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Filamentous fungi are considered as unique cell factories for protein production due
to the high efficiency of protein secretion and superior capability of post-translational
modifications. In this review, we firstly introduce the secretory pathway in filamentous
fungi. We next summarize the current state-of-the-art works regarding how various
genetic engineering strategies are applied for enhancing protein expression and
secretion in filamentous fungi. Finally, in a future perspective, we discuss the great
potential of genome engineering for further improving protein expression and secretion
in filamentous fungi.
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INTRODUCTION

Protein production has a broad application in life sciences, biotechnology, medicine and material
sciences. Filamentous fungi are powerful and efficient cell factories for protein production at the
industrial scale, and over half of the commercially available proteins were produced by filamentous
fungi1. Many species of filamentous fungi are generally regarded as safe (GRAS), and exhibit
superior protein secretory capability. For example, 25–30 g/L of glucoamylase was obtained from
fermentation medium of Aspergillus niger, while Trichoderma reesei was able to secret 100 g/L of
cellulose (Ward, 2012). Compared to prokaryotes, filamentous fungi own the mature systems for
post-translational processing (e.g., glycosylation, protease cleavage, and disulfide bond formation)
(Karnaukhova et al., 2007), which are indispensable for protein function and activity. Although
yeasts are able to perform post-translational modification, they tend to produce proteins in
the form of high mannose-type glycosylation. In contrast, filamentous fungi have less extensive
hyper-mannosylation of glycoproteins, which could be directly converted to mammalian type
of glycoproteins with pharmaceutical potential (Punt et al., 2002; Deshpande et al., 2008). In
addition, due to the metabolic diversity, filamentous fungi can efficiently utilize many types of
monosaccharides including xylose, arabinose, and galactose, while yeasts can only metabolize
glucose and mannose (Cavka and Jönsson, 2014).

To further improve the production of various proteins by filamentous fungi, traditional
strategies including optimization of fermentation process and obtaining beneficial mutants
via random mutagenesis, were widely adopted in the past. Here, rather than providing a
comprehensive view of achieving efficient protein production, we focus on summarizing the
1 https://amfep.org/about-enzymes/
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FIGURE 1 | Protein secretion pathway in filamentous fungi.

strategies based on genetic engineering of this particular cell
factory to enhance protein expression and secretion. We also
provide new ideas in terms of cell factory engineering.

PROTEIN SECRETION PATHWAY IN
FILAMENTOUS FUNGI

Protein secretion pathway in filamentous fungi involves three
major steps including: polypeptide transfer from ribosome to
endoplasmic reticulum (ER), protein folding and modification
in ER, transportation of the folded protein vesicles to the
Golgi apparatus and extracellular environment (Figure 1). In
the first step, the co- or post-translational transport pathway
is responsible for the polypeptide transfer from the ribosome
to ER. In the co-translational transport pathway, the signal
peptide recognition particle (SRP) first binds to the signal peptide
sequence to block translation (Halic et al., 2006). Then, SRP
directs the ribosome-mRNA-nascent peptide complex to target
the ER membrane and binds to the SRP receptor. Subsequently,
SRP is released from the complex, translation resumes, and
the nascent polypeptide enters ER lumen through the Sec61p
transport complex (Conesa et al., 2001). In the post-translational
transport pathway, the nascent polypeptide is translated in the

cytosol, and kept unfolded by interacting with Hsp70 chaperone
and co-chaperones (Conesa et al., 2001). This complex is able
to target ER through interaction with the membrane receptor
Sec62p-Sec72p-Sec73p subcomplex (Conesa et al., 2001). The ER
luminal chaperone binding immunoglobulin protein (BiP) and
the membrane protein Sec63p assist the aforementioned complex
to enter ER (Haßdenteufel et al., 2018).

