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One of the ubiquitous chemical modifications in RNA, pseudouridine modification is
crucial for various cellular biological and physiological processes. To gain more insight
into the functional mechanisms involved, it is of fundamental importance to precisely
identify pseudouridine sites in RNA. Several useful machine learning approaches have
become available recently, with the increasing progress of next-generation sequencing
technology; however, existing methods cannot predict sites with high accuracy. Thus,
a more accurate predictor is required. In this study, a random forest-based predictor
named RF-PseU is proposed for prediction of pseudouridylation sites. To optimize
feature representation and obtain a better model, the light gradient boosting machine
algorithm and incremental feature selection strategy were used to select the optimum
feature space vector for training the random forest model RF-PseU. Compared with
previous state-of-the-art predictors, the results on the same benchmark data sets
of three species demonstrate that RF-PseU performs better overall. The integrated
average leave-one-out cross-validation and independent testing accuracy scores were
71.4% and 74.7%, respectively, representing increments of 3.63% and 4.77% versus
the best existing predictor. Moreover, the final RF-PseU model for prediction was
built on leave-one-out cross-validation and provides a reliable and robust tool for
identifying pseudouridine sites. A web server with a user-friendly interface is accessible
at http://148.70.81.170:10228/rfpseu.

Keywords: pseudouridine sites, light gradient boosting, random forest, machine learning, RNA

INTRODUCTION

More than 150 types of chemical modification have been identified in cellular RNA, including
adenosine methylation, cytosine modification, isomerization of uridine, and ribose modification
(Boccaletto et al., 2018). These modifications have critical roles in cellular biological and
physiological processes (Song and Yi, 2017). For instance, one of the most prevalent RNA
modifications in eukaryotes, N6-methyladenosine (m6A), affects RNA stability (Wang et al.,
2014), RNA-protein interaction (Liu et al., 2015b), RNA splicing and translation (Meyer and
Jaffrey, 2014), the circadian clock (Fustin et al., 2013), immune response (Winkler et al., 2019),
etc. Another widespread RNA modification is 5-methylcytosine (m5C), which has functions
including preservation of the secondary structure of tRNA (Motorin and Helm, 2010), control of
amino-acylation (Helm, 2006), codon identification and metabolic stability (Agris, 2008; Li et al.,
2017). The pseudouridine modification is another common post-transcriptional modification in
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various living organisms (Zaringhalam and Papavasiliou, 2016).
In 1951, pseudouridine was first identified, and experiments in
1960 revealed that it was abundant in tRNA and rRNA (Cohn,
1960). Pseudouridine results from an isomerization of uridine by
breaking the glycosidic bond with 180◦ base rotation (Karijolich
et al., 2015). This modification has been shown to have vital roles,
for instance, in stabilizing RNA and in the stress response (Zhao
and He, 2015; Cheng et al., 2019a; Wang et al., 2019b).

Although RNA pseudouridylation was discovered decades
ago, the first transcriptome-wide RNA pseudouridylation map
was not published until 2014, following the rapid development of
next-generation sequencing technology (Goodwin et al., 2016).
Carlile et al. (2014) developed the PseudoU-seq technology,
which they used to identify more than 200 pseudouridylation sites
in the regulated mRNA of yeast and human cells; in the same year,
Schwartz et al. (2014) performed transcriptome-wide mapping
using a similar protocol, finding more than 300 dynamic-
regulated pseudouridine sites in non-coding RNA and mRNA.
Li et al. (2015a) presented a chemical labeling method (CeU-
Seq) that they used to pull down more than 2000 pseudouridine
sites in human mRNA. Other RNA pseudouridylation sequencing
protocols were also developed (Carlile et al., 2015).

