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The immobilization of Thermomyces lanuginosus lipase on polydopamine-functionalized
Fe3O4 magnetic nanoparticles (Fe3O4@PDA-TLL) as a nanobiocatalyst was successfully
performed for the first time, and the Fe3O4@PDA-TLL was used for regioselective
acylation of natural hyperoside with vinyl decanoate. The effects of several crucial
factors, such as the reaction solvent, substrate molar ratio, temperature, and
immobilized enzyme dosage, were investigated. Under optimum conditions, the reaction
rate, 6′′-regioselectivity, and maximum substrate conversion were as high as 12.6 mM/h,
100%, and 100%, respectively. An operational stability study demonstrated that the
immobilized enzyme could maintain 90.1% of its initial maximum conversion even after
reusing it five times. In addition, further investigations on the kinetic parameters, like
Vmax, Km, Vmax/Km, and Ea, also revealed that the biocompatible Fe3O4@PDA could
act as an alternative carrier for the immobilization of different enzymes.

Keywords: magnetic nanoparticle, hyperoside, immobilization, Thermomyces lanuginosus lipase, acylation

INTRODUCTION

Hyperoside (also known as quercetin-3-O-galactoside or 3-O-β-D-galactopyranosyl quercetin),
a type of flavonoid-O-glycoside, is the major pharmacological component of many traditional
medicinal plants, such as Hyperin perforatum L., Geranium carolinianum L., Zanthoxylum
bungeanum, Crataegus pinnatifida Bunge, and so forth (Pei et al., 2017). Extensive clinical studies
have demonstrated that hyperoside exerts multiple bioactivities compared with those of quercetin,
including anti-inflammatory, antidepressant, antitumor, and antihepatitis activities (Ku et al., 2015;
Guan and Liu, 2016; Ahn and Lee, 2017; Guo et al., 2019).

Recently, natural product modification chemistry based on their privileged molecular skeletons
has attracted increasing attention in the fields of biochemistry and pharmacology for the purpose
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of improving their biological activities and physicochemical
properties (Guo, 2017; Li and Lou, 2018). As was shown
in the review by Newman and Cragg (2016), 46% of the
1562 natural product agents approved over the past 34-year
period are derived from their derivatives or analogs bearing
natural compound pharmacophores. For example, flavonoid
glycoside and their analogs usually exhibit the physicochemical
properties of unsatisfactory lipid solubility, poor stability,
and low bioavailability, owing to their exiting active natural
polyphenol-rich structures, which limits their applications in
lipophilic systems (Newman and Cragg, 2016; Yang et al., 2018).
In order to circumvent these drawbacks, preparation of their
ester derivatives has proved to be a promising strategy (Newman
and Cragg, 2016; Rupasinghe, 2016). Warnakulasuriya and
Sudan have reported that quercetin-3-O-glucoside derivatives
with long aliphatic chains could significantly reduce the
primary hepatocytes’ injury and improve inhibition of
hepatocellular carcinoma cells compared to quercetin-3-O-
glucoside itself (Sudan and Rupasinghe, 2015; Warnakulasuriya
and Rupasinghe, 2016). Besides, recent experiments also
provided evidence that ester derivatives of rutin (Xin et al.,
2018), polydatin (Wang et al., 2017), anthocyanidin (Cruz
et al., 2018), and naringin (de Araújo et al., 2017) exhibited
enhanced biological activities, pharmacological activities,
and structure stabilities compared to their corresponding
parental compounds.

