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Identifying drug-disease associations is integral to drug development. Computationally

prioritizing candidate drug-disease associations has attracted growing attention due

to its contribution to reducing the cost of laboratory screening. Drug-disease

associations involve different association types, such as drug indications and drug

side effects. However, the existing models for predicting drug-disease associations

merely concentrate on independent tasks: recommending novel indications to benefit

drug repositioning, predicting potential side effects to prevent drug-induced risk,

or only determining the existence of drug-disease association. They ignore crucial

prior knowledge of the correlations between different association types. Since the

Comparative Toxicogenomics Database (CTD) annotates the drug-disease associations

as therapeutic or marker/mechanism, we consider predicting the two types of

association. To this end, we propose a collective matrix factorization-based multi-task

learning method (CMFMTL) in this paper. CMFMTL handles the problem as multi-task

learning where each task is to predict one type of association, and two tasks

complement and improve each other by capturing the relatedness between them.

First, drug-disease associations are represented as a bipartite network with two types

of links representing therapeutic effects and non-therapeutic effects. Then, CMFMTL,

respectively, approximates the association matrix regarding each link type by matrix

tri-factorization, and shares the low-dimensional latent representations for drugs and

diseases in the two related tasks for the goal of collective learning. Finally, CMFMTL

puts the two tasks into a unified framework and an efficient algorithm is developed to

solve our proposed optimization problem. In the computational experiments, CMFMTL

outperforms several state-of-the-art methods both in the two tasks. Moreover, case

studies show that CMFMTL helps to find out novel drug-disease associations that are

not included in CTD, and simultaneously predicts their association types.

Keywords: drug-disease association, predicting association type, similarity, collective matrix factorization, multi-

task learning
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INTRODUCTION

Drugs are chemicals used to treat, cure, prevent, or diagnose
diseases. The development of a new drug has three steps:
discovery stage, preclinical stage, and clinical stage (Wilson,
2006), which takes about 15 years (Dimasi, 2001) and costs
about 1,000 million U.S. dollars (Adams and Brantner, 2006).
Such a costly and time-consuming process remains at huge
risk. After marketing, approved drugs will be surveilled to
reassess their safety and some side effects may be reported
(Liang et al., 2019). If adverse drug reactions cause serious
consequences then the drugs are taken off the shelves and
approval is withdrawn, bringing enormous economic loss to
pharmaceutical companies. Therefore, identifying drug-disease
associations is of significant importance. On one hand, finding
novel indications for drugs can be helpful for more effective
drug development. On the other hand, screening potential side
effects for drugs can reduce the risk of medicine use. But
traditional wet-lab experiments are expensive and laborious. In
light of these challenges, computational methods which associate
drugs with diseases have attracted growing attention from the
biomedical community.

Recently, a large number of computational methods have
been proposed for the drug-disease association prediction.
Gottlieb et al. (2011) constructed a drug-disease association
classifier based on the integration of drug molecular structures,
drug molecular activities, and disease semantic information.
Pauwels et al. (2011) put chemical structures of drugs in four
machine-learning models to train classifiers. Huang et al. (2013)
used the random walk to infer the unobserved links in a
heterogeneous network merging drugs, genomic information,
and disease phenotypes. Cheng et al. (2013) adopted a resource
allocation-based approach to infer unobserved side effects for
existing drugs. Oh et al. (2014) extracted features representing
drug-disease associations by using similarity-based features and
module-distance-based features, and then, respectively, adopted
decision tree, multi-layer perception, and random forest to build
prediction models. Wang et al. (2014) designed a computational
framework based on a three-layer heterogeneous network model
(TL-HGBI). Zhang et al. proposed the multi-label learning
method (Zhang et al., 2015), and the linear neighborhood
similarity-based method (Zhang et al., 2016a, 2017c) for side
effect prediction. Moghadam et al. (2016) adopted the kernel
fusion technique to combine different drug features and disease
features, and then built SVMmodels. Liang et al. (2017) proposed
a Laplacian regularized sparse subspace learningmethod (LRSSL)
which integrated drug chemical structures, drug target domains,
and target ontology. Zhang et al. (2016b) defined this task as
the recommender problem, and introduced restricted Boltzmann
machine and collaborative filtering to predict unobserved
side effects. Luo et al. (2018) designed a drug repositioning
recommendation system (DRRS) and used a matrix completion
algorithm to fill out the unknown entries in drug-disease
associations. Zhang et al. (2017b) presented a novel bipartite
network-based method, which only used known drug-disease
associations to predict unobserved associations. Zhang et al.
(2018c) proposed a similarly constrained matrix factorization

method, which utilized known drug-disease associations, drug
features, and disease semantic information. Xuan et al. (2019)
proposed a computational drug repositioning method through
the integration of multiple drug similarity and disease similarity.