As an alternative to costly and labor-intensive laboratory
experiments, robust, swift, and inexpensive computational
methods for RNA chemical modification prediction have
emerged recently, owing to the increasing amount of data
generated in this post-genomics era (Libbrecht and Noble,
2015). A large number of m6A (Chen et al., 2015, 2018a,b,
2019a; Zhou et al., 2016; Zhao et al., 2019; Zou et al., 2019)
and m5C (Feng et al., 2016; Qiu et al., 2017; Li et al.,
2018; Sabooh et al., 2018; Zhang et al., 2018; Yin et al.,
2019) site predictors based on traditional machine learning
and emerging deep learning algorithms have been proposed.
However, few computational tools have been developed to predict
pseudouridine sites. Li et al. (2015b) used a support vector
machine (SVM) classifier to design a web server called PPUS
for the identification of pseudouridine sites in Saccharomyces
cerevisiae and Homo sapiens. Chen et al. (2016) constructed
another SVM-based web server for pseudouridine site prediction,
using the frequency composition of the nucleotides and
pseudo K-tuple nucleotide composition (PseKNC) for feature
representation. He et al. (2018) presented another model,
PseUI, to identify pseudouridine sites in RNA sequences from
three species (H. sapiens, S. cerevisiae, and M. musculus);
this was an SVM-based model incorporating multiple feature-
extraction technologies. Tahir et al. (2019) used convolutional
neural networks to design a new predictor, iPseU-CNN; and
Liu et al. (2019b) developed the eXtreme gradient boosting
(XGboost) method for RNA pseudouridine site prediction (XG-
PseU). Cross-validation scores for RNA pseudouridine site
identification in the abovementioned three species showed the
best accuracy for iPseU-CNN (66.9%) in H. sapiens, whereas
XG-PseU and iPseU-CNN had the best accuracy (68.2%) in
S. cerevisiae, and XG-PseU was the most accurate (72.0%) in
M. musculus. According to independent testing scores, iPseU-
CNN outperformed the other models, with 69.0% accuracy
in H. sapiens and 73.6% accuracy in S. cerevisiae. Although

the iPseU-CNN predictor had a high average cross-validation
accuracy (68.9%) and independent testing accuracy (71.3%)
scores, there was still room for improvement in comparison with
some high-performing m6A site predictors (Chen et al., 2019a;
Zou et al., 2019).

In this work, a model is developed based on the random forest
algorithm, RF-PseU, for pseudouridine site recognition. The
modeling overview is shown in Figure 1. RF-PseU incorporates
multiple sequence feature representation technologies, and
the light gradient boosting machine (LGBM) algorithm is
employed to remove redundant features and rank the remaining
features. Evaluation with leave-one-out (LOO) cross-validation
demonstrated the robustness of the model. The average cross-
validation accuracy (71.3% for 10-Fold and 71.4% for LOO) of
RF-PseU was improved by 3.48–10.3% compared with existing
state-of-the-art predictors, and the average independent testing
accuracy (74.7%) showed a 4.8–19% increase. A user-friendly
web server was also implemented, which can be accessed at
http://148.70.81.170:10228/rfpseu. RF-PseU is expected to be
a useful supplement to the existing tools for pseudouridine
site identification.

MATERIALS AND METHODS

Data Sets
Given that there were small differences between the benchmark
data sets used in the studies of Chen et al. (2018a) and Liu
et al. (2019b), data sets obtained from Chen et al. (2018a)
were used to train and test our models. The training data sets
included data for three species. That is, H. sapiens training
dataset with 495 psedouridine-sites-containing sequences and
495 non-psedouridine-sites-containing; S. cerevisiae training
dataset contains 314 psedouridine-sites-sequences and 314
non-psedouridine-sites-sequences; M. musculus training dataset
consists of 944 sequences, half of which is positive samples.
Whereas the independent testing data sets covered only two
species, H. sapiens and S. cerevisiae, both of which contain 100
positive samples and 100 negative samples. For the H. sapiens
and M. musculus data sets, the window size was 21, i.e. the
positive samples were psedouridine site centroid sequences of
21 base pairs each, whereas those for the S. cerevisiae samples
window site was 31, with psedouridine site centroid sequences
of 31 base pairs. Negative samples, in which no psedouridine
sites were detected, consisted of 21 base pairs for H. sapiens and
M. musculus, and 31 base pairs for S. cerevisiae. The benchmark
data sets can be downloaded from http://lin-group.cn/server/
iRNAPseu/data.