Over the past few years, structural modifications by
employing enzymatic methodology have clearly become
an important topic in carbohydrate chemistry. This has
been described as the preferred method, possessing a short
synthetic route, impressive selectivity, and environmental
friendliness compared to the multistep chemical approaches
(de Araújo et al., 2017; Dunbar et al., 2017). However,
it is embarrassing that the documented commercially
available enzymes (e.g., Novozym 435, lipozyme TLIM,
and PSIM), which act as the central role in catalytic
processes, usually suffer from high cost and unsatisfactory
organic solvent tolerance (Gonçalves Filho et al., 2019).
Recently, magnetic Fe3O4 nanoparticles functioned with
polydopamine (Fe3O4@PDA) have emerged as a desirable
alternative to traditional materials for constructing immobilized
enzymes (Liang et al., 2020). However, although several
reports on Fe3O4@PDA-based immobilized enzymes,
including cellulose, lipase, and ethanol dehydrogenase, have
demonstrated the superiority of this method with a high
ratio of enzyme to substrate, satisfactory enzyme stability,
and facilitation of the separation and recovery for reuse
(Chen et al., 2017; Liang et al., 2020), very few reports
pay close attention to the enzymatic kinetic parameters,
like Vmax, Km, Vmax/Km, to unravel the behavior of the
nanobiocatalyst. As a result of this, in this study, for the first
time, the immobilized Fe3O4@PDA-Thermomyces lanuginosus
lipase (Fe3O4@PDA-TLL) was selected as the promising
nanobiocatalyst to identify its kinetic behavior in non-
aqueous enzymatic systems, in which the model reaction
was the regioselective acylation of hyperoside with vinyl
decanoate (Scheme 1).

MATERIALS AND METHODS

Materials
Thermomyces lanuginosus lipase (TLL, 3921 U/g) was obtained
from Novozymes Co., Ltd., China. Hyperoside (≥98%) was
from Sigma-Aldrich. Dopamine hydrochloride, 2-methyl
tetrahydrofuran (MeTHF), and t-amyl alcohol were provided
by Aladdin. Vinyl decanoate (≥99%) was purchased from TCI.
All other chemicals were obtained from commercial sources
and were of analytical grade. All the used organic reagents were
previously dried by 4 Å molecular sieves for 48 h.

Preparation of Fe3O4@PDA-TLL
The magnetic Fe3O4 nanoparticles were prepared according
to the conventional coprecipitation method described by Lou
et al. (Cao et al., 2017). A certain amount of magnetic
Fe3O4 nanoparticles was dispersed and ultrasonically treated
for 10 min in deionized water. Then, the same molar
quantity of dopamine hydrochloride was added into the
above suspension. The pH of the mixture was adjusted to
8.5 by the addition of 1.5 mol/L NaOH solution. After
stirring for 24 h at room temperature, the polydopamine-
coated magnetic nanoparticle (Fe3O4@PDA) was formed and
collected with an external magnet and washed three times
with deionized water. For enzyme immobilization, 2.4 mL of
TLL (260 mg/mL) solution and 0.4 g of Fe3O4@PDA were
mixed and added into 12 mL of phosphate buffer (50 mmol/L,
pH 8.5) at 25◦C. After stirring at 200 rpm for 4.0 h, the
immobilized TLL was separated and continuously washed until
no protein was detected. The TLL-loaded Fe3O4@PDA was
named Fe3O4@PDA-TLL.

Assay of Fe3O4@PDA-TLL Activity
The activity of Fe3O4@PDA-TLL was determined using
the p-nitrophenyl palmitate (p-NPP) method with slight
modifications (Soni et al., 2018). An assay reaction mixture
containing 0.1 g immobilized enzyme, 0.9 mL Tris-HCl buffer
(50 mM, pH 8.0), and 0.1 mL p-NPP solution (a quantity of
30 mg p-NPP was dissolved in 10 mL isopropanol) was incubated
at 37◦C for 10 min. After this, 5.0 mL 95% ethyl alcohol was
added to inactivate the enzyme and measure the absorption at
410 nm. One unit of activity (U) was defined as the amount of
enzyme required to produce 1.0 µmol p-nitrophenol (p-NP) in
1.0 min under the above conditions. The specific activity of the
Fe3O4@PDA-TLL was 8022 U/g.