The second step is protein folding and modification in
ER, which requires the assistance of a series of molecular
chaperones and folding enzymes, including calnexin (ClxA),
BiP, and protein disulfide isomerase (PDI) (Saloheimo and
Pakula, 2012). For nascent peptides with correct folding, they are
subjected to modifications such as glycosylation. As one of the
most common and important post-translational modifications,
glycosylation can significantly affect protein stability, localization,
and secretion (Mitra et al., 2006). After proper folding and
glycosylation, secreted proteins are transported extracellularly.
On the other hand, the unfolded protein response (UPR) and
ER-associated protein degradation (ERAD) are responsible for
dealing with nascent peptides with incorrect folding (Bernasconi
and Molinari, 2011; Wang et al., 2014). The UPR detects the
presence of unfolded proteins in ER and induces the biosynthesis
of chaperones and folding enzymes, while the ERAD degrades the
misfolded proteins.
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The third step is to transport the folded protein vesicles
to the Golgi apparatus by fusion with target membrane,
and secrete it to the extracellular environment (Spang,
2008). In filamentous fungi, Golgi-derived secretory vesicles
are transmitted to the apical plasma membrane through
apical vesicle clusters in Spitzenkörper (Virag and Harris,
2006). The formation, transportation and fusion of vesicles
are mediated by a large number of proteins, including
GTP-binding proteins (e.g., Sar, ARF) for vesicle budding,
and Rab GTPases for fusion with Golgi (Hutagalung and
Novick, 2011), etc. Specific fusion of vesicles with the target
membrane is the critical process, which is mediated by
soluble N-ethylmaleimide-sensitive factor-associated protein
receptor (SNARE). Based on the localization, SNARE is divided
into two categories: the vesicle SNARE (v-SNARE) and the
target membrane SNARE (t-SNARE) (Söllner et al., 1993).
In filamentous fungi, v-SNARE protein SNC1, and t-SNARE
proteins SSO1 and SSO2, are involved in bubble fusion
(Valkonen et al., 2007).

DIVERSE STRATEGIES FOR ENHANCED
PROTEIN EXPRESSION AND
SECRETION VIA GENETIC
ENGINEERING

To enhance the protein expression and secretion in filamentous
fungi, enhancing the intracellular protein production by
optimization of the transcription and/or the codon of the target
protein, is an effective strategy, as summarized in a few of
reviews (Saunders et al., 1989; Jeenes et al., 1991; Nevalainen
et al., 2005; Su et al., 2012). In order to bring new insights,
we will discuss other genetic engineering strategies, including
replacing original signal peptide with a more efficient one,
fusion of heterologous protein to a naturally secreted one,
regulation of UPR and ERAD, optimization of the intracellular
transport process, construction of a protease-deficient strain,
regulation of mycelium morphology, and optimization of the
sterol regulatory element binding protein (SREBP) in this
section (Table 1).

REPLACING ORIGINAL SIGNAL PEPTIDE
WITH A MORE EFFICIENT ONE

The signal peptide sequence plays vital role in protein secretion.
Replacing with a more efficient peptide in target protein tends
to increase its secretion efficiency. Xu et al. replaced the original
signal peptide AglB of α-galactosidase with a glucoamylase
(GlaA) signal peptide in A. niger, and the activity of extracellular
α-galactosidase increased nearly ninefold (Xu et al., 2018).
Wang et al. used green fluorescent protein as a reporter gene
in P. oxalicum to test the secretion efficiency of three signal
peptides, PoxGA15A, PoxAmy13A, and PoxCbhCel7A-2. Then
they selected the optimal signal peptide PoxGA15A to drive the
secretion of endogenous raw starch-degrading enzymes, which
was 3.4 times higher than the parental strain (Wang et al., 2018).

FUSION OF HETEROLOGOUS PROTEIN
TO A NATURALLY SECRETED ONE

Fusion of heterologous protein to a naturally secreted one can
enhance protein stability, promote translocation, and prevent
protein from degradation. The in-frame fusion of human
protein granulocyte colony stimulating factor (G-CSF) with an
endogenous highly secreted glucoamylase allowed secretion of
5–10 mg/L of G-CSF by A. niger (Kraševec et al., 2014). When
bovine chymosin (CHY) was fused with alpha-amylase (AmyB),
the engineered A. oryzae was able to produce two times higher
amount of CHY than that with none fused CHY, while multiple
genes involved in ER folding and protein secretion pathway
increased significantly in the fused CHY producing strain (Ohno
et al., 2011). It should be noted that the fusion carrier protein
could greatly affect the secretion. In order to secrete Escherichia
coli β-glucuronidase (GUS) protein in Penicillium funiculosum,
researchers attempted to use xylanase as a carrier. The modular
structure, a catalytic domain separated from the cellulose-binding
domain by a linker with serine and threonine rich sequence,
enables some xylanases as a group of unique protein carrier
(Alcocer et al., 2003). It was reported that xylanase A (XYNA)
is an effective carrier protein, while XYNB and XYNC are
ineffective (Alcocer et al., 2003).