The existing models for predicting drug-disease associations
only focus on indication prediction or side effect prediction,
but ignore the relatedness of the two tasks, which is vital
for knowledge of drug-disease associations. Despite the fact
that some studies (Yang and Agarwal, 2011; Wang et al.,
2013) considered drug side effects as auxiliary information for
indication prediction, they failed to comprehensively make use of
prior knowledge. According to the Comparative Toxicogenomics
Database (CTD) (Davis et al., 2013, 2017) some drugs have
therapeutic effects on diseases, e.g., sorafenib is usually used to
treat leukemia (Auclair et al., 2007). Some drugs play a role in
the etiology of diseases which can be regarded as side effects,
biomarkers or other effects, e.g., increased sediment in the brain
of amyloid beta-protein may correlate with Alzheimer’s disease
(Yamada et al., 2008), continued exposure to nicotine may cause
lung cancer, and over-dose ingestion of caffeine may lead to a
headache. Almost all drugs exert only one type of effect on a
certain disease. In general, if a drug can be used to treat a disease
then one can know that the drug is much less likely to exert other
effects on the disease. Hence, predicting two types of drug-disease
associations requires multi-task learning with two closely related
tasks, where each task is meant to predict one type of association.
It is a natural foresight that addressing the two tasks in one
uniform framework can make them complement each other. To
this end, we devise a model for capturing the relatedness between
the tasks and retaining the individuality of each of them.

In this paper, we propose a collective matrix factorization-
based multi-task learning method (abbreviated as “CMFMTL”)
to predict two types of drug-disease associations. From the
CTD database, we collect drug-disease associations annotated
as therapeutic or marker/mechanism (non-therapeutic), and
then construct a drug-disease network with two types of links
representing therapeutic effects and non-therapeutic effects.
CMFMTL, respectively, approximates the association matrix
regarding each link type by matrix tri-factorization, and shares
the low-dimensional latent representations for drugs and diseases
in the two related tasks for the goal of collective learning. We also
develop an efficient algorithm to solve our proposed model. In
the computational experiments, CMFMTL outperforms several
state-of-the-art methods in both tasks. Moreover, case studies
show that CMFMTL helps to find out novel drug-disease
associations that are not included in CTD, and simultaneously
predicts their association types.

MATERIALS AND METHODS

Dataset
The Comparative Toxicogenomics Database (CTD) (Davis et al.,
2013, 2017) is a publicly available database that intends to
advance understanding about how environmental exposures
affect human health. Zhang et al. (2018c) downloaded the
chemical-disease associations from the CTD. Then they mapped
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the chemicals into the DrugBank (Knox et al., 2011; Law et al.,
2014; Wishart et al., 2018) database, a comprehensive knowledge
base for drugs, to obtain approved drugs and some biological
features for drugs, such as chemical substructures, targets,
enzymes, pathways, and drug-drug interactions. The diseases
were matched into the Medical Subject Headings (MeSH), a
vocabulary thesaurus for biomedicine controlled by the National
Library of Medicine, to collect the MeSH descriptors of diseases
for the use of calculating disease semantic similarity. We use this
dataset as our benchmark dataset to evaluate the performance
of models.

As we described above, chemical-disease associations in
CTD are annotated as therapeutic or marker/mechanism.
Therapeutic associations mean that chemicals play a therapeutic
role in diseases, while marker/mechanism associations mean that
chemicals correlate with diseases. In this study, we can easily label
these associations as therapeutic associations or non-therapeutic
(marker/mechanism) associations. Extremely few associations
are simultaneously annotated as two association types. Without
loss of statistical properties of the data, we only label the extreme
cases as therapeutic associations. Finally, the benchmark dataset
contains 18,416 drug-disease associations involving 269 drugs
and 598 diseases. Among these associations, 6,244 associations
are therapeutic associations and 12,172 associations are non-
therapeutic associations.

