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The prediction of ion ligand–binding residues in protein sequences is a challenging work

that contributes to understand the specific functions of proteins in life processes. In this

article, we selected binding residues of 14 ion ligands as research objects, including four

acid radical ion ligands and 10 metal ion ligands. Based on the amino acid sequence

information, we selected the composition and position conservation information of

amino acids, the predicted structural information, and physicochemical properties of

amino acids as basic feature parameters. We then performed a statistical analysis

and reclassification for dihedral angle and proposed new methods on the extraction

of feature parameters. The methods mainly included applying information entropy on

the extraction of polarization charge and hydrophilic–hydrophobic information of amino

acids and using position weight matrices on the extraction of position conservation

information. In the prediction model, we used the random forest algorithm and obtained

better prediction results than previous works. With the independent test, the Matthew’s

correlation coefficient and accuracy of 10 metal ion ligand–binding residues were larger

than 0.07 and 52%, respectively; the corresponding evaluation values of four acid radical

ion ligand–binding residues were larger than 0.15 and 86%, respectively. Further, we

classified and combined the phi and psi angles and optimized prediction model for each

ion ligand–binding residue.

Keywords: binding residues, dihedral angle, information entropy, ion ligands, protein

INTRODUCTION

The protein is the foundation of life and plays an important role in the life activities. Proteins
carried out various functions by interactions, such as protein–protein interaction, protein–DNA
interaction, protein–RNA interaction, and protein–ion ligand interaction (Lin et al., 2005; Ebert
and Altman, 2008; Pan and Shen, 2018; Al-Mugotir et al., 2019; Emamjomeh et al., 2019; Robin
et al., 2019). Because more than half of the proteins required binding with ion ligands for functions,
research of ion ligand–binding residues on proteins was of great significance. However, it was
difficult to accurately predict the ion ligand–binding residues on the protein sequence because of
the small size and high versatility of ion ligands.

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00493
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00493&domain=pdf&date_stamp=2020-06-12
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hxz@imut.edu.cn
https://doi.org/10.3389/fbioe.2020.00493
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00493/full
http://loop.frontiersin.org/people/873101/overview
http://loop.frontiersin.org/people/820889/overview


Liu et al. Optimized Dihedral Angle

Current theoretical prediction methods of ligand-binding
residues can be roughly classified into sequence-based method
and three-dimensional (3D) structure–based method. The
experiments showed that the accuracy of the 3D structure–based
prediction was higher than that of sequence-based prediction
(Yang et al., 2013, 2018). However, the number of proteins with
known amino acid sequence was far more than that with known
3D structure. Although the prediction accuracy of sequence-
based method is not as satisfactory as 3D structure–based,
sequence-based method is still generally used.

In general, there were three key points in predicting
the ion ligand–binding residues with theoretical methods:
research objects selection, the selection, and extraction of
feature parameters, and the selection of algorithms. In recent
decades, researchers conducted different studies on binding
residues of metal and acid radical ion ligands. In these
studies, most researchers were working on the development of
features to improve the prediction results of ion ligand–binding
residues. Among the feature parameters used to predict ion
ligand–binding residues, position conservation information, and
composition of amino acids were two commonly used basic
feature parameters (Sodhi et al., 2004; Komiyama et al., 2015; Hu
et al., 2016a; Liu et al., 2019; Wang et al., 2019). Besides, based on
the biological background of interaction between ion ligands and
proteins, researchers added physicochemical properties of amino
acids, secondary structure, and relative solvent accessibility
(RSA) to identify ion ligand–binding residues (Lin et al., 2006;
Jiang et al., 2016; Cao et al., 2017; Li et al., 2017). Using
these features obtained improved prediction results. In this
work, we further improved prediction result by optimizing the
extraction method of features. In the previous work, on the
extraction of position conservation information of amino acids,
some researchers used the position specific score matrix (PSSM)
method to extract it (Sodhi et al., 2004; Hu et al., 2016a), whereas
the other ones used the position weight scoring algorithm to
extract its score values (Liu et al., 2019; Wang et al., 2019).
However, the dimension of PSSM is excessively high, which will
potentially lead to the overfitting problem, and the dimension of
the score values is too low, which will lose a lot of information.
Thus, we constructed the position weight matrices to extract
the 2L-dimensional position conservation information of amino
acids. In terms of extraction of the hydrophilic–hydrophobic
information of amino acids, autocross covariance formula was
attempted (Jiang et al., 2016). However, the method did not
take into account the different number of amino acid species
contained in each class of hydrophilic–hydrophobic properties.
Same problem also exists in the classification of polarized charge.
To settle these problems, we used the information entropy to
extract the polarization charge and the hydrophilic–hydrophobic
information of amino acids.

