protocol
The longitudinal intervention protocol applied on each
participant is graphically described in Figure 3. The intervention
lasted 4 days. Training sessions were performed in days 1–3.
Four corticospinal assessments were performed in days 1, 3 (two
assessments), and 4.

The training follows this daily structure: forty training
repetitions (randomized trajectory profiles, as shown in
Figure 4), disturbance torque modulated by the system; followed
by ten evaluation repetitions [two types of disturbance torque
profiles—Figure 5A, multiplied by the five possible trajectories—
Figure 4] for the assessment of immediate effect. The disturbance
torque provided in these assessment repetitions was set at the
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FIGURE 1 | MACCEPA actuator model schematics and actual actuator. (A) MACCEPA actuator schematics, with all its components. (B) MACCEPA attached to a

cartoon foot, with the different components depicted.

FIGURE 2 | The controller of the robot comprises a zero torque Proportional/Integral/Derivative (PID) controller and the haptic adaptive feedback module (HAF

constant—KHAF—multiplied by alpha, angle proportional to the interaction between the robot and the subject), tweaking KHAF with the performance. The subject

controls the location of the character on the screen by means of the ankle joint angle. In the figure, u stands for the output of the controller, τref is the disturbance

torque reference, τPID and uHAF are respectively the outputs from the PID torque and HAF controllers; and FL, LA, and LAref are respectively the angles for Fixed Link,

Lever Arm, and reference for Lever Arm computed from the reference disturbance torque.

maximum given by the robot: 15 N·m. All repetitions had a
duration of 10 s per trajectory. The resting position of the ankle
was set at −2.5◦ (slightly plantarflexed) as the most comfortable
position for the users.

The task instruction was to follow the trajectories delineated
in the visual paradigm by means of the sequence of onscreen
items (gas bottles) following the shortest linear path in-
between. The user had to move a character (gyrocopter) with
the angular position of the ankle via dorsi-plantarflexion to
collect the gas bottles: dorsiflexion implied moving the avatar
upwards in the screen, whereas plantarflexion implied going
downwards. Meanwhile, the robot disturbed the user motion
by performing plantar and dorsiflexion alternated disturbance
torque profiles (see Figure 5A). These disturbance torque
profiles were developed with the aim of stimulating both
agonist and antagonist muscle groups, both in dorsi- and
plantarflexion movements.

For the patient, we focused only on dorsiflexion disturbance
torque patterns, because he was unable to avoid the full drop of

the foot. Besides, the disturbance torque was modified (as seen in
Figure 5B) to remove abrupt changes in the direction of the force
exerted by the robot. We empirically set a maximum disturbance
torque of 5 N·m.

All healthy subjects were asked to train and find a strategy to
actively compensate the disturbance torque by the ankle robot,
to successfully follow the trajectory on the screen, along three
sessions (one every day), of 50 repetitions. For the patient, the
length of the protocol was modified to 5 days (replicating the
protocol used in Asín-Prieto et al., 2018).

2.5. Metrics
2.5.1. Robot-Based
We used two different metrics to quantify the performance of
the user: SCORE and root mean squared error (RMSE). SCORE
was calculated for each trial as the percentage of collected
onscreen items, whereas RMSE was calculated by subtracting
the performed trajectory from an ideal linear path between
onscreen items. Note that it could be possible to collect all the
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FIGURE 3 | Experiment schematics. (A) Upper left figure shows the Transcranial Magnetic Stimulation (TMS) assessment setup. (B) Upper right figure shows the

experimental setup together with the daily training structure: 40 training repetitions, and ten last repetitions to survey the execution after the training (at a settled

disturbance torque, the maximum given by the robot: 15 N·m). And (C) Lower figure shows the longitudinal intervention structure: (1) TMS assessment (represented

by the figure-of-8 coil) PRE-intervention; (2) first day training (represented by the visual paradigm); (3) second day training; (4) third day training; (5) TMS assessment

POST-intervention; (6) POST30: TMS assessment 30 min after intervention; and (7) POST24h: TMS assessment 24 h after intervention. Adapted from Asín-Prieto

et al. (2018), copyright 2019, Springer Nature Switzerland AG.

onscreen items by performing a high error trajectory between
them (see Figure 6 for an example). The total SCORE for each
trial was shown to encourage the user to improve it along the
session. The value for KHAF was updated when the gyrocopter
exceeded a (collected or uncollected) gas bottle, based on the
instantaneous SCORE in the current trial, thus modulating the
disturbance torque. Each trial consisted of 20 collectible bottles,
thus rendering a KHAF refresh rate of 2 Hz (20 gas bottles per
10 s). Figure 7 depicts an example of the modulation of the
disturbance torque based on the SCORE metric.

