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Identification and characterization of lncRNAs in cancer with a view to their application
in improving diagnosis and therapy remains a major challenge that requires new and
innovative approaches. We have developed an integrative framework termed “CLING”,
aimed to prioritize candidate cancer-related lncRNAs based on their associations with
known cancer lncRNAs. CLING focuses on joint optimization and prioritization of all
candidates for each cancer type by integrating lncRNA topological properties and
multiple lncRNA-centric networks. Validation analyses revealed that CLING is more
effective than prioritization based on a single lncRNA network. Reliable AUC (Area
Under Curve) scores were obtained across 10 cancer types, ranging from 0.85 to
0.94. Several novel lncRNAs predicted in the top 10 candidates for various cancer
types have been confirmed by recent biological experiments. Furthermore, using a
case study on liver hepatocellular carcinoma as an example, CLING facilitated the
successful identification of novel cancer lncRNAs overlooked by differential expression
analyses (DEA). This time- and cost-effective computational model may provide a
valuable complement to experimental studies and assist in future investigations on
lncRNA involvement in the pathogenesis of cancers. We have developed a web-
based server for users to rapidly implement CLING and visualize data, which is freely
accessible at http://bio-bigdata.hrbmu.edu.cn/cling/. CLING has been successfully
applied to predict a few potential lncRNAs from thousands of candidates for many
cancer types.

Keywords: lncRNA, pan-cancer, web-based server, multi-dimension data fusion, network-centric prioritization

Abbreviations: AUC, area under curve; BLCA, bladder urothelial carcinoma; BP, biological process; BRCA, invasive breast
carcinoma; ceRNA, competitive endogenous RNA; CLING, cancer LncRNA identification by network grouping; COAD,
colon adenocarcinoma; DEA, differential expression analyses; DRS, discounted rating system; GO, gene ontology; HNSC,
head and neck squamous cell carcinoma; LCE, lncRNA ceRNA; LCN, lncRNA co-expression; LFS, lncRNA function
similarity; LIHC, liver hepatocellular carcinoma; LMCE, lncRNA-mRNA ceRNA; LMCN, lncRNA-mRNA co-expression;
LMI, lncRNA-miRNA interaction; lncRNA, long non-coding RNA; LPI, lncRNA-protein interaction; LSS, lncRNA sequence
similarity; LTFI, lncRNA-transcription factor (TF) interaction; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; OV, ovarian serous cystadenocarcinoma; PCC, pearson correlation coefficients; PRAD, prostate adenocarcinoma;
PRE, precision; ROC, receiver operating characteristic; RWR, random walk with restart; STAD, stomach adenocarcinoma;
TCGA, the cancer genome atlas; TPR, true positive rate.
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INTRODUCTION

Cancer is a group of complex diseases involving multiple levels
of alterations, including genetic, epigenetic and transcriptomic
aberrations. In recent years, advancements in next-generation
sequencing technology have made it feasible for researchers to
study the “dark matter” in the genome, leading to the discovery
of a number of long non-coding RNAs (lncRNAs). LncRNAs
commonly defined as transcripts longer than 200 nucleotides
in length with little or no protein coding potential, which
have gained widespread attention as crucial players in diverse
biological processes (Mercer et al., 2009).

The past decade has witnessed a sharp increase in research
on lncRNAs involved in various cancer types (Ning et al., 2016).
Current knowledge on the known number of lncRNAs represents
only the tip of the iceberg. One of the crucial goals in the field
of cancer is to fill the gap in knowledge on the association
between lncRNAs and cancer. Considering the enormous cost of
determining all the latent associations between known lncRNAs
and cancers through biological experiments, computational
methods may provide a better alternative in identifying cancer-
related lncRNAs. These techniques not only contribute to
filtering high-risk lncRNAs as candidate molecules for further
experimental validation but also facilitate our understanding
of the potential mechanisms underlying cancer development at
the lncRNA level.