Similarities for Drugs and Diseases
Let R = {r1, r2, . . . , rm} denote the set of drugs and D =
{

d1, d2, . . . , dn
}

represent the set of diseases. In this section,
we introduce the drug-drug similarity and the disease-disease
semantic similarity.

Drug-Drug Similarity
A feature of a drug is a collection of entities or attributes related to
the drug. Thus, we can use the Tanimoto score (Tanimoto, 1958)
[also known as Jaccard index (Jaccard, 1908) for measurement of
similarity between two sets] to calculate the drug-drug similarity.
Let Ŵi and Ŵj denote features of two drugs, the Jaccard index is
described as:

SJaccard
(

Γi,Γj

)

=

∣

∣Γi ∩ Γj

∣

∣

∣

∣Γi ∪ Γj

∣

∣

=

∣

∣Γi ∩ Γj

∣

∣

|Γi| +
∣

∣Γj

∣

∣ −
∣

∣Γi ∩ Γj

∣

∣

(1)

where |·| is the number of elements in the set.
Let Ŵ =

⋃m
i Ŵi represent the union set of features of m drugs

and |Ŵ| = c, and then the drug feature can be encoded as a
c-dimensionality binary vector, e.g., the drug ri is encoded as
xi ∈ {0, 1}c where the ith element is set to 1 if the ith descriptor
in Ŵ belongs to the set Ŵi; otherwise, it is set to zero. Obviously,
the Equation (1) can be rewritten as:

Sdrug
(

ri, rj
)

=

〈

xi, xj
〉

〈xi, e〉 +
〈

xj, e
〉

−
〈

xi, xj
〉 (2)

where 〈·, ·〉 is the inner product of two vectors and e is a vector
with all elements equal to 1.

Disease-Disease Similarity
As described in Wang et al. (2010) Gong et al. (2019), Zhang
et al. (2019b), the hierarchical MeSH descriptors of diseases can
be compiled as Directed Acyclic Graphs (DAGs), where vertexes
represent the diseases and edges represent the relationships
between different diseases. For a disease d, the DAG is denoted
as DAGd = (Vd,Ed), where Vd is the set of all ancestors of d
(including itself) and Ed is the set of links from ancestor disease
to their children. The semantic contribution of disease t ∈ Vd to
disease d is defined as:

SCd (t) =

{

1 if t = d

max
{

1 × SCd

(

t′
)∣

∣ t′ ∈ C (t)
}

if t 6= d
(3)

where C (t) is the set of children nodes of t, is the semantic
contribution factor. Then the semantic value of disease d is
calculated by:

SVd =
∑

t ∈ VdSCd (t) (4)

Finally, the semantic similarity between two diseases di and dj is
calculated by:

Sdisease
(

di, dj
)

=

∑

t∈Vdi
∩Vdj

(

SCdi (t) + SCdj (t)
)

SVdi + SVdj

(5)

Collective Matrix Factorization-Based
Multi-Task Learning Method
Multi-Task Learning
Multi-task learning is an inductive transfer learning approach
that captures the connections amongst multiple related learning
tasks as an inductive bias by a specific shared mechanism
(Ando and Zhang, 2005), and exploits the task relatedness as
prior knowledge to improve generalization capabilities (Caruana,
1997). During the learning process of multi-task learning,
these related tasks are learned in parallel and complement
each other, which is saying that what is learned for each
task can help other tasks be learned better. In this work, we
formulate predicting drug-disease therapeutic associations and
non-therapeutic associations as two related tasks and put them
in a multi-task setting for better predictive performance.

Overview
The workflow of the collective matrix factorization-based
multi-task learning method (CMFMTL) is demonstrated in
Figure 1. The CMFMTL involves several critical steps to
construct a prediction model for predicting two types of drug-
disease associations. First, a drug-disease association network
is constructed based on known associations and their types:
therapeutic and non-therapeutic. Second, the drug-disease
association network is divided into two subnetworks: one
subnetwork involves links representing therapeutic associations
and the other contains links representing non-therapeutic
associations. Third, two binary matrices regarding the two
subnetworks are simultaneously factorized into the product
of three low-dimensional matrices which are served as latent
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FIGURE 1 | Workflow of collective matrix factorization-based multi-task learning method (CMFMTL): Ap is the corresponding binary matrix for the therapeutic

subnetwork; An is the corresponding binary matrix for non-therapeutic subnetwork; U ∈ R
m×k and V ∈ R

n×k are, respectively, the low-dimensional representations for

drugs and diseases; Rp and Rn are coefficient matrices.

components for drugs and diseases, and coefficient matrices
measuring the level of interaction between latent components.
The latent representations of drugs and diseases are shared
in the two factorization tasks for capturing the relatedness of
these two tasks, and the different coefficient matrices maintain
the specificity of two tasks. Finally, the graph Laplacian
regularizations (Cai et al., 2011) based on the biological features
of drugs and diseases are introduced to further enhance
interpretability and generalization.