SCORE and RMSE were used to quantify two different sets
of data: (a) assessment post-training repetitions, i.e., the 10 last
repetitions of each training day (see ROBOTIC TRAINING in
Figure 3), in what we called POST-train values; (b) linear fit
on the sequence of the 120 training repetitions (40 training
repetitions per day, concatenated for the 3 days), and selected the
values of the resulting linear fitting coinciding with the first (1)
and last (120) repetitions, in what we called MOD (modulated)
values, where PRE-MOD and POST-MOD were the first and last
values of the linear fit, respectively (see Figure 8).

In addition to RMSE and SCORE after each day training
(POST-train), we used two other metrics for the patient: changes

in range of motion (ROM) and velocity. Before and after
the training from the second to the fifth day, the patient
underwent a robotic evaluation of the possible ROM. This
evaluation consisted on moving up and down a ball on the
screen via dorsi-plantarflexion during 30 s. The patient was
asked to alternatively reach two horizontal lines (one up and
one down), and the position of these lines was changed to the
maximum reached in order to make the task more difficult.
Although the separation between lines meant a wider ROM,
the absolute position of them remained the same onscreen in
order to be unnoticeable for the patient. The maximum velocity
was calculated by multiplying the maximum achieved angular
amplitude by the fundamental frequency (calculated with Fast
Fourier Transform). We computed the change in this metric by
comparing the results before and after the intervention.

2.5.2. Clinical Assessment
In the rehabilitation process there are threemain phases that need
to be characterized: (1) initial assessment, to identify andmeasure
the extent of the pathology; (2) planning, to assess the problem
and establish the objectives; and (3) final assessment, after
the treatment. In addition to the aforementioned metrics, the
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FIGURE 4 | Five possible trajectory profiles: (A) constant −2.5◦; (B) straight increasing from −4 to 1◦; (C) straight decreasing from −1 to −6◦; (D) from −6 to −2.5

and back to −6 again; and (E) from 1 to −2.5 and back to 1. Modified from Asín-Prieto et al. (2019), copyright 2019, IEEE.
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clinicians at CEADAC performed a functional clinical assessment
at the beginning and the end of the week for the patient, before
the first training session, and after the last one. In the functional
assessment protocol developed in CEADAC, among the broad
set of clinical functional scales that aim to provide an objective
insight in the recovery process of patients, the clinicians focus

FIGURE 5 | The behavior of the HAF module is depicted: (1) KHAF = 100

prompts zero-torque control; (2) KHAF = 0 normal torque control, no influence

of HAF, so up to 15 N·m reference; and (3) KHAF between 0 and 100, nearer to

a zero-torque control the higher the constant KHAF is, thus allowing to

modulate the magnitude of the applied disturbance torque amplitude. Dashed

line corresponds to an example of disturbance torque profile with KHAF
between 0 and 100. (A) Possible disturbance torque profiles: torque to

dorsiflexion (up) and torque to plantarflexion (down). (B) Possible disturbance

torque to dorsiflexion (up) direction for the patient.

on: Timed 10 m walk, as a measure of gait speed; 6 Min Walking
Test (6MWT), as a measure of resistance; Step Test, as a measure
of dynamic balance; Timed Up and Go (TUG) test, that demands
several potentially destabilizing maneuvers for the subject.

2.5.3. Neurophysiological Assessment
Corticospinal excitability was assessed by recording the MEPs
elicited by a Magstim 2002 TMS stimulator in single pulse
modality in combination with a figure-of-eight double-coned
coil. We followed the instructions by SENIAM (Hermens et al.,
1999) to place the surface electromyography Ag/AgCl electrodes
(22.225 × 34.925 mm, Vermed), recorded with a g.USBamp
amplifier (g.tec), sampled at 24 KHz and highpass filtered with
a 20 Hz first order Butterworth filter.