Recently, several computational approaches have been
developed to predict or prioritize disease-related candidate
lncRNAs, the majority of which assume that lncRNAs associated
with the same or related diseases tend to closely interact with
each other in molecular networks. Different networks have been
constructed to prioritize disease candidate lncRNAs, including
lncRNA-lncRNA co-expression (Ren et al., 2015), lncRNA-gene
co-expression (Liu and Zhao, 2016), lncRNA functional similarity
(Sun et al., 2014) and lncRNA-mRNA competitive endogenous
RNA (ceRNA) networks (Xia et al., 2014). This network-based
scheme has shown significant efficacy in identification of potential
lncRNA-disease associations. However, the obvious limitations
are that these network-based methods use just one specific type
of network, and incompleteness and even false-positive data
potentially limit their predictive ability. Furthermore, despite
the availability of multiple lncRNA-related networks, efficient
methods to integrate these different network types are lacking.

Here, we have developed a method designated as CLING, a
new cancer lncRNA prioritization technique that provides overall
ranking of all candidates by integrating distinct optimization
results generated from nine lncRNA-centric networks. CLING
has been successfully applied to predict a few potential lncRNAs
from thousands of candidates for many cancer types, some of
which have been confirmed in recent biological experiments.

MATERIALS AND METHODS

Experimentally Verified Cancer lncRNAs,
Genes and miRNAs
Experimentally verified cancer lncRNAs were extracted from
a previous study by our group on the Lnc2Cancer database

considered as the gold standard dataset in leave-one-out cross-
validation and training dataset in potential cancer–lncRNA
association prediction (Ning et al., 2016). We selected 10 cancer
types from TCGA, each including at least 15 relevant lncRNAs
in the gold standard dataset (Supplementary Table S1). Cancer-
associated genes were derived from the National Cancer Institute1

and DisGeNET (Pinero et al., 2015). We additionally collected
miRNAs relevant in cancer from HMDD v2.0 (Li Y. et al., 2014),
miR2disease (Jiang et al., 2009) and miRCancer (Xie et al., 2013).

Data Used for Network Construction
LncRNA and miRNA Annotation and Sequence Data
To construct a comprehensive lncRNA data set for further
analyses, we relied on the non-coding classification of
GENCODE (Harrow et al., 2012), and obtained lncRNA
transcript sequences. Human mature miRNA sequences were
derived from the miRBase (Kozomara and Griffiths-Jones, 2014).

Gene Ontology Annotation Data
The GO (Ashburner et al., 2000) database provides
comprehensive information describing the activities of gene
products. We downloaded biological process (BP) sub-ontology
of human gene for follow-up study.

Normal and Cancer Expression Profiles
The miRNA (Illumina HiSeq miRNASeq) and mRNA expression
(Illumina HiSeq RNASeqV2) profiles of the 10 human cancers
were downloaded from TCGA (as of October 2015). We
subsequently obtained corresponding lncRNA expression data
from the TANRIC database (Li et al., 2015).

Experimentally Validated lncRNA and miRNA,
Protein, TF Interactions
Experimental associations between miRNAs and lncRNAs
were identified in starBase v2.0 (Li J.H. et al., 2014) and
DIANA-LncBase (Paraskevopoulou et al., 2013). We additionally
curated lncRNA–protein interactions from starBase v2.0 and
NPInter v2.0 (Yuan et al., 2014) supported by AGO CLIP-
seq data. After combining data sets, 53,266 validated non-
redundant human lncRNA–protein pairs were assembled,
comprising 10,355 lncRNAs and 565 proteins. Furthermore,
68,676 experimentally supported lncRNA and TF associations
were derived from ChIPBase (Yang et al., 2013), including 4,937
lncRNAs and 119 TFs.

LncRNA–mRNA ceRNA Data
We collected lncRNA–mRNA ceRNA data from LncACTdb
(Wang et al., 2015), comprising 5002 pairwise associations among
329 lncRNAs and 1269 mRNAs.