Enzymatic Synthesis of Hyperoside Ester
Derivative
In a typical experiment, 3.0 mL solvent containing 0.03 mmol
hyperoside, a certain amount of Fe3O4@PDA-TLL and vinyl
decanoate was incubated in a 10 mL Erlenmeyer shaking flask
in a rotary shaker. Rotate speed was set at 200 rpm and the
operating temperature was set as desired. Then, 20 µL of the
reaction mixture was withdrawn at specified time intervals and
diluted 50-fold with mobile phase. The mixture was centrifuged
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SCHEME 1 | Fe3O4@PDA-TLL-catalyzed regioselective decanoylation of hyperoside.

at 10,000 rpm for 5.0 min and the upper layer was drawn
for HPLC analysis.

Operational Stability of Fe3O4@PDA-TLL
The operational stability of Fe3O4@PDA-TLL was determined
using recycling reactions. When the maximum hyperoside
conversion was achieved in each reaction, the suspension was
centrifuged and the supernatant was decanted. The reused
enzyme was washed three times with the fresh reaction solvent
and added into 3.0 mL MeTHF containing 0.03 mmol hyperoside
and 0.33 mmol vinyl decanoate at 55◦C and 200 rpm. Then,
enzyme residual activity and maximum substrate conversion
were measured. The initial activity and maximum conversion
received in the first batch were defined as 100%.

Determination of Kinetic Constants and
Apparent Activation Energy (Ea)
The concentrations of the hyperoside used to determine the
kinetic constants of enzymatic acylation in different solvents were
THF (2.0–20 mM), MeTHF (2.0–20 mM), dioxane (5.0–35 mM),
and t-butanol (2.0–20 mM). All experiments were conducted
under the optimal reaction conditions obtained by a single-factor
experiment. The kinetic constants (Km and Vmax) were calculated
from Hanes-Woolf plots. Ea was calculated according to the
linear regression analysis of the Arrhenius plot.

HPLC Analysis and Structure
Determination of the Esters
The reaction mixture was analyzed by HPLC on a
4.6 mm × 250 mm (5 µm) Zorbax XDB-C18 column
(Agilent Technologies Industries Co., Ltd., United States)
using an Agilent G1311A pump and a UV detector. The
mobile phase was a mixture of methanol and water (80/20,
v/v) with a flow rate of 1.0 mL/min. The UV absorption
wavelength for HPLC analysis and retention times for hyperoside
and 6′′-O-decanoyl hyperoside were 360 nm, 2.50 min, and
6.11 min, respectively. All reported data were averages of
experiments performed at least in duplicate. The product was
purified by silica gel chromatography with an eluent consisting
of petroleum ether/ethyl acetate/methanol (5/10/2, v/v/v).
Structural assignments were made on the basis of the changes
in the 13C NMR (100 MHz) and 1H NMR (400 MHz) spectra
caused by the acylation (Bruker DRX-400 NMR Spectrometer,
Bruker Co., Germany). Results from the NMR spectroscopy were
recorded as follows: 1H NMR (DMSO-d6) δ: 12.63 (1H, s, 5-OH),
7.64 (1H, dd, J = 8.5, 2.2 Hz, H-6′), 7.49 (1H, d, J = 2.2 Hz, H-2′),
6.81 (1H, d, J = 8.5 Hz, H-5′), 6.39 (1H, d, J = 2.0 Hz, H-8), 6.18
(1H, d, J = 2.0 Hz, H-6), 5.38 (1H, d, J = 7.8 Hz, H-1′′), 5.21
(1H, br s, -OH), 4.95 (1H, br s, -OH), 4.69 (1H, br s, -OH), 4.11
(1H, dd, J = 11.4, 8.4 Hz, H-5′′), 3.91 (1H, dd, J = 11.4, 3.8 Hz,
H-6′′a), 3.61 (1H, m, H-4′′), 3.50–3.40 (3H, m, H-3′′, 6′′b, H-2′′),
2.00–1.93 (2H, m, H-2′′′), 1.24–1.01 (14H, m, H-3′′′-9′′′), 0.86

TABLE 1 | Effect of medium on Fe3O4@PDA-TLL-catalyzed decanoylation of hyperoside.