In order to map the hot spot [place where Tibialis Anterior
(TAnt) MEPs peak-to-peak amplitude is higher] on the scalp,
several supra-threshold pulses were delivered nearby the vertex.
The hot spot, ineon, and vertex were drawn with a permanent
marker on a swimming cap, in order to ensure repeatability
between sessions. After locating the hot spot, the resting motor
threshold (RMT), defined as the stimulation intensity that elicits
MEPs of ∼50 µV peak-to-peak amplitude in 5 out of 10 applied
pulses (Temesi et al., 2014), was set for each participant. We
recorded ipsilaterally (Kamibayashi et al., 2009) TAnt and Soleus
(SO), as well as Rectus Femoris (RF, as a control muscle not
involved in the robotic ankle task).

The assessment consisted in delivering 20 pulses to each of the
volunteers at an intensity of 120 % of the RMT to elicit MEPs.
The peak-to-peak amplitude of the MEPs was averaged. This
assessment procedure was performed four times (see Figure 3):
(1) before the training of the first day (PRE); immediately after
the training of the third day (last training, POST); 30 min after to
evaluate plastic effects (POST30); and finally 24 h after, in order
to check lasting effects (POST24h).

2.5.4. Satisfaction Questionnaire
After the treatment, all subjects filled out a Likert
scale (1–Very unsatisfied; 2–Unsatisfied; 3–Not
satisfied nor unsatisfied; 4–Satisfied; 5–Very satisfied)
questionnaire for assessing the satisfaction level with the
experimental procedure.

2.6. Data Analysis
Data were analyzed with Matlab, IBM SPSS Statistics version
25, and R Studio. After examining with Shapiro-Wilk test, our

FIGURE 6 | Trajectory example, with the best trajectory between items in continuous red line, and a high error trajectory between items (with 100% SCORE as all the

items are collected) in dotted blue line.
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FIGURE 7 | Example of the modulation of KHAF . Dashed line in the upper panel depicts the actual trajectory followed by a subject, with the uncollected bottles

remaining onscreen. The instantaneous SCORE is presented in the table, both in collected/total (#) and percentage (%), as well as the computed value for KHAF .

Lower panel shows in blue the reference torque (corresponding to a SCORE of 100%), and in red the actual reference disturbance torque applied to the user’s ankle

modulated according to the SCORE.

data showed variables with normal distributions and variables
violating the normality. Thus, for those without a normal
distribution, we provide the results for non-parametric tests;
and for those that present a normal distribution, we provide
parametric analyses.

First of all, changes in RMSE POST-train metric, both for
healthy subjects and the patient, were tested using a Friedman test
of differences among repeated measures along the study, finally
evaluating the size effect with Average Spearman rho (ρs), and
performing a Pairwise post-hoc Test for Multiple Comparisons
of Rank Sums for Unreplicated Blocked Data (Conover-test)
with Bonferroni correction. For the SCORE POST-train, both
for healthy subjects and the patient, we performed a One-way
repeated measures ANOVA, with Huynh-Feldt correction due to
lack of sphericity (Mauchly’s test), with partial squared omega
(ω2

p) for the size effect, and pairwise t-test post-hoc analysis, with
Bonferroni correction.

Then, we tested the correlation between SCORE
and RMSE with a Spearman bivariate analysis (p
value of 0.05), for the evaluation ratings after each
day training (POST-train), to check the relationship
between metrics.

To assess changes in the PRE-MOD vs. POST-MOD of
the SCORE and RMSE on the modulated repetitions, we
conducted t-Student analyses, providing Cohen’s d as the
size effect.

Finally, changes in the corticospinal excitability
were also tested using a Friedman test, and

FIGURE 8 | MOD metric calculation example, for RMSE.

evaluating the size effect with Average Spearman
rho, and performing Conover post-hoc Test with
Bonferroni correction.
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3. RESULTS

Data showed normal distribution for: SCORE POST-
train both for healthy subjects and the patient, and
MOD for SCORE and RMSE. All the other variables

TABLE 1 | Descriptive statistics for the variables analyzed for the group of

healthy individuals.