Feature Representation
Several widely used and convenient bio-sequence feature
representation tools have been developed (Mrozek et al., 2013;
Liu et al., 2015a, 2019c; Yu et al., 2015, 2019; Cheng and Hu,
2018; Hu et al., 2019; Muhammod et al., 2019). The two main
tools used in this work were iLearn (Hu et al., 2019) and PyFeat
(Muhammod et al., 2019).
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FIGURE 1 | A schematic diagram of RF-PseU. RNA sequences with or without pseudouridine sites were encoded via seven RNA coding technologies; following
removal of redundant features by light gradient boosting machine feature selection, the random forest model was trained on smaller but more relevant feature vector
spaces, and was evaluated through cross-validation and independent testing to obtain an optimized model for prediction.

Nucleotide Binary Profiles
Binary profiles encode the four bases (ACGU) as (1,0,0,0),
(0,1,0,0), (0,0,1,0), and (0,0,0,1), whereas dibinary profiles encode
the 16 dinucleotides (AA, AC,AG, AU, CA, CC, CG, CU, GA, GC,
GG, GU, UA, UC, UG, and UU) as (0,0,0,0), (0,0,0,1), (0,0,1,0),
(0,0,1,1),. . ., (1,1,1,1).

Accumulated Nucleotide Frequency
Suppose si is a base (ACGU) at the ith position of a RNA
sequence. Then we can determine the si density di of the ith prefix
subsequence of a RNA sequence as follows:

di =
i
|si|

L∑
j=1

f (si) , where f
(
q
)
=

{
1, if si = q
0, otherwise

,

where L is the sequence length and q is one of the four
nucleotides (ACGU).

Nucleotide Chemical Properties
The four RNA nucleotides (ACGU) are different from each other
in terms of chemical structure and chemical bonds. On the
basis of these differences, AGCU can be categorized into three
different classes (Table 1) and encoded using a three-dimensional
coordinate, i.e. A is denoted by (1,1,1), C by (0,1,0), G by (1,0,0),
and U by (0,0,1).

Electron-Ion Interaction Pseudopotentials (EIIP)
Nair and Sreenadhan (2006) used the EIIP values of A, G, C,
and T (A: 0.1260, G: 0.0806, C: 0.1340, T: 0.1335) to directly

TABLE 1 | ACGU categories based on chemical properties.

Nucleotides Chemical property

C,U Pyrimidine and ring structure

A,G Purine and ring structure

A,U Weak and hydrogen bond

C,G Strong and hydrogen bond

G,U Keto and functional group

A,C Amino and functional group

represent the nucleotides in a DNA sequence. Here, iLearn was
used to encode each nucleotide in the RNA sequences into EIIP
feature vectors.

Enhanced Nucleic Acid Composition
The nucleotide composition was calculated for a fixed-length
window of the RNA sequence, allowing the fixed window
(length = 5) to continuously slide from the 5′ to the 3′
terminus. RNA sequences were then encoded into feature vectors
of equal length.

Xmer k-Spaced Ymer Composition Frequency
This method is used to count the composition of a subsequence of
X and Y consecutive nucleotides with intervals k, e.g. AGU@AU,
A@CU, GU@@@A, where @ indicates a one-interval space, @@ a
two-interval space, and so on. Generally, using Xmer k-spaced
Ymer to encode an RNA sequence will generate a 4X

× 4Y

feature vector. In this study, X, Y, and k were set to 1, 2,
or 3; and eight XYK combinations (except for 3mer-kspaced-
3mer) were used for encoding. The PyFeat tool developed by
Rafsanjani et al. (Muhammod et al., 2019) was used to convert
RNA sequences into vectors.