Medium Log P Viscositya V0 (mM/h) Time (h) Cb (%) 6′′-Regioselectivityc (%)

DMSO −1.30 2.24 – 3.0 2.7 ± 0.1 100

Dioxane −1.10 1.30 3.8 ± 0.1 14.0 43.7 ± 0.5 100

DMF −1.00 0.92 – 3.0 3.5 ± 0.1 100

Acetonitrile −0.33 0.37 5.0 ± 0.2 14.0 65.6 ± 1.0 100

Acetone −0.23 0.32 5.7 ± 0.2 14.0 63.3 ± 0.9 100

THF 0.49 0.55 6.0 ± 0.3 12.0 70.0 ± 1.5 100

t-Butanol 0.60 3.30 2.8 ± 0.1 16.0 50.7 ± 0.5 100

Pyridine 0.71 0.97 – 4.0 6.7 ± 0.1 100

MeTHF 0.99 0.60 7.1 ± 0.3 12.0 78.5 ± 1.2 100

t-Amyl alcohol 1.15 3.70 5.1 ± 0.2 14.0 59.6 ± 0.7 100

Cyclohexanone 1.43 2.20 2.7 ± 0.1 14.0 47.5 ± 1.3 100

Reaction conditions: 0.03 mmol hyperoside, 0.21 mmol vinyl decanoate, 180 mg Fe3O4@PDA-TLL, 3.0 mL anhydrous solvent, 45◦C, 200 rpm. aThe viscosity of medium
at 20◦C. bMaximum conversion. cRegioselectivity was defined as the ratio of the concentration of the indicated product to that of all the products formed.
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FIGURE 1 | Regioselective decanoylation of hyperoside catalyzed by
Fe3O4@PDA-TLL. (A) Effect of the molar ratio of vinyl decanoate to hyproside
(0.03 mmol hyproside, 3.0 mL anhydrous MeTHF, 180 mg enzyme, various
amounts of vinyl decanoate at 45◦C, 200 rpm). (B) Effect of the temperature
(0.03 mmol hyperoside, 0.33 mmol vinyl decanoate, 3.0 mL anhydrous
MeTHF, 180 mg Fe3O4@PDA-TLL at different temperatures, 200 rpm).
(C) Effect of the enzyme dosage (0.03 mmol hyperoside, 0.33 mmol vinyl
decanoate, 3.0 mL anhydrous MeTHF, various amounts of the
Fe3O4@PDA-TLL at 55◦C, 200 rpm).

(3H, t, J = 7.1 Hz, H-10′′′). 13C NMR (DMSO-d6) δ: 177.9 (C-4),
172.9 (C-1′′′), 164.6 (C-7), 161.7 (C-5), 156.6 (C-2), 153.6 (C-9),
148.9 (C-4′), 145.3 (C-3′), 133.7 (C-3), 122.4 (C-6′), 121.5 (C-1′),
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FIGURE 2 | Process curve of Fe3O4@PDA-TLL-catalyzed decanoylation of
hyperoside. Reaction conditions: 0.03 mmol hyperoside, 0.33 mmol vinyl
decanoate, 3.0 mL anhydrous MeTHF, 180 mg Fe3O4@PDA-TLL, 55◦C,
200 rpm.
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FIGURE 3 | Operational stability of Fe3O4@PDA-TLL in MeTHF. Reaction
conditions: 0.03 mmol hyperoside, 0.33 mmol vinyl decanoate, 3.0 mL
anhydrous MeTHF, 180 mg Fe3O4@PDA-TLL, 55◦C, 200 rpm.

116.2 (C-2′), 115.6 (C-5′), 104.2 (C-10), 101.8 (C-1′′), 99.1 (C-6),
93.9 (C-8), 75.0 (C-5′′), 73.4 (C-3′′), 71.4 (C-2′′), 68.8 (C-4′′),
63.6 (C-6′′), 33.7 (C-2′′′), 31.8 (C-8′′′), 29.3–28.8 (C-4′′′-7′′′), 24.7
(C-3′′′), 22.6 (C-9′′′), 14.4 (C-10′′′).