Identification of AGO-CLIP
Data-Supported lncRNA–miRNA
Interactions
Candidate miRNA–lncRNA interactions were predicted by
two of the most commonly used and efficient computational
methods with default parameters, miRanda (Miranda et al., 2006)

1https://www.cancer.gov
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and TargetScan (Lewis et al., 2005). Additionally, 36 human
AGO-CLIP-seq datasets were collected from starBase v2.0 and
integrated into the pipeline to filter the union of the predictions
using the two methods (Li J.H. et al., 2014). Only the miRNA
binding sites on lncRNA sequences that fully overlapped with any
AGO CLIP cluster were regarded as CLIP-supported sites and the
corresponding lncRNA–miRNA interactions retained for further
analyses. After merging with experimentally verified associations,
109,542 validated non-redundant human lncRNA–miRNA pairs
were retained, including 1634 lncRNAs and 1732 miRNAs.

lncRNA-Centric Network Construction
lncRNA-lncRNA and lncRNA-mRNA Co-expression
Networks
To identify the lncRNA co-expression and lncRNA–mRNA co-
expression networks in each cancer type, the pearson correlation
coefficient (PCC) of all lncRNA–lncRNA and lncRNA–mRNA
pairs were calculated based on cancer lncRNA and corresponding
mRNA expression profiles. Subsequently, sets of significantly co-
expressed lncRNA–lncRNA pairs and lncRNA–mRNA pairs were
screened out to constitute the two network subtypes, respectively
(PCC > 0.8 and FDR < 0.01).

lncRNA Functional Similarity Network
Furthermore, with the advantages of BP sub-ontology, each
lncRNA was functionally annotated with specific BP terms
among the set of co-expressed mRNAs obtained in the lncRNA–
mRNA co-expression network. Fisher’s Exact Test was performed
to measure pairwise lncRNA function similarity through
assessing whether the two lncRNAs significantly enriched the
interacting BP terms. The test calculates the P-value using the
following equation:

p =

∑min(La,Lb)
i=k

(
Lb
k

)(
M − Lb
k− i

)
(
M
La

) (1)

where M is the number of all BP terms in GO, and La and Lb are
the BP terms annotated in lncRNA A and lncRNA B, respectively,
and k represents the number of BP terms that are significantly
enriched with both lncRNA A and lncRNA B. Therefore,
substantial numbers of lncRNA pairs with significant functional
similarities were obtained to form the lncRNA function similarity
network (FDR < 0.01).

lncRNA-lncRNA and lncRNA-mRNA ceRNA Networks
Similarly, to build the lncRNA–lncRNA ceRNA network, a
hypergeometric test was used to evaluate whether the two
lncRNAs have a potential ceRNA relationship by considering
their shared interactive miRNAs. As a result, we obtained a
complex lncRNA–lncRNA ceRNA network composed of 186,306
associations among 1633 lncRNAs. lncRNA-mRNA ceRNA
network was constructed by above data from LncACTdb.

lncRNA Sequence Similarity Network
Based on lncRNA transcript sequences, sequence similarities of
all lncRNA pairs were predicted using BLAST+ (version 2.2)

with default parameters. After rigorous filtration, 28,622 pairwise
sequence similarities among 5231 lncRNAs were retained and
used to construct a lncRNA sequence similarity network (e-
value < 10−5 and bit score >80.0).

lncRNA–Protein, lncRNA–TF, and lncRNA–miRNA
Interactions Networks
lncRNA–protein, lncRNA–TF, and lncRNA–miRNA interactions
were constructed by transforming the corresponding interacted
data obtained earlier.

Random Walk With Restart Algorithm
Random walk with restart was performed on each lncRNA-
centric network (Kohler et al., 2008). This technique can be used
to prioritize potential cancer lncRNAs by simulating a random
walker, starting with a set of source nodes and randomly moving
to its network neighbors. Formally, RWR is defined as:

pq+1 = (1− α)Wpq + αp0 (2)

where p0 is the original probability vector, which is the probability
of being at a source node (equal to 1 here), W is the column-
normalized adjacency matrix of an individual network involved
in CLING, αis the restart probability of the random walk at every
step at the source nodes, pq is a vector in which the ith element
has the probability of being at node i during the time step q.