Feature Selection
Feature selection is an effective way to remove redundant
information and prevent over-fitting in machine learning
modeling (Tang et al., 2017; Xu et al., 2018a; Cheng et al., 2019a;
Liu, 2019; Sun et al., 2019; Yu et al., 2019). Several feature
selection technologies, including ANOVA (Lv et al., 2019b) and
MRMD (Zou et al., 2016), have been developed and are widely
used for DNA, RNA, and protein identification (Xu et al., 2018b).
In this work, an LGBM (Ke et al., 2017)1 wrapper was used
to select appropriate feature spaces for model training. In this
process, raw training data were fed into the LGBM model and
their features were ranked by importance value as calculated
with the LGBM algorithm. Features with importance values
greater than the average were selected to compose the feature
space for modeling.

1https://lightgbm.readthedocs.io
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FIGURE 2 | (A) Accuracy of the random forest predictor varied with feature dimension for all three species: (A1) H. sapiens; (A2) S. cerevisiae; (A3) M. musculus.
The best independent accuracies for H. sapiens and S. cerevisiae were 75.0% with 257 features and 77.0% with 397 features, respectively, and the best 10-Fold
cross-validated accuracy for M. musculus was 74.8% with 161 features. (B) Receiver operating characteristic curve (ROC) and area under the ROC curve (auROC)
for different species under various conditions. (B1) is for H. sapiens, (B2) is for S. cerevisiae and (B3) is M. musculus. A support vector machine (SVM) was used for
comparison with the random forest (RF) model. 10-Fold (10-Fold) model testing and leave-one-out (LOO) model testing indicate the model with the best 10-Fold and
LOO cross-validation scores in independent testing. In cross-validation (10-Fold and LOO) and testing process, the training datasets have divided into training part
and validation part. That is, they have used the general machine learning evaluation methods (training, validation and testing) for model optimization. In the figure, the
10-fold cross-validation and LOO cross-validation metric values are obtained from the validation part of training part, while the independent testing metric values are
obtained from the independent testing datasets.

Model Evaluation Metrics and Methods
The proposed models were evaluated by five commonly used
metrics, accuracy (ACC), sensitivity (Sn), specificity (Sp),
Matthew correlation coefficient (MCC), and integral area under
the receiver operating characteristic curve (auROC). These
metrics were calculated using the following equations, where
TP, TN, FP, and FN stand for true positive, true negative, false
positive, and false negative, respectively (Cheng et al., 2016,
2019b,c; Wei et al., 2017d,e; Liu et al., 2019a). For the ROC curve,
1-specificity was plotted on the horizontal axis, and sensitivity on
the vertical axis.

ACC =
TP + TN

TP + TN + FP + FN

Sn =
TP

FN + TP

Sn =
TN

FP + TN

MCC =
TN × TP − FN × FP

√
(TP + FP)× (TP + FN)× (TN + FN)× (TN + FP)

LOO, K-Fold cross-validation, and independent testing are the
most widely used methods for predictor evaluation (Mrozek et al.,
2015; Cao and Cheng, 2016; Chen et al., 2017, 2018a, 2019b;
Pan et al., 2017; He et al., 2018, 2019; Jiang et al., 2018; Xiong
et al., 2018; Yu et al., 2018; Zhang et al., 2018; Ding et al., 2019;
Feng et al., 2019; Kong and Zhang, 2019; Li and Liu, 2019; Lv
et al., 2019a; Manavalan et al., 2019; Shan et al., 2019; Wang
et al., 2019a; Wei et al., 2019a,b; Xu et al., 2019; Yu and Dai,
2019). That is the general machine learning evaluation methods
(training, validation and testing) are used for optimized model
evaluation. To test the efficiency of the classification, LOO cross-
validation was performed for a data set containing n items,
of which n-1 items were used for training and the remaining
one was used for validation. This procedure was repeated until
every sequence in the training data set had been used once as
a validation testing sample. LOO cross-validation is robust but
time-consuming for a large data set. To compare the performance
of the model with that of existing predictors, 10-Fold cross-
validation was also used. The training data set was stochastically
divided into 10 subsets, with one subset for validation and the
remaining nine for training. This process was repeated 10 times
and the average results were used to evaluate the model. Finally,
independent testing was performed to obtain a data set that was
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completely distinct from the training data set for evaluation of
the trained model.