Mean Median Standard deviation Min Max

RMSE

POST-train

1st day 3.22 2.82 2.31 1.52 9.59

2nd day 2.43 2.39 1.05 1.23 4.95

3rd day 2.24 2.14 0.99 1.11 4.57

SCORE

POST-train

1st day 54.65 54.25 19.53 15.50 84.50

2nd day 65.15 62.25 9.92 55.00 82.50

3rd day 68.00 64.75 11.97 54.00 87.00

RMSE

modulated

PRE-MOD 4.02 3.65 1.77 1.62 6.86

POST-MOD 1.99 1.79 0.95 0.98 4.05

SCORE

modulated

PRE-MOD 43.54 40.15 18.34 24.07 80.11

POST-MOD 67.84 66.77 9.77 54.92 85.05

TAnt

MEPs

PRE 238.99 176.33 144.07 107.16 505.69

POST 312.94 344.67 154.82 108.96 504.29

POST30 281.59 296.33 111.02 107.32 411.23

POST24h 403.56 385.64 222.82 114.94 807.08

SO

MEPs

PRE 94.36 90.51 43.42 28.33 162.03

POST 109.00 119.30 50.21 30.48 169.56

POST30 99.35 100.20 44.19 29.41 176.05

POST24h 107.46 115.84 50.21 31.87 198.76

RF

MEPs

PRE 228.17 209.44 163.19 34.49 495.57

POST 215.42 243.36 129.98 34.38 387.78

POST30 190.06 146.14 171.15 22.50 555.03

POST24h 236.82 210.45 164.92 31.45 487.19

Satisfaction 4.80 5.00 0.42 4.00 5.00

presented a non-normal distribution (see Table 1 for the
descriptive statistics).

3.1. Study With Healthy Individuals
There was a significant change in SCORE POST-train metric
[ANOVA, F(1.18, 10.60) = 6.84; p< 0.05; ω2

p = 0.35; large effect size
according to Field, 2018] but not in RMSE POST-train (p> 0.05).
Post-hoc tests revealed that the SCORE at the third training day
was significantly increased (p= 0.03) as compared to the SCORE
on the first training day (see Figure 9).

We found significant (p< 0.05) strong correlations (ρ > 0.70)
in the evaluation ratings after each day training (POST-train);
both for SCORE 1st day and RMSE 1st day (ρ = −0.89), and
SCORE 3rd day and RMSE 3rd day (ρ = − 0.86).

t-Student indicated that the SCORE POST-MOD of the
modulated training was significantly higher than the SCORE
PRE-MOD [t(9) = −4.39; p < 0.05; Cohen’s d = 1.39], and that
the RMSE POST-MOD was significantly lower than the RMSE
PRE-MOD [t(9) = 3.05; p < 0.05; Cohen’s d = 0.96]. There was a
large size effect for both metrics’ t-tests according to Kotrlik and
Williams (2003).

TAntMEPs peak-to-peak amplitude was significantly changed
[Friedman, χ

2 = 9.12; p < 0.05; 3 DoF; ρs = 0.22; small effect
size according to Kotrlik and Williams (2003)] across assessment
sessions. Post-hoc tests revealed that TAnt MEPs peak-to-peak
amplitude was significantly increased at the POST24h moment
when compared to PRE (p< 0.01), POST (p= 0.03), and POST30
(p < 0.01) moments (see Figure 10). On the other hand, there
was no significant change in SO nor in RF MEPs peak-to-peak
amplitude across assessment moments (p > 0.05).

The satisfaction questionnaire rendered an average of 4.8
(being 5 Very satisfied), with a standard deviation of 0.42.