Data Integration in CLING
In our method, individual prioritization results generated
from each network and lncRNA topological properties are
fused into an overall optimization list, which can be divided
into four sections.

First, for a specific cancer c, similar to Endeavor, we obtain a
rank ratio for the investigated candidate lncRNA in each network.
Given the absence of some lncRNAs in some networks, rank ratio
is defined as

rij =

{ Rij
nj

(
i ∈ j

)
1
(
i /∈ j

) (3)

where Rij is the ranking of candidate lncRNA i in the network j
and nj is the number of lncRNAs included in network j.

Second, since known cancer lncRNA betweenness and degree
are significantly larger than candidates in many networks,
the average normalized betweenness and degree of individual
lncRNA have also been taken into consideration which can be
calculated using following three substeps:

Substep 1: We normalize betweenness of candidate lncRNAs
depending on whether they are missing in the corresponding
network.

bij =

{ Bij−Bjmin
Bjmax−Bjmin

(
i ∈ j

)
0

(
i /∈ j

) (4)

where Bij is the betweenness of lncRNA i in network j, and Bjmin
and Bjmax are the minimal and maximal betweenness of network
j, respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 March 2020 | Volume 8 | Article 138

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00138 March 10, 2020 Time: 12:28 # 4

Zhang et al. Candidate Cancer-Related lncRNA Prioritization

Substep 2: The average normalized betweenness of the
candidate lncRNA is obtained using the equation:

bsi =
1
Ti

N∑
j=1

bij (5)

where, Ti is the number of the networks that the candidate
lncRNA i is involved in.

Similarly, the average normalized degree of an individual
lncRNA is acquired by:

dij =

{ Dij−Djmin
Djmax−Djmin

(
i ∈ j

)
0

(
i /∈ j

) (6)

dsi =
1
Ti

N∑
j=1

dij (7)

where Dij is the degree of lncRNA i in network j, and Djmin
and Djmax are the minimal and maximal betweenness of network
j, respectively.

Third, the number of networks that the candidate lncRNA is
involved in is also considered:

ti =
Ti

N
(8)

where N is the number of networks used in this work.
Finally, all separate values of candidate lncRNA are combined

into one overall score.

Si =
1

ti ∗ ebsi+dsi

N∏
j=1

log
(
rij + 1

)
(9)

This overall score measures the potential relationship between
lncRNA i and cancer c among whole networks. The score is
subsequently used to rank all the candidate lncRNAs for a
specific cancer type.

RESULTS

Global Properties of lncRNA-Centric
Networks
Nine complex networks were generated (Figure 1A), including
lncRNA–lncRNA co-expression (LCN), lncRNA ceRNA (LCE),

FIGURE 1 | Topological properties of nine lncRNA-centric networks involved in COAD. (A) Nine networks used to prioritize potential COAD-related lncRNAs. (B,C)
Known cancer lncRNAs generally had significantly higher degree and betweenness centrality than other candidates in most networks based on Wilcox rank sum test
(*, **, *** representing P < 0.05, P < 0.01, P < 0.001, respectively). Data were presented as means ± SEM. Known cancer lncRNAs and candidates are indicated in
red and blue along the X axis, respectively. Average degrees of these two groups of lncRNAs are specified in the Y axis. (D) All networks displayed a power law
distribution, except LFS (lncRNA function similarity network). The X axis indicates lncRNA degree distribution, Y axis indicates the number of lncRNAs according to
the X axis.
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lncRNA function similarity (LFS), lncRNA sequence similarity
(LSS), lncRNA-mRNA co-expression (LMCN), lncRNA-mRNA
ceRNA (LMCE), lncRNA-miRNA interaction (LMI), lncRNA-
protein interaction (LPI), and lncRNA–transcription factor (TF)
interaction (LTFI) networks. Based on diverse networks, the
number of lncRNAs ranging from 329 to 4937 and the number
of interactions ranging from 2068 to 2,511,269 in different
types of cancer, respectively (Supplementary Table S1). Among
these networks, LCN, LMCN, and LFS were cancer type-specific,
sourced from corresponding expression data.