Algorithm
The random forest method is a bagging-type ensemble learning
algorithm (Cheng et al., 2018a,b). By combining multiple weak
classifiers, the final results can be voted or averaged to obtain an
overall model with higher accuracy, better general performance,
and resistance to overfitting. This algorithm has been extensively

used in bioinformatics and other areas, and has been confirmed
to be an effective modeling technique in various domains (Ding
et al., 2016a,b; Mrozek et al., 2016; Qiu et al., 2016; Wang et al.,
2017; Wei et al., 2017a,b,c; Yu et al., 2017a; Zheng et al., 2017;
Tang et al., 2018, 2019a; Xue et al., 2018; Degenhardt et al., 2019;
Xu et al., 2019). In this study, the scikit-learn toolkit, available at
https://scikit-learn.org, was used to establish the models.

Support vector machine (Cortes and Vapnik, 1995) is
a generalized linear classifier that classifies data based on

TABLE 2 | Cross-validation and independent testing scores of two different classifiers for three species.

Species Algorithm 10 fold cross-validation Independent testing

ACC MCC Sn Sp auROC ACC MCC Sn Sp auROC

H. sapiens SVM 62.0% 0.240 61.4% 62.6% 0.656 64.0% 0.280 66.0% 62.0% 0.679

RF 64.3% 0.287 66.1% 62.6% 0.700 75.0% 0.501 78.0% 72.0% 0.800

S. cerevisiae SVM 67.5% 0.352 73.7% 61.2% 0.720 72.5% 0.45 73.0% 73.0% 0.786

RF 74.8% 0.497 77.2% 72.4% 0.810 77.0% 0.540 75.0% 79.0% 0.838

M. musculus SVM 70.7% 0.42 65.9% 75.4% 0.759 / / / / /

RF 74.8% 0.50 73.1% 76.5% 0.796 / / / / /

TABLE 3 | Comparison of cross-validation and independent testing scores of existing state-of-the-art pseudouridine site predictors and RF-PseU.