Dihedral angle of amino acid sequence can specify protein
backbone conformation. Therefore, some researchers selected
dihedral angle as feature and obtained improved results. But
the extraction method, using two-dimensional real values of
phi and psi angles as features (Hu et al., 2016b; Cui et al.,
2019), ignored character of dihedral angle of each ion ligand–
binding residue. In this work, the phi and psi angles were

TABLE 1 | Benchmark datasets of 14 ion ligands.

Ligands Chains P N

Metal ions Zn2+ 1428 6,408 405,113

Cu2+ 117 485 33,948

Fe2+ 92 382 29,345

Fe3+ 217 1,057 68,829

Co2+ 194 875 55,050

Mn2+ 459 2,124 156,625

Ca2+ 1237 6,789 396,957

Mg2+ 1461 5,212 480,307

Na+ 78 489 27,408

K+ 57 535 18,777

Acid radical ions NO−
2 22 98 8,144

CO2−
3 62 316 22,766

SO2−
4 303 2,125 99,729

PO3−
4 339 2,168 112,279

P, is the number of binding residues; N, is the number of nonbinding residues.

performed by using statistical analysis and reclassification, and
they were extracted as feature parameters. The random forest
(RF) algorithm is a strong classifier integrated with multiple
weak classifiers. Fewer parameters are needed to be set, and it
will cause less overfitting phenomenon in general. So, we finally
used the RF algorithm to make the prediction model on the
basis of combined feature parameters. By adding reclassified
dihedral angle feature, we obtained improved prediction results
and optimized the prediction model for each ion ligand–binding
residue. Further, we compared our prediction results with the
results of Artificial Neural Networks (ANNs) and Support Vector
Machine (SVM) and turned out that the RF algorithm had a
better prediction result.

MATERIALS AND METHODS

Dataset
The dataset of ion ligand–binding residues constructed in this
article was from the BioLip database. On the basis of literatures
(Hu et al., 2016a; Cao et al., 2017), we selected the protein chains
with the length longer than 50 residues and resolution below 3Å
and then removed the protein chains whose pairwise sequence
identity was higher than 30% by using the CD-HIT software (Li
and Godzik, 2006). Inspired by the literature (Hu et al., 2016a),
we finally selected the binding residues of 10 metal ion ligands
(Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Ca2+, Mg2+, Mn2+, Na+, K+)
and four acid radical ion ligands (NO−

2 , CO
2−
3 , SO2−

4 , PO3−
4 ) as

research objects.
The interaction between the protein and ion ligand was

related to both binding residues and their surrounding residues.
Thus, we used the sliding window method to cut the protein
chain into the corresponding sequence segments. If sequence
segment center was an ion ligand–binding residue, it was defined
as positive segment; otherwise, it was defined as the negative
segment. In order tomake each amino acid residue on the protein
chains appear in the center of the sequence segment, we added
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FIGURE 1 | Position weight matrix constructed by the positive training samples of Mn2+ ligand.

(L-1)/2 virtual amino acids to the end of the protein chains. L is
the sequence segment length. The non-redundant datasets of 14
ion ligands are shown in Table 1. By a number of calculations,
the obtained optimal window lengths of Zn2+, Fe2+, Fe3+, Cu2+,
Mn2+, Co2+, Ca2+, Mg2+, Na+, K+, NO−

2 , CO
2−
3 , SO2−

4 , and
PO3−

4 were 7, 9, 9, 13, 7, 11, 9, 9, 9, 11, 13, 15, 13, and 13,
respectively. The binding residues of 10 metal ion ligands and
the corresponding optimal window lengths selected in this article
were the same as in the literature (Cao et al., 2017).

Because the number of negative segments was greater
than positive segments, we used random sampling method in
mathematics to balance the segments number in positive and
negative datasets. Specifically, we randomly selected negative
segments with the equal number of positive segments to compose
negative datasets. In order to ensure the stability of the result, the
negative samples were randomly sampled 10 times, and the final
prediction result was the average value of the 10 results.

The Selection and Extraction of Feature
Parameters
Amino Acid Composition and Position Conservation

Information
Our prestudy showed that amino acid composition of metal
ion ligand–binding segments was different from amino acid
composition of nonbinding segments (Cao et al., 2017). Besides,
the literatures (Ansari and Raghava, 2010; Jiang et al., 2016;
Li et al., 2017) also showed the amino acid composition was
an important feature in the recognition work of ligand-binding
residues. Therefore, the amino acid composition was selected as
a feature parameter in this article.