We focused on the known cancer lncRNAs topological
properties of each network, which revealed generally higher
degree and betweenness. For example, the average degree
and betweenness of validated COAD-related lncRNAs were
significantly higher than those of the remaining candidates in six
and five out of nine networks, respectively (Wilcoxon rank-sum
test, P < 0.05) (Figures 1B,C), indicating that cancer lncRNAs
tend to be more important within the broader context of the
whole network and have synergistic communication. In addition,
our data showed that eight of nine networks (except LFS)
exhibited a scale-free, small-world and modular architecture,
with the degree following a power law distribution (Figure 1D).
Similar phenomena were detected for the nine other cancers
(Supplementary Figures S1–S9).

Performance of CLING
Prioritization of lncRNAs by CLING involved three main
steps (Figure 2). As the number of known cancer lncRNAs
contained in at least four out of the nine networks covered
the majority of the total quantity, LOOCV and ROC analyses
were further applied to investigate how the predictive power

of CLING changes when prioritized lncRNAs at different
network coverage. The performance of CLING was remarkably
enhanced when only identifying lncRNAs involved in at least
four networks, compared with consideration of all candidates
(Figure 3A). Human genes (mRNA, protein) and miRNAs
participating in some networks were also included to estimate
whether the performance of CLING is improved with the
addition of known cancer genes and miRNAs. The AUC
scores across 10 cancer types revealed slight enhancement
of the proficiency of CLING including this modification
(Figure 3B). To demonstrate the superiority of CLING in using
multiple networks to predict cancer lncRNAs, we used the
distribution of AUC scores across 10 cancer types to summarize
the general prediction power of CLING and individual
networks (Figure 3C). CLING significantly outperformed all
individual network prioritizations for the 10 cancer types
in terms of AUC score. Moreover, CLING could make up
for the deficiencies of individual network optimization. For
instance, AUC scores yielded using LCN and LMCN in BRCA
were only 0.399 and 0.2778, respectively, which escalated to
0.9077 with CLING.

To test the robustness of CLING under these circumstances,
we successively removed 20% randomly selected lncRNAs as
well as data related to these nodes in each network. LOOCV
and ROC analyses disclosed a stable performance of CLING
even under conditions of data depletion. For example, despite
data depletion from different networks, CLING exhibited high
predictive power for liver hepatocellular carcinoma (LIHC)
with only a few tenths percentage recession in AUC values
(Figure 3D). Notably, the reduction of AUC values using
discrete network prioritization was approximately 10 times

FIGURE 2 | Experimental scheme of CLING. First, experimentally supported cancer lncRNAs were extracted from Lnc2cancer and virtually pulled down into nine
lncRNA-centric networks. Next, all candidate lncRNAs were ranked in one prioritized list for each network based on the RWR algorithm. Finally, all separate
prioritization results and lncRNA topological properties were integrated into an overall rank.
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FIGURE 3 | Prioritization power of CLING. (A) Performance evaluation of CLING based on lncRNAs with different network coverages. (B) Comparison of the
predictive power of CLING for 10 types of cancer with consideration of other experimental cancer molecules (gene, miRNA) as additional source nodes in cancer
lncRNA prioritization. (C) Distribution of AUC values across 10 cancer types using CLING and individual networks for cancer lncRNA annotated in each of network.
(D) Robustness of CLING against the removal of 20% randomly selected lncRNAs as well as relevant associations in each network. Plots show the AUC scores
calculated for the prediction of cancer-lncRNA associations for liver hepatocellular carcinoma (LIHC) using CLING with complete data (gray), data depletion in one
network (pink), individual networks with complete data (orange), and individual networks with data depletion (green).

the decrease observed with CLING. These results clearly
illustrated that CLING can overcome situations of network
incompleteness and missing data, supporting its utility as a
robust method for valid lncRNA identification. We further
assessed the predictive power of CLING by testing whether
the top 10 lncRNA candidates for each cancer type have been
biologically validated as true cancer lncRNAs. By application
of literature mining, among the top 10 potential cancer
lncRNAs in each cancer type, three, two, one, one, one,
one and one associations of STAD, COAD, BLCA, PRAD,
OV, and LIHC predicted using CLING have been confirmed
(Supplementary Table S2).