Objective Function of CMFMTL
Given a set of drugsR = {r1, r2, . . . , rm} and a set of diseasesD =
{

d1, d2, . . . , dn
}

, we can construct a relation network G, which
uses R and D as two disjoint sets of nodes. There are two types
of links between nodes in R and nodes in D. The link between
drug ri and disease dj is labeled as therapeutic link if the drug ri
has a therapeutic effect on the disease dj; the edge is labeled as
a non-therapeutic link if the drug ri has a non-therapeutic effect
on the disease dj. Then the drug-disease association network G

can be divided into a therapeutic subnetwork Gp and a non-
therapeutic subnetwork Gn. A

p ∈ {0, 1}m×n is the corresponding
binary matrix for Gp, where A

p
ij = 1 if the drug ri has a

therapeutic link to the disease dj, otherwise A
p
ij = 0. Similarly,

An ∈ {0, 1}m×n is the corresponding binary matrix for Gn, where
An
ij = 1 if the drug ri has a non-therapeutic link to the disease

dj, otherwise An
ij = 0. We employ the matrix tri-factorization

technique to model Ap and An, respectively, and map the drugs

(diseases) into common latent representations shared in two
tasks. Specifically, we approximate the association matrices Ap

and An by minimizing the reconstruction errors:

min
U,V ,RP ,Rn

1

2

(

∥

∥

∥
Ap − URpVT

∥

∥

∥

2

F
+

∥

∥

∥
An − URnVT

∥

∥

∥

2

F

)

(6)

where ‖·‖2F is the Frobenius norm; U ∈ R
m×k and V ∈

R
n×k are the low-dimensional representations for drugs and

diseases, respectively; Rp and Rn are coefficient matrices which
model how the latent representations interact in the respective
association type; k < min (m, n) is the dimensionality of the
low-dimensional space.

Since Equation (6) maps drugs and diseases into a low-
dimensional space, a natural idea occurs that the low-
dimensional representations should preserve the underlying
interconnection information of drugs and diseases. Studies
on manifold learning (Belkin et al., 2006; Ma and Fu, 2012;
Zhang et al., 2018a), spectral graph theory (Chung, 1997;
Rana et al., 2015) and their applications (Zhang et al., 2016a,
2017a,b,c, 2018b; Ruan et al., 2017) have shown that the learning
performance can be signally enhanced, if the local topological
invariant properties are preserved. Cai et al. (2011) proposed
Laplacian regularizations to achieve this goal. Here, we introduce
the regularization terms based on biological features about drugs
and diseases to incorporate similarity information in our model.
We denote the drug-drug similarity matrix as Wr ∈ R

m×m

where the
(

i, j
)

th entry wr
ij = Sdrug

(

ri, rj
)

and the disease-disease
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semantic similarity as Wd ∈ R
n×n where the

(

i, j
)

th entry wd
ij =

Sdisease
(

di, dj
)

, which are previously calculated in Equations (2)
and (5). Then, the graph Laplacian matrices are constructed as
LU = Dr − Wr and LV = Dd − Wd, where Dr and Dd

are, respectively, diagonal matrices whose diagonal elements are
corresponding row sums of Wr and Wd. The graph Laplacian
regularizations are formulated as:

R1 = tr
(

UTLUU
)

=
1

2

m
∑

i,j=1

∥

∥U (i, :) − U
(

j, :
)∥

∥

2

2
wr
ij

R2 = tr
(

VTLVV
)

=
1

2

n
∑

i,j=1

∥

∥V (i, :) − V
(

j, :
)∥

∥

2

2
wd
ij (7)

where tr (·) denotes the trace of a square matrix; U (i, :) and
V (i, :) are the ith row vector of U and V , respectively; more
details for the second equality can be referred to in Cai et al.
(2011). Obviously, minimizing R1 (or R2) will lead to a result
that the drug ri (the disease di) is closer to the drug rj (the
disease dj) in the low-dimensional space if the similarity between

them wr
ij (wd

ij) is higher. Additionally, we introduce the L2
regularizations to reinforce the smoothness of U, V , Rp, and Rn.
Therefore, we obtain the optimization objective of the CMFMTL
by combining the L2 regularizations, Equations (6) and (7):

min
U,V ,RP ,Rn

1

2

(

∥

∥

∥Ap − URpVT
∥

∥

∥

2

F
+

∥

∥

∥An − URnVT
∥

∥

∥

2

F

)