According to the description in the literatures (Sodhi et al.,
2004; Hu et al., 2016a,b; Cao et al., 2017; Li et al., 2017; Cui et al.,
2019) and the statistical analysis of the position conservation in
metal ion ligand–binding segments and nonbinding segments
done by our group (Cao et al., 2017), we selected the amino
acid position conservation information as a feature parameter.
Because the dimension of PSSM (20∗L) that is commonly used
to extract position conservation information is excessively high,
we constructed position weight matrices to extract position
conservation information of amino acids (Kel et al., 2003; Gao
and Hu, 2014). First, we constructed position weight matrices for
positive and negative samples in the training set, respectively. The
matrix elementmi,j of position weight matrix M was as follows:

mi,j = ln(
pi,j

p0,j
) (1)

pi,j =
(ni,j +

√
Ni
q )

(Ni +
√
Ni)

(2)

In the above equation, i represents position, and j runs for 20
different amino acids and virtual residue “X”. po,j represents the
background probability of the amino acid j, and pi,j represents
the probability of the amino acid j at the ith position. ni,j

represents the frequency of amino acid j at the ith position,
and Ni is total number of amino acids at the ith position. q
represents the total number of categories, where q = 21. L is
the length of the amino acid sequence segments. Taking Mn2+

ligand as an example, the position weight matrices constructed
for its positive and negative training samples are shown in
Figures 1, 2, respectively. For arbitrary amino acid sequence
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FIGURE 2 | Position weight matrix constructed by the negative training samples of Mn2+ ligand.

FIGURE 3 | Distribution of phi angle for binding and nonbinding residues of Mn2+ ligand. The abscissa represents 24 classification intervals; the ordinate represents

the percentage of predicted phi angle that appears in each interval.

segment, such as “ACFPQSW,” according to the corresponding
position weight matrices, we can get a 14-dimensional amino
acid position conservation information: (−1.8245, −1.9236,
−1.9109, −1.9971, −1.822, −1.9681, −3.808, −1.8407, −1.8452,
−1.9661, −1.9129, −1.9378, −1.7342, −1.7195). Finally, the 2L-
dimensional amino acid position conservation information was
used as a feature parameter.

The Predicted Structural Information
It is well-known that structure of proteins directly determines
their function, but not all proteins have experimentally measured
3D structure information. Because the secondary structure, RSA,
and dihedral angle can reflect the local structure information

of the protein, we selected above information as basic features
(Hu et al., 2016a; Cao et al., 2017). In this article, the predicted
secondary structure, RSA, and dihedral angle were obtained
by ANGLOR software (Yang Zhang Lab; https://zhanglab.ccmb.
med.umich.edu/ANGLOR/) (Wu and Zhang, 2008).

The secondary structure types that were predicted by the
ANGLOR software included α-helix (H), β-strand (E), and
coil (C). In previous studies, its composition and position
conservation information were already used to predict ion
ligand–binding residues and obtained great prediction results
(Hu et al., 2016a,b; Cao et al., 2017; Li et al., 2017). Therefore,
composition and 2L-dimensional position conservation features
were extracted from secondary structure as feature parameters.
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FIGURE 4 | Distribution of psi angle for binding and nonbinding residues of Mn2+ ligand. The abscissa represents 24 classification intervals; the ordinate represents

the percentage of predicted psi angle that appears in each interval.

FIGURE 5 | Polarization charge classifications of amino acids.

FIGURE 6 | Hydrophilic–hydrophobic classifications of amino acids.

For the predicted RSA, its threshold value 0.25 was usually
chosen to indicate whether the residue was exposed (RSA
> 0.25) or buried (RSA < 0.25). In the literature (Cao
et al., 2017), the four-classification of RSA was used as the
basic feature parameter, and prediction results were obviously
improved. Therefore, we selected four-classification of RSA in
the literature (Cao et al., 2017) as a basic feature parameter
and extracted its composition and 2L-dimensional position
conservation information as predicted feature parameters. The

TABLE 2 | Prediction results without adding dihedral angle information.