Comparison of CLING With Other
Methods
We used two state-of-the-art methods as comparative analyses
for cancer lncRNA prioritization, including Endeavor (Aerts
et al., 2006) and DRS (Li and Patra, 2010). For comparative

evaluation of the performance of these three methods, we
replaced Endeavor and DRS with CLING and calculated
the corresponding AUC values across 10 cancer types
(Figure 4A). While predictive performances for three
methods were comparable, CLING consistently generated
the highest AUC score, followed by Endeavor and DRS,
for each cancer type (Supplementary Table S3). Further, a
comparison for the precision-recall (precision-TPR) curves
of the CLING, DRS and Endeavor again showed that CLING
is superior over other two kinds of methods, especially for
high recall rate, suggesting that CLING can achieve higher
accuracy and can be applied to many more cancer types
(Figure 4B). The time consumed by DRS and Endeavor was
dramatically higher with increased lncRNA number while
CLING maintained stable efficiency over the same time period.
When the number of candidate lncRNAs was as high as
10,000, CLING was >20 times faster than Endeavor. These
results demonstrated that CLING achieves a more stable
performance with higher efficacy in identifying cancer-related
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FIGURE 4 | Prediction power of known cancer lncRNAs performed for CLING, Endeavor and DRS. (A) ROC curves indicate that CLING performed better than other
methods. (B) Curves showing prediction precision (PRE) vs. recall (or TPR) indicate that CLING outperformed other methods.

lncRNAs than the current methods through combining
lncRNA properties.

Predicted lncRNA Function Profiles in
Human Cancers
To predict specific lncRNA functions among human cancers,
for each cancer type, the top 10 novel lncRNAs not reported
to be associated with any cancer type as well as the relevant
overall scores across 10 cancers were screened out (Figure 5A).
Functional enrichment analysis based on Enrichr (Kuleshov
et al., 2016) suggested that these lncRNAs are significantly
associated with several fundamental cancer-related BP (P < 0.05)

(Figure 5B). Specific genomic analyses facilitated the delineation
of one of these lncRNAs, termed NR2F1-AS1, as a 176,293 bp
gene with 14 non-protein coding transcriptional variants located
on chromosome 5q15. Interestingly, a gene denoted NR2F1 that
plays a critical role in the development of peripheral nervous and
central nervous systems (Pereira et al., 2000) is located diagonally
opposite NR2F1-AS1 in the human genome (Figure 5C). Further
co-expression pattern analyses demonstrated highly consistent
co-expression (P < 0.0001) of NR2F1-AS1 and NR2F1 across
nine of the cancer types examined [with the exception of
COAD due to the limited tumor sample number (18) used for
calculations] (Figure 5D). We also found that NR2F1-AS1 is
differential expressed in many types of cancers such as BLCA and
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FIGURE 5 | Continued
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FIGURE 5 | Functional analysis of the top ranked lncRNAs among 10 cancer types. (A) Dynamic changes in the function profiles of 62 lncRNAs (rows) in 10 types of
cancer (columns). Rows and columns were ordered using two-way hierarchical clustering of the −log10 Overall Score between lncRNAs and cancer, whereby
red/white indicates high/low −log10 Overall Score. In total, 29 lncRNAs displaying significant relationships with all cancer types were distributed in the upper section
while the lower section illustrates isolated lncRNA modules restricted to a specific cancer type. (B) Cancer-related biological processes (BP) enriched for 29 lncRNAs
are highly correlated with all 10 cancer types. (C) The lncRNA, NR2F1-AS1, is functionally involved in 10 cancers, potentially through regulation of NR2F1. A sketch
diagram describes the genome locations of lncRNA NR2F1-AS1 and gene NR2F1, shown in the green and red bars, respectively. (D) Evaluation of the
co-expression between NR2F1-AS1 and NR2F1 among 10 cancer types. For each cancer type, we plotted NR2F1-AS1 against NR2F1 expression value. High linear
correlations were observed for nine cancers, with the exception of COAD. Linear fitting lines are indicated in red. X and Y axis were plotted on a log10 scale.
(E) Prostate cancer-related biological processes enriched for the module composed of six lncRNAs that is functionally restricted to PRAD. (F) A composite subnet
formed by the six lncRNAs involved in PRAD and their direct neighbors in each network showing the interactions between these molecules. The shaded area
indicates an observable module of the six lncRNAs through tight connections with known prostate cancer-related lncRNAs, genes and proteins. LLcoex,
lncRNA–lncRNA co-expression; LMcoex, lncRNA–mRNA co-expression; LmiRNA, lncRNA–miRNA interactions; LLceRNA, lncRNA–lncRNA ceRNA; LMceRNA,
lncRNA–mRNA ceRNA; Lpro, lncRNA–protein interactions.