+
α

2
tr

(

UTLUU
)

+
β

2
tr

(

VTLVV
)

+
λ

2

(

‖U‖2F + ‖V‖2F +
∥

∥Rp
∥

∥

2

F
+

∥

∥Rn
∥

∥

2

F

)

(8)

where α, β and λ are the regularization parameters.

Optimization
To efficiently solve problem (8), we equivalently convert it into
an equation constrained optimization problem:

min
U,V ,RP ,Rn

1

2

(

∥

∥

∥
Ap − URpVT

∥

∥

∥

2

F
+

∥

∥

∥
An − URnVT

∥

∥

∥

2

F

)

+
α

2
tr

(

WTLUW
)

+
β

2
tr

(

JTLV J
)

+
λ

2

(

‖U‖2F + ‖V‖2F +
∥

∥Rp
∥

∥

2

F
+

∥

∥Rn
∥

∥

2

F

)

s.t. J = V , W = U (9)

Then, the augmented Lagrangian function L of Equation (9) is
introduced as follows:

L =
1

2

(

∥

∥

∥Ap − URpVT
∥

∥

∥

2

F
+

∥

∥

∥An − URnVT
∥

∥

∥

2

F

)

+
α

2
tr

(

WTLUW
)

+
β

2
tr

(

JTLV J
)

+
λ

2

(

‖U‖2F + ‖V‖2F

+
∥

∥Rp
∥

∥

2

F
+

∥

∥Rn
∥

∥

2

F

)

+ tr
(

ZT (W − U)

)

+
ρ1

2
‖W − U‖2F + tr

(

YT (J − V)

)

+
ρ2

2
‖J − V‖2F (10)

where J and W are the auxiliary variables; ρ1 > 0, ρ2 > 0
are called as the penalty parameters; Z and Y are the Lagrange
multipliers. We resort to the alternating direction method of
multipliers (ADMM) framework (Boyd et al., 2011) to devise an
alternately updating rule for optimizing Equation (10).

Next, differentiating L with respect to J, W, U, and V ,
respectively, and setting the partial derivatives to zero, we have
the following updating rule:

J =
(

βLV + ρ2I
)−1

(ρ2V − Y)

W =
(

αLU + ρ1I
)−1

(ρ1U − Z)

U =
(

ApVRp
T
+ AnVRnT + Z + ρ1W

) (

RpVTVRp
T

+ RnVTVRnT + λI + ρ1I
)−1

V =
(

ApTURp + AnTURn + Y + ρ2J
) (

(

URp
)T

URp

+
(

URn
)T

URn + λI + ρ2I
)−1

(11)

where I represents the identity matrix with an adaptive
dimensionality in different equations. When fixing other
variables, the objective function for Rp is simplified as:

min
RP

1

2

∥

∥

∥
Ap − URpVT

∥

∥

∥

2

F
+

λ

2

∥

∥Rp
∥

∥

2

F
(12)

Equation (12) can be efficaciously solved by the algorithm
proposed in Yu et al. (2014) which leverages the conjugate
gradient method (CG) to improve the efficiency of the solver.
Here, we omit the details about the algorithm, and denote
the solution for the Equation (12) solved by the algorithm as
CG

(

Rp
)

. The objective function with regard to Rn shares the
same optimization structure with the Equation (12), and thus we
denote the solution as CG (Rn ).

Finally, the Lagrange multipliers and the penalty parameter
are updated as follows:

Y = Y + ρ2 (J − V)

Z = Z + ρ1 (W − U)

ρ1 = µρ1

ρ2 = µρ2 (13)

We alternatively update all variables until convergence and the
whole process are summarized in Algorithm 1. According to Yu
et al. (2014), the main operation in each iteration of the conjugate
gradient procedure is a multiplication of three matrices, which
can be done in O

(

min(m, n)k2 +mnk+ k3
)

time. We set the
maximal iterative number in conjugate gradient procedure as
t. In each iteration of ADMM, the main operations contain
several matrix inverse calculations [in Equation (11)] that cost
O

(

n3 +m3 + k3
)

, several matrix multiplications [in Equation
(11) and the initialization for conjugate gradient procedure] that
cost O

(

n2k+m2k+mk2 + nk2 + k3 +mnk
)

and the conjugate
gradient procedure that cost O

((

min(m, n)k2 +mnk+ k3
)

t
)

.
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Algorithm 1: The updated process of CMFMTL.