3.2. Usability Case Study With Post-stroke
Patient
In the case study, we used the repetitions for each of the 5 training
days to conduct the statistical analyses, as we had data from one

FIGURE 9 | Results for the RMSE and SCORE after each day training (POST-train) for the group of healthy individuals. Statistical significance (post-hoc comparison)

depicted by the asterisk (*). (A) Mean and standard error of POST-train for RMSE per day. (B) Mean and standard error of POST-train for SCORE per day.
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FIGURE 10 | Results for the TMS assessment for the group of healthy individuals for the four evaluated moments, normalized to the mean of the evaluation before the

intervention: before the full intervention (PRE), right after the full intervention (POST), 30 min after the POST (POST30), and 24 h after the end of the full intervention

(POST24h); for the muscles TAnt (Tibialis Anterior), RF (Rectus Femoris) and SO (Soleus). Statistical significance (post-hoc comparison) depicted by the asterisk (*).

FIGURE 11 | Results for the RMSE and SCORE POST-train, after each day training for the patient. Statistical significance (post-hoc comparison) depicted by the

asterisk (*). (A) Mean and standard error of POST-train for RMSE per day. (B) Mean and standard error of POST-train for SCORE per day.

individual. The results for the case study rendered significant
changes in RMSE POST-train [Friedman, χ

2 = 9.36; p = 0.05;
4 DoF; ρs = 0.14; medium effect size according to Kotrlik and
Williams (2003)]. Post-hoc tests revealed that RMSE at training
day 5 was significantly decreased when compared to day 1 (p <

0.01) and day 3 (p= 0.02) (see Figure 11). On the other hand, the
SCORE did not show significant differences (ANOVA, p = 0.09)
across training days (see Table 2 for the descriptive statistics).

Figure 12 shows the results of the evaluation of ROM and
velocity before and after each training session (from the second
to the fifth day). There was a decreased ROM in days 2 and 3, and

increased ROM in days 4 and 5, with a positive trend across days.
A different trend was obtained in velocity (there was a decrease
between the second and the third day, and between the forth and
the fifth, although there was a net increase in velocity). The figure
also shows the difference of the maximum and minimum values
of achieved ROM per day, showing that the maximum increased
across days.

Table 3 presents the improvements on the functional scales,
before and after the full treatment. Modified Ashworth scale was
used to assess the level of spasticity of the patient, showing no
changes in muscle tone.
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The satisfaction questionnaire for the patient showed that he
was very satisfied with the intervention.

4. DISCUSSION

We aimed at exploring the validity of combining the robotic
ankle exoskeleton with a video game designed to promote
motor learning in a therapy protocol involving autonomously
customized control. We have developed the video game to
enhance adherence and engagement, by providing the control of
the robot with the performance to modulate the task difficulty.
We approached this objective by providing perturbations to the
users’ ankle while asking them to follow a trajectory depicted as
a sequence of collectible onscreen items. The magnitude of the
perturbations was modulated as function of the performance, i.e.,
the number of collected items, making the task more difficult if
the performance increased, and vice versa.

This reward system, based on autonomously customized
hardness of the task to the user, potentially promotes learning.

TABLE 2 | Descriptive statistics for the RMSE (◦) and SCORE (%) POST-train for

the patient.

Mean Median Standard deviation Min Max

RMSE

POST-train

1st day 1.37 1.21 0.49 0.65 2.45

2nd day 1.32 1.29 0.58 0.12 2.36

3rd day 1.47 1.19 0.50 1.05 2.43

4th day 1.25 1.06 0.42 0.97 2.31

5th day 1.09 1.00 0.63 0.31 2.22

SCORE

POST-train

1st day 72.00 72.50 21.24 35.00 100.00

2nd day 74.00 75.00 14.87 50.00 100.00

3rd day 77.50 77.50 14.77 55.00 100.00

4th day 82.00 85.00 12.95 55.00 100.00

5th day 87.50 90.00 9.79 75.00 100.00

We also computed the error as the difference between the
most efficient trajectory between onscreen items and the actual
performed trajectory. Moreover, we evaluated other metrics
(MEPs for the corticospinal excitability for healthy individuals;
clinical scales, range of motion and velocity for the patient; and
satisfaction with the process of intervention for all participants)
to support our novel approach to a clinical therapy.