REGULATION OF UPR AND ERAD TO
PROMOTE PROTEIN SECRETION

Correct protein folding is one of the many prerequisites to
protein secretion. Abnormal folding proteins could form toxic
aggregates exerting pressure on the ER, and trigger the feedback
regulation called repression under secretion stress (RESS) to
affect protein secretion (Pakula et al., 2003). UPR and ERAD
are considered as two important ways to regulate protein
folding, and enhanced protein secretion could be achieved via
regulation of UPR and ERAD. For example, overexpression of the
transcription factor hac1 in Aspergillus awamori led to 7- and 2.8-
fold increases in laccase and bovine prechymotrypsin production,
respectively (Valkonen et al., 2003). Overexpression of bip1 and
hac1 in T. reesei exhibited 1.5- and 1.8-fold improvement on
secretion of an A. niger glucose oxidase (Wu et al., 2017).

To avoid degradation of some heterologous proteins or semi-
folded proteins, deleting key genes involved in ERAD is a
solution. Deletion of the ERAD factor doaA and overexpression
of the oligosaccharyltransferase sttC responsible for glycosylation
of secretory proteins (Yan and Lennarz, 2002) in A. niger caused
an increase in β-glucuronidase yield (Jacobs et al., 2009). In
addition, autophagy is considered as another way to degrade the
misfolded proteins (Kario et al., 2011). Disruption of autophagy-
related gene aoatg15 in A. oryzae caused a threefold increase in
secretion of bovine chymosin (Yoon et al., 2013).

Of particular note, manipulation of certain gene may
cause quite different effects in different strains. For example,
overexpression of bip1 promoted protein secretion in T. reesei
(Wu et al., 2017) and A. awamori (Lombraña et al., 2004),
while reduced protein secretion was observed in A. niger by
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TABLE 1 | Typical examples for genetic engineering of filamentous fungi for enhanced protein secretion.

Protein of interest
and its origin

Host Strategy Fold-change of protein secretion References

α-Galactosidase
from A. niger

A. niger Replacing the original signal peptide
with a glucoamylase (GlaA) signal
peptide in A. niger

Approximately 9-fold increase Xu et al., 2018

Erythropoietin from
human

T. reesei Adopting the cellobiohydrolase I (CBH)
signal peptide and optimizing cbh1
promoter

Not applicable Zhong et al., 2011

Chymosin from
bovine

A. oryzae Fusing target protein with a naturally
secreted protein α-amylase

2-fold increase Ohno et al., 2011

β-Glucuronidase
from A. niger

A. niger Regulating the UPR and ERAD by
overexpression of sttC and deletion of
dorA

Not quantified Jacobs et al., 2009

Glucose oxidase
from A. niger

T. reesei Regulating the UPR and ERAD by
overexpression of bip1 or hac1

1.5–1.8-fold increase Wu et al., 2017

Glucose oxidase
from T. reesei

T. reesei Optimizing the intracellular transport
process by overexpression of snc1

2.2-fold increase Wu et al., 2017

Prochymosin from
bovine

A. niger Optimizing the intracellular transport
process by deletion of Aovip36 or
Aoemp47, and fusing the target protein
with α-amylase

Approximately 2-fold increase Hoang et al., 2015

Cellulase from
T. reesei

T. reesei Constructing a protease-deficient strain
by deletion of res-1, cre-1, gh1-1, and
alp-1

5-fold increase Liu et al., 2017

Laccase from
Trametes versicolor

A. niger Constructing a protease-deficient strain
by deletion of pepAa, pepAb, or pepAd

1.21–1.42-fold increase Wang et al., 2008

Glucoamylase from
A. niger

A. niger Regulating mycelium morphology by
deletion of racA

4-fold increase Fiedler et al., 2018

Cellulase from
N. crassa

N. crassa Regulating SREBP by deletion of dsc-2,
tul-1, sah-2, dsc-4, scp-1, or rbd-2

Not quantified Reilly et al., 2015; Qin et al., 2017

adopting the same strategy (Conesa et al., 2002). These effects
could be attributed to the multifunction of BiP. BiP is able to
promote protein translocation and folding, as well as to promote
ER-associated protein degradation. Similarly, overexpression of
hac1 could promote protein secretion, which may also affect cell
growth in certain strains (Valkonen et al., 2003; Carvalho et al.,
2012). In addition, deletion of derA in A. niger can promote
protein production (Carvalho et al., 2011), while deletion of
the same gene affected the cell growth of Aspergillus fumigatus
(Richie et al., 2011). It’s not difficult to see that the effect
of protein secretion by regulating UPR and ERAD is host-
dependent. Thus, a deep understanding of the complexity and
specificity of the interactions between the components of the
secretory pathway in a particular host is required prior to
the manipulation.