Input: known drug-disease therapeutic association matrix,
Ap ∈ {0, 1}m× n;
known drug-disease non-therapeutic association matrix,
An ∈ {0, 1}m× n;
drug similarity matrix, wr ∈ R

m× m;
disease similarity matrix, wd ∈ R

n× n;
dimensionality of the embedded space, k < min (m, n);
regularization parameters, α > 0, β > 0 and λ > 0

Output: the prediction matrices Ap∗, An∗

Initialize V ∈ R
n×k and U ∈ R

m×k in the interval [0, 1]
randomly; Y = 0 and Z = 0;

ρ1 = ρ2 = 1
Repeat

Update Rp and Rn using
Rp = CG

(

Rp
)

, Rn = CG (Rn )

Update J,W, U and V via the equation (11)
Update Y , Z, ρ1 and ρ2 via the equation (13)

End until convergence

Output Ap∗, An∗ using
Ap∗ = URpVT ,An∗ = URnVT

RESULTS AND DISCUSSION

Evaluation Metrics
In our experiment, 5-fold cross validation (5-CV) experiments
are conducted to systematically evaluate prediction models.
Considering assessing models in two tasks, where predicting
drug-disease therapeutic associations is called task 1 and the
other is called task 2, we respectively split known therapeutic
associations and non-therapeutic associations into five equal-
sized parts at random. In each task, one of the five subsets is
considered as the testing set in turn, and the remaining four
subsets are combined as the training set. The metrices can
be calculated in each fold, and the average of five evaluations
is adopted.

Several evaluation metrics, such as sensitivity (SE, also known
as recall), specificity (SP), accuracy (ACC), precision (PRE), and
F-measure (F), are calculated. Since they depend on a threshold to
classify predictions as positive or negative, we adopt the threshold
which produces the max F-measure. Moreover, the area under
the receiver-operating characteristic curve (AUC) and the area
under the precision-recall curve (AUPR) are adopted as the
primary metrics.

Parameter Setting
The collective matrix factorization-based multi-task learning
method (CMFMTL) has four key parameters: the dimensionality
of the common latent space k, and the regularization coefficients
α, β , and λ. These parameters may have great impact on the
performances of the CMFMTL, so analysis of parameters is
necessary. For simplicity, we set α = β , λ ∈ {2, 4, 6, 8, 10} and
k ∈ {5, 10, 15, 20, 25, 30, 35, 40}. Note that we have several
kinds of drug features as mentioned in section Dataset. We use
drug substructures to calculate drug-drug similarity for better

performance. For the calculation of disease-disease similarity, we
set semantic contribution factor = 0.5 (Zhang et al., 2019b).
For the growth factor µ of the penalty parameters ρ1 and ρ2 in
Equation (13), we set µ = 1.1. By grid-search, we obtain the best
results with an AUPR of 0.2122 in task 1 when α = β = 8,
λ = 4 and k = 30; and with an AUPR of 0.1838 in task 2
when α = β = 10, λ = 6 and k = 35. Figures 2A,C show
the influence of regularization coefficients on the performance of
the CMFMTL in task 1 and task 2, respectively. Figures 2B,D
correspond to the impact of dimensionality in the two tasks.
From some observations, the L2 regularization coefficient λ

may control the trade-off between the two tasks, e.g., greater λ

produces better performance in task 2 than task 1. When the
dimensionality k is too low, models perform poorly. The cause
may be that vital data information fails to be fully embedded in
the latent representations.

Comparison With State-of-the-Art
Association Prediction Methods
Aswe discussed above, CMFMTL is amulti-task learningmethod
that simultaneously predicts therapeutic and non-therapeutic
associations between drugs and diseases. Existing methods only
predict a certain type of drug-disease associations, such as drug
indications and side effects. For this reason, we conduct each
of several association prediction methods, respectively, on two
tasks, and then compare the performance of them with our
proposed CMFMTL model.