Regarding TMS, although there are limitations and results
are not consistent when extrapolating corticospinal excitability
improvement to learning processes in rehabilitation (Carson
et al., 2016), several recent studies point out that an increase in
corticospinal excitability may be related to an improvement in
motor learning (Kida et al., 2016; Naros et al., 2016; Mawase
et al., 2017; Christiansen et al., 2018; Raffin and Siebner,
2018; Mrachacz-Kersting et al., 2019), and moreover, there is
a relationship between the improvement in the metrics in the
robotic therapy, motor learning, and corticospinal excitability
enhancement in healthy subjects (Perez et al., 2004). For this
reason, we decided to use TMS as a valid technique to assess the
corticospinal excitability.

Regarding the validation study in healthy volunteers, we
found significant improvement in the SCORE for the POST-
train metrics, but not for the RMSE, although there was a strong
significant negative correlation between SCORE and RMSE.
would imply that similar results These results are in line to those
already found by us with a single volunteer (Asín-Prieto et al.,

TABLE 3 | Clinical scales before the beginning and after the end of the full 5

days treatment.

Before After

Timed 10 m walk (m/s) 1.6 1.7

6MWT (m) 455 465

Step test (repetitions) 7 11

TUG (s) 9.50 8.52

FIGURE 12 | Results for the change in ROM and velocity per day (comparing before and after each day training), for the second, third, fourth, and fifth days, for the

patient. (A) ROM (continuous line), maximum angles (dashed line), and minimum angles (dotted line) difference (POST-PRE) per day. (B) Velocity change per day.
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2018), and suggested that participants would learn and master
the robotic task across days.

We tested MOD metric as a customized modality for the
assessment of the performance, as the controller (and thus the
disturbance torque applied to the ankle) was autonomously
modulated via HAF algorithm, rather than applying the
maximum disturbance torque (15 N·m), as it was done for the
POST-train metric. Thus, we considered the MOD metric as a
more appropriate way to assess the personalized performance.
In contrast to the POST-train metrics, we found significant
improvements along the training in the MOD variable for both
the SCORE and RMSE.

We also found a significant increase in TAnt MEPs peak-to-
peak amplitude, supporting the hypothesis that an increase in
performance has a relationship with corticospinal excitability.
These corticospinal changes did not show muscle specificity,
as our training involved only the ankle and we have not
found statistical changes in RF (control muscle) neither in SO
corticospinal excitability. Consequently, we can only conclude
that our training lead to increased TAnt excitability. We can
speculate that one of the reasons why SO had not significantly
increased corticospinal excitability, may be the fact that the
robot controller is in favor of gravity, and thus the force to
move the robot downwards requires less muscle activation than
the required TAnt activation to dorsiflex the ankle. Another
possible explanation could be that TAnt, according to Brouwer
and Ashby’s findings (Brouwer and Ashby, 1992), presents higher
corticospinal projections density than the rest of the lower-limb
muscles, and thus it may be easier to assess its excitability. In
this sense, corticospinal projections to TAnt in comparison to
the rest of lower-limb distal muscles, are comparable to those at
upper-limb level (Brouwer and Ashby, 1990), and thus we could
say that our results are consistent to those in the literature for
upper-limb robotic approaches (Ramos-Murguialday et al., 2014;
Kraus et al., 2016). Finally, another reason for different changes
in corticospinal excitability of TAnt and SO may be that TMS
can possibly activate inhibitory projections (that present a lower
threshold than excitatory projections) (Nielsen and Kagamihara,
1993) that are richer in plantarflexormuscles (SO) (Hudson et al.,
2013). Therefore, even if corticospinal enhancement occurs for
SO, this would probably not be easily observed (Fujio et al., 2019).

In the case study (with the post-stroke patient) results,
we found significant improvements in the RMSE after each
day training, but non-significant changes for the SCORE. The
significant changes found on RMSE are consistent not only
with the results of our healthy sample, but also with the
results presented by others (Patton et al., 2001; Krakauer,
2006; Reinkensmeyer and Patton, 2009; Goodman et al., 2014),
thus confirming our hypothesis of usability in the case study.
Although we have provided some data on the performance for
this patient, our main goal was to validate the usability of this
robotic training framework for post-stroke rehabilitation.

When we compared the ROM and velocity before and after
each day training, we found that there was a net increase
both in velocity and ROM along the days, although in the
velocity there was a sawtooth shape profile (third and fifth day
presented a lower increase than second and fourth, respectively).