OV (Supplementary Figure S10). Thus, based on the principle
of guilt-by-association, we propose that the lncRNA NR2F1-AS1
is involved in the regulation of multiple cancers through exerting
effects on NR2F1.

In addition to lncRNAs commonly participating in all
10 cancers, the profile revealed isolated lncRNA blocks or
modules, which were restricted to a specific cancer type
(Figure 5A). For example, a module composed of six lncRNAs
involved in prostate cancer was significantly enriched with
prostate cancer-related BP (P < 0.05) (Figure 5E). Intensive

network analyses based on the subnet formed by these six
lncRNAs and their direct neighbors in each network also
revealed that these lncRNAs comprised a tightly connected
module through direct associations with experimentally validated
prostate cancer-related lncRNAs or proteins, such as H19, FUS,
and TARBP2 (Figure 5F).

Case Study
To verify the advantages of CLING in identifying cancer
lncRNAs, we compared the lncRNA rank lists of Liver

FIGURE 6 | Function and network analyses of the top prioritized lncRNA in LIHC. (A) LIHC-related GO biological processes enriched for the top 20 lncRNAs
identified using CLING. (B) Kaplan–Meier curves of two patient groups with higher (top 50%; n = 100) or lower (bottom 50%; n = 100) expression of MIR22HG in
LIHC. Survival days are shown along the X axis and Overall survival rates along the Y axis. (C–F) Subgraphs formed by lncRNA MIR22HG and its directed neighbors
associated with LIHC in LCE, lncRNA ceRNA network; LPI, lncRNA–protein interaction network; LMI, lncRNA–miRNA interaction network, and LMCE,
lncRNA–mRNA ceRNA network, respectively.
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hepatocellular carcinoma (LIHC) acquired using CLING and
DEA. The correlation coefficient between CLING Overall Score
list and DEA −log10 (P-values) was 0.0759 (P < 0.0001). In
particular, we manually assessed the expression patterns of the
top 20 candidates predicted by CLING that are considered to
be LIHC-related lncRNAs with high possibility (Supplementary
Table S4). Notably, 10 of the lncRNAs showed significantly
different expression between tumor and normal liver samples
(P < 0.05, FC > 2.0) while the remaining 10 could not be
identified by DEA (P < 0.05, FC > 2.0, or FC < 0.5), including
NEAT1 (ranked 5th by CLING) and XIST (ranked 11th by
CLING), which have been verified as LIHC-associated lncRNAs
in recent literature (Guo et al., 2015; Zhuang et al., 2016). Five
of the remaining eight lncRNAs have already been reported
as cancer lncRNAs. HCG11, ranked 1st by CLING, has been
identified as a significant prognostic marker in breast cancer (Liu
et al., 2016). SNHG5 and JPX ranked 6th and 7th by CLING,
are implicated in gastric cancer (Zhao et al., 2016) and breast
cancer (Huang et al., 2016), respectively. OIP5-AS1is reported
to reduce proliferation of cervical cancer by serving as a sponge
ceRNA for HuR (Kim et al., 2016) and ranked 10th by CLING.
In addition, MIR22HG, ranked 19th by CLING, is a potential
prognostic biomarker for LUAD (Li et al., 2016).