Here, we consider three state-of-the-art association prediction
methods: TL-HGBI, LRSSL, and DRRS, which are the classic or
latest works of predicting drug-disease associations. TL-HGBI
(Wang et al., 2014) bridged drugs to targets and linked them
to diseases to depict a three-layer heterogeneous network. Then,
a similarity-based information diffusion method was used to
estimate the probabilities of unknown drug-disease associations.
LRSSL (Liang et al., 2017) modeled the prediction of drug
indications as a joint optimization problem by combining
Laplacian regularization with a sparse learning framework, and
then an iteratively updating algorithm was implemented to
obtain a locally optimal solution. DRRS (Luo et al., 2018) stated
drug repositioning as a recommendation problem and utilized
a matrix completion algorithm on a block matrix which was
concatenated by a drug-disease association matrix, a drug-drug
similarity matrix, and a disease-disease similarity matrix. In
addition, we use a reduced version of our model (CMFMTL-
R) as a baseline method with only one matrix tri-factorization
term in Equation (8). CMFMTL-R is a single-task version of
CMFMTL, which acquires the result in each task by separately
factorizing each corresponding data matrix, e.g., factorizing
Ap without decomposing An in task 1. We also retain the
graph regularizations and L2 regularizations, and use the same
algorithm and parameter setting in CMFMTL-R as in CMFMTL
for fair comparison.

All methods are evaluated by 5-CV, and results are shown
in Tables 1, 2. Clearly, CMFMTL produces better results than
TL-HGBI, LRSSL, and DRRS in the two tasks. It is observed
that TL-HGBI and LRSSL perform poorly on our dataset. The
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FIGURE 2 | Influence of parameters on the performance of CMFMTL involving two tasks: (A) shows the influence of α,β, λ on the AUPR score in task 1. (B) indicates

the effect of k on the AUPR score in task 1. (C) illustrates the impact of α,β, λ on the AUPR score in task 2. (D) demonstrates the perturbation of k on the AUPR

score in task 2.

Table 1 | Performances of Prediction Models in Task 1.

Methods AUPR AUC SE SP PRE ACC F

CMFMTL 0.2122 0.8898 0.2888 0.9926 0.2544 0.9866 0.2690

CMFMTL-R 0.1217 0.8543 0.2135 0.9905 0.1644 0.9839 0.1849

TL-HGBI 0.0444 0.7444 0.1265 0.9827 0.0624 0.9753 0.0808

LRSSL 0.0420 0.7341 0.1489 0.9745 0.0490 0.9674 0.0731

DRRS 0.1735 0.8893 0.2756 0.9917 0.2292 0.9856 0.2468

most possible reason is that these models are unstable and the
performances of them highly rely on their datasets. DRRS is a
matrix completion method, which is thought to be able to obtain

Table 2 | Performances of Prediction Models in Task 2.

Methods AUPR AUC SE SP PRE ACC F

CMFMTL 0.1838 0.8661 0.3091 0.9798 0.2091 0.9686 0.2473

CMFMTL-R 0.1465 0.8449 0.2623 0.9798 0.1812 0.9679 0.2139

TL-HGBI 0.0635 0.7469 0.1839 0.9653 0.0840 0.9523 0.1140

LRSSL 0.0606 0.7393 0.1812 0.9644 0.0801 0.9514 0.1106

DRRS 0.1150 0.8570 0.3105 0.9690 0.1454 0.9580 0.1979

better results on sparse data. Thereby, DRRS performs better on
fewer therapeutic associations than on denser non-therapeutic
associations. In contrast, CMFMTL-R performs more steadily
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FIGURE 3 | Top-N ranked recall and precision of all methods in two tasks: (A) shows the top-N ranked recall in task 1. (B) displays the top-N ranked recall in task 2.

(C) demonstrates the top-N ranked precision in task 1. (D) illustrates the top-N ranked precision in task 2.

in two tasks. Compared with other methods, CMFMTL
successfully makes use of all useful association information
by collaboratively learning from two tasks. Such advantages
make CMFMTL generally outperform other single-task
learning methods.