Nonetheless, as higher ROMs would inevitably render lower
velocities (as it depends on the maximum achieved angular
amplitude and the fundamental frequency of the resulting signal,
and thus a higher amplitude would decrease the speed and
vice versa), the sawtooth-shaped behavior of the velocity could
be explained by this phenomenon. Furthermore, the fact that
the maximum dorsiflexion increased across days may indicate
an improvement in dorsiflexor muscles. If these data imply a
behavioral improvement in the control of the ankle, the variation
occurs together with that of the clinical scales used to assess the
improvement after the treatment. Consequently, we can consider
that these changes in ROM and velocity tend to improve like the
clinical scales.

As reported by the Likert satisfaction scale, both studies lead
to full satisfaction of the participants. We found the viability
of using this treatment in patients, as the patient ranged the
intervention similarly to the range given by the healthy group.

Our objective was to validate our proposed therapy as
a potential tool for increasing motor learning on healthy
individuals. Thus, taking into consideration all these results,
our hypothesis has been confirmed in the POST-train metric
for the SCORE and for the TAnt excitability; and for the
MOD variables. Regarding RMSE, our hypothesis has not been
confirmed, probably due to the short duration of the treatment.
On the other hand, for the case study with the post-stroke patient,
both SCORE and RMSE have changed as hypothesized in the
design of the study.

Finally, we conclude that combining a grounded exoskeleton
that disturbs the ankle joint motion with a video game
incorporating autonomously controlled difficulty can elicit
improvements on performance, and also increased excitability of
the target muscle(s). This conclusion renders our proposal as a
potential rehabilitation tool. Furthermore, we have demonstrated
the viability of applying this treatment approach in a usability
case study with a post-stroke patient.

As future work, we aim at extending this study using
more stroke patients. This rehabilitation approach may be also
explored as a novel rehabilitation framework to be used in other
pathologies like spinal-cord injury (Asín-Prieto et al., 2016),
cerebral palsy (Lambrecht et al., 2014; Lefmann et al., 2017),
or other lower limb movement disorders (Reinkensmeyer et al.,
2004; Calabro et al., 2016).

4.1. Limitations
One limitation of the case study here presented is that we only
enrolled a single stroke patient. Although improvements have
been shown in task performance as observed in all assessed
metrics, we cannot conclude that these improvements are
only due to our treatment, as the patient was also enrolled
on his daily therapy with physio and occupational therapists.
Nonetheless, both clinical and robot-based metrics rendered a
good prospective of the integrated therapy, which should be
explored by us in a wider population of stroke patients, for longer
therapy sessions.

To avoid very long daily sessions for the healthy controls, we
discarded the option of assessing corticospinal excitability before
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and after each robotic-training session. Thus, we cannot isolate
the daily effects of the robotic training.

Furthermore, due to the tight therapy schedule of the
patient, and to avoid lengthy sessions, the professionals at
CEADAC decided to remove the TMS assessment from
the protocol.

Results obtained from TMS assessments partially demonstrate
the effectiveness of the robotic-therapy in modulating the
corticospinal excitability in the healthy group, since the
MEPs were significantly increased only in TAnt but not
in SOL muscle. Although TMS presents some limitations
as a diagnostic tool, namely the inter-subject variability in
simultaneous measurements on normal population (Choudhury
et al., 2011), the intra-subject variability obtained in our study
was relatively small. On the other hand, it is worth noting
that our work adds more evidence to other studies showing
that different tasks may lead to increased TA excitability
but not to increased SOL or Gastrocnemius Medialis (MG)
excitability. For instance, results presented by Fujio et al. (2019)
suggest that TA excitability is susceptible to the prediction
of a perturbation, whereas the SO and MG excitability
presented no change for the same tasks. In any case, we
plan to assess data from a control group that does not
perform the robotic treatment done by the healthy subjects in
this study.

We are also planning to improve the neurophysiological
assessment by including other technologies, such as assessment
of changes in spinal reflexes (e.g., reciprocal inhibition)
(Pascual-Valdunciel et al., 2019) or paired-pulses TMS
protocols. By combining these technologies, we should be
able to have a better understanding on the level (spinal,
supraspinal, or both) where of plastic changes occur due to the
robotic therapy.
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