We further performed enrichment analysis for GO BP using
Enrichr. Six BP were enriched for cell cycle regulation and
apoptosis, LIHC carcinogenesis and development (Figure 6A).
We also performed survival analysis in LIHC patients to
evaluate whether the uppermost 20 lncRNAs are potentially
valuable biomarkers for predicting survival of patients. Overall,
3 of the 20 lncRNAs showed significant positive or negative
relationships between expression and OS in LIHC (P < 0.05)
(Figure 6B), suggesting a latent association with clinical
outcome. Notably, one of the lncRNAs, MIR22HG, that could
not be identified by DEA showed a negative correlation
between expression and OS, suggestive of a tumor suppressor
role in LIHC. Network analysis revealed that MIR22HG is
directly associated with abundant experimentally validated
LIHC-related lncRNAs, miRNAs, genes and proteins in different
networks (Figures 6C–F). CLING facilitated the discovery of
many LIHC candidate lncRNAs previously implicated in other
cancer types but overlooked by DEA. These results support a
complementarity between the two cancer lncRNA prediction
methods, CLING and DEA.

CLING Software Availability
We have developed a web-based server for users to implement
CLING with a view to rapidly accessing and visualizing data
pertinent to their research. The working principles and user
manual of CLING can be accessed on the “HELP” page. CLING
is freely accessible for non-commercial use at http://bio-bigdata.
hrbmu.edu.cn/cling/.

DISCUSSION

The success of CLING can be attributed to a combination
of several aspects. First, CLING displayed effective power in

accessing several lncRNA-centric networks, which significantly
differentiates it from conventional methods designed to access
only one or two networks. Second, three out of nine networks
used in this study (LCN, LMCE and LFS) were cancer
type-specific. CLING could detect potential cancer lncRNAs
for individual cancer types more efficiently. Third, CLING
also makes sufficient use of the topological properties of
lncRNAs implicated in each network, which further aid in the
identification of true cancer-associated lncRNAs.

In the current study, due to finite lncRNA and cancer
data availability, only nine networks have been introduced into
CLING. The advantage of our method is integrating multiple
types of biological networks which could provide more global
and effective information for identifying cancer-related lncRNAs.
Network-based method is an advantaged way to construct
interactions between lncRNAs or other types of RNAs. One
of the limitations of our method is identifying cancer-related
lncRNAs for some specific cancer types are not available because
of CLING was based on random walk and this method need
known seed. For some special cancer types, the number of known
cancer-related lncRNAs is small. More and accurate predicted
cancer-related lncRNAs would be identified based on CLING as
the number of validated cancer-related lncRNAs increases. More
cancer types and cancer-related genes and lncRNAs would be
used for predicting cancer-related lncRNAs based on updated
TCGA portal in the future work. Optimization power would
be improve further when new and better lncRNA and cancer
datasets become available and genome annotation and curation
processes are finalized. Another limitation of our study is that the
purpose of this study was to develop a network-based method
to predicted cancer-related lncRNAs, some of the identified
lncRNAs in certain cancers should be further validated in vitro
and in vivo studies.

CONCLUSION

In summary, we have presented a time- and cost-effective
computational method that effectively aids in the identification
of cancer-relevant lncRNAs through integrative analyses of
multiple networks. CLING provides additional avenues for
the optimal utilization of publicly available genomic data
to characterize the functions and underlying mechanisms of
lncRNAs in human cancers.
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