In practical application, one may be concerned about how
many true associations can be recovered by the predictive
models from highly ranked predictions. We evaluate the
capabilities of all models for top-N predictions. Recall that
we randomly select 20% of known therapeutic associations
and 20% known non-therapeutic associations, and remove

them in 1-fold of 5-CV. We can then investigate the
recall scores and precision scores of all models in top
predictions ranging from top 10 to top 1,000 (in a step size
of 10), and the results are shown in Figure 3. Overall, in
both tasks, the proposed CMFMTL method performs best
among all methods in terms of both precision and recall
at each value of N. Especially, there are more than 50%
associations precisely predicted by the CMFMTL within
top-100 predictions in both tasks. We ascribe the poor
performance of the TL-HGBI to the weak predictive power
of the network-based method which heavily relies on the
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Table 3 | Top 10 Drug-Disease Associations Predicted by CMFMTL.

Drug name Disease name Type Evidence

Chloroquine Bradycardia −1 Don Michael and

Aiwazzadeh, 1970

Chlorpromazine Coma −1 N.A.

Risperidone Anxiety disorders 1 Ravindran et al., 2007

Clozapine Headache −1 https://en.wikipedia.org/

wiki/Clozapine

Methotrexate Neoplasms 1 https://en.wikipedia.org/

wiki/Methotrexate

Valproic Acid Fatigue −1 N.A.

Amitriptyline Confusion −1 https://en.wikipedia.org/

wiki/Amitriptyline

Ibuprofen Drug hypersensitivity −1 Nanau and Neuman, 2010

Tamoxifen Diarrhea −1 N.A.

Vincristine Neoplasms 1 https://en.wikipedia.org/

wiki/Vincristine

N.A. means that the predicted association cannot be confirmed. Type 1 denotes the

therapeutic associations and type −1 refers to non-therapeutic associations.

network structure. All the results indicate that CMFMTL
absorbs complementary information from two tasks for
better performance.

Case Study
In this section, we use case studies to demonstrate the
practical usefulness of CMFMTL in predicting therapeutic and
non-therapeutic associations. CMFMTL makes predictions by
collective learning, and also shares predictive signals across
two tasks. Hence, the prediction scores that the CMFMTL
simultaneously generates for two tasks are able to measure
the probabilities that drugs associate diseases in a certain
association type. We use all drug-disease associations in
our dataset to train the CMFMTL model and then rank
the prediction scores of all unknown entries which remain
unrecorded in the dataset. Then, we focus on the top predicted
(drug, disease, association type) triples. We list top 10 ranked
predictions in Table 3 and then check up on these associations
according to the literature, publications and credible websites.
As shown in Table 3, we find evidence to confirm seven
associations as well as the corresponding association type. For
example, Risperidone, a safe and effective atypical antipsychotic
medication, has been frequently used off-label by clinicians
to treat Anxiety Disorders (Ravindran et al., 2007). Drug
Hypersensitivity is an allergy to a drug and is a form of
adverse drug reaction, and the study (Nanau and Neuman,
2010) presented an Ibuprofen-induced clinical manifestation of
Hypersensitivity syndrome.

CONCLUSION

In this work, to simultaneously predict two types of drug-disease
association, we present a novel model named collective matrix

factorization-based multi-task learning (CMFMTL). Different
from existing methods that focus on the existence of drug-
disease associations, CMFMTL aims to predict the drug-disease
associations and their corresponding association type. Since
drug-disease associations are annotated into two categories,
predicting each type of association can be served as one
individual task. The underlying relatedness across the tasks
is a vital piece of prior knowledge that can greatly improve
learning abilities. CMFMTL captures the relations between two
tasks and successfully utilizes all useful information to achieve
high-accuracy and robust performances. The experimental
results show that CMFMTL outperforms other state-of-the-
art association prediction methods. Case studies demonstrate
CMFMTL can find out novel associations and accurately infer the
association type.

Nevertheless, CMFMTL still has limitations. CMFMTL
predicts the probabilities of therapeutic associations and non-
therapeutic associations for all non-interaction drug-disease
pairs. However, we notice that some drug-disease associations
are included in the top prediction of therapeutic associations
as well as the top prediction of non-therapeutic associations.
It means that these associations are predicted by CMFMTL to
be both therapeutic and non-therapeutic, which is conflicting.
The possible reason is that these drugs and diseases are
very popular and have a great number of associations. Then,
the model learns the data bias. In future work, we will
optimize the proposed model to avoid this conflict. Note
that similarity integration methods are usually able to achieve
high-accuracy performance in similar bioinformatics issues
(Zhang et al., 2018d, 2019a,c). We should also consider
redesigning our model to integrate several resources of drug
feature information.
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