RESULTS AND DISCUSSION

Effect of the Reaction Medium
In non-aqueous biotransformation reactions, the reaction
medium plays a determinant role and modulates the enzyme
properties, like enzyme activity, selectivity, and stability
(Elgharbawy et al., 2018). To date, no empirical rules could
be used for reference to guide the use of media during
enzymatic synthetic processes; trial and error procedures
were still used as an essential method for solvent choice.
In this content, the acylation of hyperoside was performed
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FIGURE 4 | Effect of the hyperoside concentration on enzymatic acylation in various media (inset of Hanes–Woolf plot). Reaction conditions: different concentrations
of hyperoside, vinyl decanoate (11 equiv.), 3.0 mL anhydrous solvent [(A) THF, (B) MeTHF, (C) dioxane, (D) t-butanol], 180 mg Fe3O4@PDA-TLL, 55◦C, 200 rpm.

in 11 organic solvents with different natures, as listed in
Table 1.

It can be clearly seen that the solvent polarity affected
the reaction rate and substrate conversion more dramatically
than the regioselectivity. However, the catalytic performance
of Fe3O4@PDA-TLL could not be correlated well with log
P-values ranging from −1.30 to 1.43 of the organic solvent,
which is in agreement with our previous reports (Wang Z. Y.
et al., 2015; Wang et al., 2016). Fortunately, the immobilized
Fe3O4@PDA-TLL evidenced the moderate to good catalytic
behavior in most of the tested solvents, and the highest reaction
rate and conversion were found in the eco-friendly MeTHF
with 7.1 mM/h and 78.5%, respectively. DMSO, DMF, and
pyridine severely deactivated the immobilized enzyme activities.
Except for the well-known factor of solvent polarity affecting
the hydration water of the enzyme molecule, the solvent
penetration ability into the enzyme active site, enzyme protein
conformation change, and solubility of the substrate and product
unavoidably influenced the enzymatic processes (Yang et al.,
2004; Sanchez-Fernandez et al., 2017). With regarding to the

regioselectivity, it was interesting to find that Fe3O4@PDA-
TLL showed favor toward the 6′′-OH of hyperoside in all the
media assayed. The most possible reason might be that the
polyphenol hydroxyl structure of the hyperoside afforded the
specific substrate-binding pattern in the catalytic pocket of
the enzyme active site. Therefore, the more active and less-
hindered 6′′-primary hydroxyl may enter into the active site
of the enzyme more easily than other hydroxyls to attack the
acyl-enzyme transition-state intermediate and form the 6′′-O-
monoester derivative.

Optimization of Fe3O4@PDA-TLL
Production of Decanoyl Hyperoside
To further understand and improve the catalytic performance
of the new immobilized Fe3O4@PDA-TLL, several key variables,
such as the substrate molar ratio, reaction temperature, and
enzyme dosage in the reaction, were examined in detail.
In general, an excessive amount of acyl donors is normally
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required, owing to the presence of side reactions of enzymatic
hydrolysis of vinyl ester and acylated product (Amanda Gomes
Almeida et al., 2017). As depicted in Figure 1A, the substrate
molar ratio displayed a great effect on the behavior of the
immobilized biocatalyst. A striking improvement in initial
reaction rate and substrate conversion was observed with
increasing the molar ratio of vinyl decanoate to hyperoside
up to 11, which is the optimal ratio of the double substrates.
Figure 1B shows the enzymatic decanoylation of hyperoside
affected by the temperature, with 55◦C being optimal; a
high temperature may induce a significant conformational
unfolding of the enzyme, resulting in decreasing the initial
rate and conversion. Moreover, the optimum enzyme dosage
was 180 mg with the excellent conversion of 99.0%, and no
substantial variation in acylation rate occurred while further
increasing the enzyme dosage up to 240 mg (Figure 1C).
Additionally, it is worth emphasizing that change in the TLL
immobilized carrier of Fe3O4@PDA had a marginal effect
on the regioselectivity among the examined key reaction
conditions. Very similar results concerning the primary hydroxyl
regioselectivity were also obtained by Ghasemi and co-workers
in the regioselective acetylation of prednisolone using TLL lipase
glutaraldehyde-mediated immobilization on Fe3O4 nanoparticles
(Ghasemi et al., 2013).