OPTIMIZATION OF THE
INTRACELLULAR TRANSPORT
PROCESS

Before being secreted outside, proteins are transported between
ER and Golgi tendencies via vesicles. In this process, the ER-Golgi
cargo receptor recruits the secreted proteins into the vesicles,
thereby facilitating their transport (Dancourt and Barlowe, 2010).
Optimization of the intracellular protein transport process allows

enhanced protein secretion. In A. oryzae, the cargo receptor
AoVip36 is localized in the ER and AoEmp47 is localized in
the Golgi compartment. Deletion of AoVip36, responsible for
anterograde transport, caused a 30% reduction of the endogenous
α-amylase activity, and overexpression of this gene led to the
increased secretion of EGFP (Hoang et al., 2015). In addition,
deletion of Aovip36 or Aoemp47 increased the secretion of bovine
prochymosin by approximately twofold (Hoang et al., 2015). In
Aspergillus nidulans, gene podB is predicted to encode the subunit
of the Golgi-conserved oligomeric complex (Gremillion et al.,
2014), which is involved in Golgi retrograde vesicle transport, and
affects cell polar growth, germination, and protein glycosylation
(Wuestehube et al., 1996; Harris et al., 1999; Suvorova et al.,
2002; Gremillion et al., 2014). A G-to-T mutation at nucleotide
#751 in podB1 led to significant increase in cellulase and xylanase
activities (Boppidi et al., 2018). Wu et al. overexpressed snc1 gene,
which is involved in fusion of vesicles and plasma membrane, and
observed a 2.2-fold increase in secretion of an A. niger glucose
oxidase in T. reesei (Wu et al., 2017).

In addition to being successfully secreted outside, some
heterologous proteins may be transported to the vacuole for
degradation (Masai et al., 2003). Disruption of the vacuolar
sorting receptor encoding gene Aovps10 resulted in three
and twofold increases in the production yields of bovine
chymosin and human lysozyme in A. oryzae, respectively
(Yoon et al., 2010).
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CONSTRUCTION OF A
PROTEASE-DEFICIENT STRAIN

The efficient production of certain endogenous protein in
filamentous fungi disturbs the secretion of the protein of
interest, and construction of a protease-deficient strain can
strongly support the modification and secretion of the target
protein. Disruption of alkaline serine protease SPW in T. reesei
reduced the extracellular total protease activity by about 50%,
and improved the production and stability of the heterologous
alkaline endoglucanase EGV from Humicola insolens (Zhang
et al., 2014). To construct a cellulase hyper-producing strain,
β-glucosidase encoding gene gh1-1, alkaline protease encoding
gene alp-1, and cellulase production related genes cre-1 and res-1
were simultaneously deleted in Myceliophthora thermophile. The
secreted cellulase of the resulted strain was five times higher than
that of the original strain (Liu et al., 2017).

REGULATION OF MYCELIUM
MORPHOLOGY

Proteins are mainly secreted at vigorously growing mycelial
tips in filamentous fungi (Wessels, 1993), and the mycelium
morphology is especially important to protein secretion.
The increased branching of the mycelium tip usually
facilitates endogenous protein secretion. Lin et al. screened
90 morphological mutants of Neurospora crassa and found that
disruption of gul-1 led to a marked decrease in viscosity of the
culture medium, while overexpression of gul-1 led to a sharp
increase in viscosity. In the gul-1 disrupted strain, 25% and
56% increases were observed in the total extracellular protein
concentration and β-glucosidase activity, respectively (Lin et al.,
2018), suggesting that cell wall integrity has a significant effect
on protein secretion. In A. niger, the Rho GTPase RacA regulates
the polymerization and depolymerization of actin at the tip
of mycelium (Kwon et al., 2011). When racA was deleted, the
mycelial tip increased by about 20%, the number of secreted
vesicles increased, and the secretion of glucoamylase increased
4 times as compared to the wild type strain (Fiedler et al.,
2018). Similarly, deletion of racA resulted in a hyperbranched
phenotype and three folds increase of cellulase activity in T. reesei
(Fitz et al., 2019).