Species Classifier Cross-validation Independent testing

ACC MCC Sn Sp auROC ACC MCC Sn Sp auROC

H. sapiens iRNA-PseU(LOO)a 60.4% 0.21 61.0% 59.8% 0.640 65.0% 0.30 60.0% 70.0% /

PseUI(LOO)a 64.2% 0.28 64.9% 63.6% 0.68 65.5% 0.31 63.0% 68.0% /

iPseU-CNN(5F)b 66.7% 0.34 65.0% 68.8% / 69.0% 0.40 77.7% 60.8% /

XG-PseU (10F)c 66.1% 0.32 63.5% 68.7% 0.700 67.5% / / / /

RF-PseU(10F)d 64.3% 0.29 66.1% 62.6% 0.700 75.0% 0.50 78.0% 72.0% 0.800

RF-PseU(LOO)e 64.0% 0.29 65.9% 62.6% 0.694 74.0% 0.48 74.0% 74.0% 0.814

S. cerevisiae iRNA-PseU(LOO) 64.5% 0.29 64.7% 64.3% 0.81 60.0% 0.20 63.0% 57.0% /

PseUI(LOO) 64.1% 0.30 64.7% 67.5% 0.69 68.5% 0.37 65.0% 72.0% /

iPseU-CNN(5F) 68.2% 0.37 66.4% 70.5% / 73.5% 0.47 68.8% 77.8% /

XG-PseU(10F) 68.2% 0.37 66.8% 69.5% 0.77 71.0% / / / /

RF-PseU(10F) 74.8% 0.49 77.2% 72.4% 0.810 77.0% 0.54 75.0% 79.0% 0.838

RF-PseU(LOO) 75.8% 0.52 78.2% 73.4% 0.819 74.5% 0.49 70.0% 79.0% 0.823

M. musculus iRNA-PseU(LOO) 69.1% 0.38 73.3% 64.8% 0.75 / / / / /

PseUI(LOO) 70.4% 0.41 79.9% 70.3% 0.71 / / / / /

iPseU-CNN(5F) 71.8% 0.44 74.8% 69.1% / / / / / /

XG-PseU(10F) 72.0% 0.45 76.5% 67.6% 0.74 / / / / /

RF-PseU(10F) 74.8% 0.50 73.1% 76.5% 0.796 / / / / /

RF-PseU(LOO) 74.5% 0.48 72.7% 75.2% 0.794 / / / / /

aPredictors based on support vector machine, Leave-One-Out Cross-Validation (LOO); bPredictors based on convolutional neural nets, five-fold cross-validation (5F);
cPredictors based on XGboost,10-fold cross-validation (10F); dPredictors based on Random Forest, 10-fold cross-validation; eLOO:Leave-One-Out Cross-Validation

TABLE 4 | Comparison of average accuracies for state-of-the-art predictors.

Scores type RF-PseU (10 Foldc) RF-PseU (LOOd) iRNA-PseU (LOO) PseUI (LOO) iPseU-CNN (5 Folde) XG-PseU (10 Fold)

Cross-validationa 71.3% 71.4% 64.7% 66.2% 68.9% 68.7%

Independent testingb 76.0% 74.7% 62.5% 67.0% 71.3% 69.3%

aAverage values of H. sapiens, S. cerevisiae and M. musculus; bAverage values of H. sapiens and S. cerevisiae; cmodel with 10-fold cross-validation; dmodel with
leave-one-out cross-validation; emodel with five-fold cross-validation.
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supervised learning; its decision boundary is the maximum-
margin hyperplane required to solve the learning sample. SVM
has been widely used in a variety of fields (Xiong et al., 2012;
Ding et al., 2017; Yu et al., 2017b; Fu et al., 2018; Fang et al., 2019;
Lai et al., 2019; Meng et al., 2019; Shen et al., 2019; Tang et al.,
2019b; Zhang et al., 2019; Zhu et al., 2019). Here, it was used for
modeling comparisons. SVM was also implemented via the scikit-
learn toolkit, using the Gaussian radial basis functions, with the
critical hyper-parameters (C and γ) of SVM optimized in a range
from 10−6 to 106 with exponent step 100.5.

RESULTS AND DISCUSSION

Optimization With Different Feature
Spaces
To determine optimal feature spaces, we first used the LGBM
algorithm to sort the features from maximum to minimum
according to their importance value. All the features with
importance value greater than the average were kept. Second,
we used an incremental feature selection strategy; as shown
in Figure 2A, the 10-Fold cross-validation and independent
testing accuracy varied as features were added. Initially, the
accuracy increased rapidly for each species. As shown in Figure 2
(A1) and Figure 2 (A2), when the feature dimensions for
H. sapiens and S. cerevisiae reached 257 and 397, the model
achieved maximum independent testing accuracies of 75.0 and
77.0%, respectively. Owing to the lack of independent test
data sets for M. musculus, Figure 2 (A3) shows only the
cross-validation accuracy curve, with its peak value (74.8%)
at a feature dimension of 161. The optimal feature space

dimensions selected for each species were 257, 397, and 161,
respectively. These values were used for further experiments
and optimization.