Time Course of Enzymatic Reaction
and Operational Stability
The time course of the Fe3O4@PDA-TLL-mediated preparation
of the 6′′-O-decanoyl derivative of hyperoside is shown in
Figure 2. The hyperoside conversion went up rapidly within
300 min and then there was a smooth rise, possibly due to
the lower concentration of the double substrates. During the
enzymatic acylation process, 6′′-O-decanoyl hyperoside was the
end product, with a regioselectivity of 100%.

From an industrial point of view, good operational
stability and reusability of the catalyst are necessary for fine
chemical production. Wang X. Y. et al. (2015) successfully
immobilized TLL onto the Fe3O4@chitosan nanoparticles
and checked their reusability. The results revealed that
the Fe3O4@chitosan-TLL showed a preferable stability and
retained 70% of its initial activity after ten reuses. Figure 3
shows that the Fe3O4@PDA-TLL exhibited satisfactory
stability. Although the enzyme kept 77.3% of its original
activity in MeTHF after being reused for five batches, the
relative maximum conversion still remained about 90.1%,
suggesting that this immobilized enzyme displayed good
organic solvent tolerance and that the immobilized carrier can
greatly improve the reuse times of the enzyme as well as the
efficiency of the process.

Determination of Kinetic Constants
and Apparent Activation Energy (Ea)
In order to gain an in-depth insight into the superiority
of this Fe3O4@PDA-TLL, organic solvents containing
THF, MeTHF, dioxane, and t-butanol were selected to
measure the kinetic parameters, including Km, Vmax, and
Vmax/Km, by using the linear form of Hanes-Woolf plots.
As illustrated in Figure 4, the new immobilized TLL exerted
the highest affinity in MeTHF for the substrates, which was
evidenced with the highest Vmax (59.6 mM/h) and lowest
apparent Km (52.7 mM) values in the above enzymatic
acylation systems containing the tested solvents. Excellent
catalytic efficiency with the highest Vmax/Km of 1.13/h also
demonstrated that MeTHF was the most effective medium in
this enzymatic reaction.

Furthermore, the apparent activation energy (Ea) for the
acylation is also assayed using Arrhenius plots (Figure 5).
The Ea value of 16.3 KJ/mol for the MeTHF system afforded
by Fe3O4@PDA-TLL was much lower than those received in
other media (20.8–33.1 KJ/mol), indicating that MeTHF is
beneficial to accelerate the enzymatic reaction and enhance
this immobilized enzyme’s stability. These kinetic studies
on the reactions described above are very similar to the
TL IM (T. lanuginosus lipase immobilized on granulated
silica)-mediated acylations (Wang et al., 2016), which
suggests that the replacement of the immobilized carrier
still retained the excellent characteristics of the enzyme itself
and that Fe3O4@PDA could act as an alternative carrier for
enzyme immobilization.

CONCLUSION

In conclusion, T. lanuginosus lipase was successfully immobilized
onto the biocompatible nanoparticles of Fe3O4@PDA and
showed satisfactory performance, with absolute 6′′-position,
higher initial rate, and substrate conversion during the synthesis
of the decanoyl derivative of hyperoside. Detailed investigations
on the operational stability and kinetic studies also addressed that
the immobilization of enzymes, using this method, could be a
good and practical option for various industries. These findings
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will undoubtedly enrich the application of the novel immobilized
carrier in the biotransformation fields.
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