REGULATION OF SREBP

In filamentous fungi, SREBP, responsible for regulating sterol
homeostasis under challenging environments, is strongly
associated with protein secretion, including linkages to the UPR
(Qin et al., 2017) and formation of hyphae branches (Willger
et al., 2008). After analysis the phenotype of a 567 single-gene
deletion collection of N. crassa, researchers found that deletion
of dsc-2 and tul-1 (dsc-1) significantly increased the secretion of
proteins (Reilly et al., 2015). In Schizosaccharomyces pombe and
A. fumigatus, homologs of Dsc-2 and Tul-1 are part of the Golgi
E3 ligase complex (Dsc complex), which can activate SREBP

orthologs Sre1 and SreA through proteolytic cleavage (Lloyd
et al., 2013). In addition, deletion of the unit of Dsc complex
Dsc-4 and the Sre1/SreA homolog SAH-2 also showed a high
secretion phenotype of cellulases (Reilly et al., 2015). Homologs
of SAH-2 and TUL-1 from N. crassa are discovered in T. reesei,
and their deletions enhanced the capability of protein secretion
(Reilly et al., 2015). In a follow-up study, deletion of gene scp-1
and rbd-2, encoding SREBP cleavage activating protein and
rhomboid protease respectively, also led to the high producing
phenotype of cellulose (Qin et al., 2017).

CONCLUSION AND PERSPECTIVES

Owing to the powerful protein secretion pathway, filamentous
fungi are attractive cell factories for protein expression and
secretion. For all the discussed strategies, replacing original
signal peptide with a more efficient one, regulation of
UPR and ERAD, optimization of the intracellular transport
process, and construction of a protease-deficient strain have
been successfully applied to improve the production of
endogenous and heterologous proteins by filamentous fungi,
while fusion of heterologous protein to a naturally secreted one
is extremely effective for production of heterologous protein
(Table 1). As for regulation of mycelium morphology and
optimization of SREBP, although they were mainly adopted for
production of endogenous protein, we believe that they are
also applicable for production of heterologous protein. However,
most efforts in genetic engineering of filamentous fungi for
enhanced protein expression and secretion were solely based
on the protein of interest, the secretory pathway or the host.
Although these engineering strategies significantly improved
target protein production, they were mainly related to single
gene or pathway.

With the aid of multiple gene editing technologies (e.g.,
DNA recombination, RNAi, CRISPR-Cas), genome engineering
strategies introduce deletion, insertion and/or point mutations
across the genome via a trackable manner to accelerate strain
evolution (Si et al., 2015). Compared with traditional metabolic
engineering strategies, genome engineering allows rapid tracking
and discovery of novel determinants (Xiao and Zhao, 2014; Si
et al., 2017), editing of key determinant with single-nucleotide
precision (Garst et al., 2017; Bao et al., 2018), or simultaneous
manipulating multiple pathways (Barbieri et al., 2017; Liang
et al., 2017). Apart from the unicellular model organisms (e.g.,
Saccharomyces cerevisiae), many filamentous fungi, particularly
the mushroom-forming fungi, contain two different nuclei with
different genetic contents (Gehrmann et al., 2018). In addition
to the heterogeneity, many important medicinal mushrooms also
exhibit low efficiency on gene transformation and homologous
recombination (HR), which pose a great challenge to establish
gene editing tools for genome engineering (Wang et al., 2020).
To circumvent these difficulties, developing effective technologies
for single spore isolation, gene delivery and/or improving HR
efficiency are highly required in these filamentous fungi. It is
notable that the target performances of the engineered strains,
which are greatly improved by the aforementioned genome
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engineering strategies, can usually be screened out via cell
growth or color. Thus, high-throughput screening methods are
highly required to ensure the success of genome engineering.
In fact, the fluorescence-activated cell sorting (FACS) assisted
the intracellular protein production has been extensively
adopted in filamentous fungi, but such strategy is difficult
to screen out the beneficial mutants with enhanced protein
secretion capacity (Throndset et al., 2010). To solve this
problem, displaying the fluorescence protein on the cell
surface, coupled by FACS, allows screening of the cellulose
hypersecretors from T. reesei (Gao et al., 2018). As a promising
alternative, the droplet-based microfluidic high-throughput
screening platform has been established in T. reesei and
A. niger (Beneyton et al., 2016; He et al., 2019). In future,
we believe that harnessing the great potential of genome

engineering will further increase protein expression and secretion
by filamentous fungi.
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