Comparison With SVM Predictors
Given that PPUS (Li et al., 2015b), iRNA-PseU (Chen et al.,
2016), and PseUI (He et al., 2018) were all based on SVM,
an optimized SVM model for pseudouridine site identification
with the same feature spaces as the RF model was constructed
to determine the effects of the SVM and RF on prediction
performance. The performances of the two models are shown
in Table 2. Overall, the models based on RF showed markedly
better performance than those based on SVM. For instance,
in terms of 10-Fold cross-validation accuracy, the RF models
for H. sapiens, S. cerevisiae, and M. musculus outperformed
the corresponding SVM models by 3.71%, 10.8%, and 5.80%,
respectively. The independent testing accuracy scores showed an
even greater contrast. For example, the RF model had 75.0%
accuracy for H. sapiens, exactly 1.17 times that of the SVM model.
The ROC curve and auROC value shown in Figure 2B also
demonstrate that the optimized RF models performed better than
the optimized SVM models for the same feature spaces. Thus,
non-SVM models such as XG-PseU (Liu et al., 2019b), iPseU-
CNN (Tahir et al., 2019), and our RF-PseU model might be
more suitable for distinguishing pseudouridine sites from non-
pseudouridine sites.

Comparison With Previous Predictors
The performance of RF-PseU was also compared with that of
state-of-the-art predictors including iRNA-PseU (Chen et al.,
2016), PseUI (He et al., 2018), iPseU-CNN (Tahir et al., 2019),

FIGURE 3 | A screenshot of RF-PseU web server interface. The web server allows users to type or paste FASTA format text into the textbox and click submit button;
the results are displayed in the right-hand table.
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and XG-PseU (Liu et al., 2019b). First, we compared the
evaluation scores for the three species. Table 3 compares
the cross-validation and independent testing scores for the
state-of-the-art pseudouridine sites predictors with those
of RF-PseU. In terms of cross-validation scores, the LOO
accuracy values for S. cerevisiae and M. musculus were
75.4% and 74.5%, respectively, representing increments of
approximately 10.5% and 3.47% over the values for the
existing predictor (XG-PseU) with the best cross-validation
score. However, the LOO accuracy of RF-PseU for H. sapiens,
at 64.0%, showed a decrease of 4.0% compared with the
best H. sapiens pseudouridine site predictor, PseU-CNN. In
terms of independent testing, as shown in Table 3, RF-PseU
scored higher than the existing predictors in all aspects. For
comprehensive comparison, the average scores for different
species were calculated. The results, shown in Table 4,
demonstrate that RF-PseU performed better overall than the
other four predictors. The cross-validation accuracy scores of
RF-PseU were 3.48% higher than those of the best existing
predictor, iPseU-CNN; in terms of independent testing scores,
RF-PseU showed a marked improvement of 4.7–10.6% compared
with iPseU-CNN. The overall performance of RF-PseU was
also significantly better than those of the other predictors,
indicating that RF-PseU can discriminate true pseudouridine
sites from non-pseudouridine sites more precisely than the
existing predictors.

Web Server Implementation
For convenience, a webserver with an easy-to-use interface was
developed (see screenshot in Figure 3), which can be accessed
freely at http://148.70.81.170:10228/rfpseu. A step-by-step user
guide is given here. First, users select a species from the drop-
down box and paste or type the query RNA sequences in FASTA
format into the textbox. Second, after clicking the submit button,
the query results will be shown in a table on the same page after a
wait. Note that once a query task has been submitted, the submit
button will be disabled. Third, the user can click the clear button
to empty the input text box and enable the submit button, and
return to step one to enter a new query task.

CONCLUSION

In this study, a new model, named RF-PseU, for predicting
RNA pseudouridine sites in multiple species is presented. For
given feature spaces, the random forest algorithm was shown
to be more efficient than SVM models for discriminating
pseudouridine sites from non-pseudouridine sites. In terms
of average cross-validation and independent testing accuracy
scores, RF-PseU showed improvements of 3.6–10% and 4.8–
21%, respectively, compared with state-of-the-art predictors.
Moreover, a web server with a user-friendly interface is available.
It is anticipated that RF-PseU will be a useful tool for RNA
pseudouridine site analysis. However, the model requires further
development via combination with other technologies before
it is suitable for use as a classifier for RNA pseudouridine
sites. Future work will explore emerging methods such as
Gene2Vec (Zou et al., 2019), m6Acomet (Wu et al., 2019), and
iterative feature representation (Wei et al., 2019b) to improve the
model’s performance.
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