Ligand L Sn (%) Sp (%) Acc (%) MCC

Zn2+ 7 90.3 88.8 89.6 0.791

Cu2+ 13 85.8 91.3 88.6 0.772

Fe2+ 9 89.3 90.6 89.9 0.798

Fe3+ 9 82.6 89.4 86.0 0.722

Co2+ 11 76.8 86.2 81.5 0.632

Mn2+ 7 77.8 86.3 82.1 0.644

Ca2+ 9 71.7 76.5 74.1 0.483

Mg2+ 9 71.6 82.2 76.9 0.541

Na+ 9 71.8 71.8 71.8 0.436

K+ 11 75.7 64.7 70.2 0.406

NO−
2 13 78.6 73.5 76.0 0.521

CO2−
3 15 72.2 76.9 74.5 0.491

SO2−
4 13 74.1 73.0 73.6 0.472

PO3−
4 13 76.1 78.2 77.1 0.543

The above values were calculated on downsampling negative samples.

four-classification of RSA in the literature (Cao et al., 2017) was
as follows:

r(x) =















I, x ∈ (0, 0.2]
J, x ∈ (0.2,0.45]
M, x ∈ (0.45,0.6]
N, x ∈ (0.6, 0.85]

(3)

Protein backbone dihedral angle specifies the backbone
conformation of protein and is important for describing the
local conformation of amino acids. Therefore, the dihedral
angle information was selected as a basic feature parameter to
predict the binding residues of the ion ligands. In a previous
prediction work on binding sites of ligand–proteins, Chen et al.
used 20 regions of the Ramachandran plot to calculate the value
of propensity for ligand binding (Chen and Xu, 2016); Cui
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et al. used the real values of phi and psi angles to predict the
ligand-binding residues on proteins (Cui et al., 2019). However,
prediction results obtained by the above two methods did not
achieve expectation. Therefore, the phi and psi angles of amino
acid residues on protein chains binding with ion ligands were
statistically analyzed and reclassified in this article. The degree
of phi and psi angles predicted by ANGLOR software retained
one decimal point, and the value range of phi and psi angles
all was [−180◦, 180◦]. To simplify statistics, every 15th degree
was divided into an interval; [−180◦, 180◦] was divided into 24
intervals. Then, we performed statistical analysis for the phi and
psi angles. Taking Mn2+ ligand as an example, the distributions
of phi and psi angles for binding and nonbinding residues are
shown in Figures 3, 4, respectively.

In Figures 3, 4, the abscissa represents 24 classification
intervals; the ordinate represents the percentage of predicted
phi/psi angle appearing in each interval. We chose thresholds
based on the difference of the predicted phi/psi angle between
the binding and nonbinding residues. The threshold of phi angle
was defined by the function g(x), and the threshold of the psi
angle was defined by the function h(x). As can be seen from
Figure 3, the difference of phi angle on the Mn2+ ligand-binding
residues and nonbinding residues was mainly concentrated in
two different intervals. Therefore, g(x) was defined as follows:

g(x) =
{

A, x ∈ [−180◦,−75◦]
B, x ∈ [−75◦, 180◦]

(4)

Similarly, it can be seen from Figure 4 that the difference of
psi angle on the Mn2+ ligand-binding residues and nonbinding
residues was mainly concentrated in three intervals. Therefore,
h(x) was defined as follows:

h(x) =







A, x ∈ [−180◦, 15◦]
B, x ∈ [15◦, 135◦]
C, x ∈ [135◦, 180◦]

(5)

In summary, the reclassification information of phi and psi angles
was taken as the basic feature parameters, and its composition
and the 2L-dimensional position conservation information were
extracted as the feature parameters.

Physicochemical Properties of Amino Acids
Because the ion ligand was charged, it was easy to bind to residues
with opposite charge. Therefore, we selected the polarization
charge information of amino acids as a basic feature parameter.
The 20 amino acids were divided into three categories in this
article (Taylor, 1986), as shown in Figure 5.

Actually, ion ligand mainly interacted with the amino acids
exposed on the surface of the protein pocket. These amino
acids generally showed hydrophilicity, so the hydrophilic–
hydrophobic property of amino acids was also selected as a
basic feature parameter. The 20 amino acids were divided into
six categories according to hydrophilic–hydrophobic property
(Pánek et al., 2005), as shown in Figure 6.

FIGURE 7 | Position-specific conservation of amino acid residues in the binding and nonbinding sequence segments for Zn2+ (A), Cu2+ (B). Each ligand contains two

subfigures, where the labeled subfigure is the position-specific conservation in binding residue sequence segments; the other is the position-specific conservation in

nonbinding residue sequence segments [from literature (Cao et al., 2017)].
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It can be seen from Figure 5 that the number of uncharged
amino acids was many times more than charged amino acids,
which made the information of charged amino acids unavailable.
To solve this problem, information entropy was applied to
extract the polarization charge information. Similarly, in the
hydrophilic–hydrophobic classification of amino acids, P, G, and
C were respectively divided into one category; the number of
amino acids in these categories was far less than that in the other
three categories. So, information entropy was also used on the
extraction of hydrophilic–hydrophobic information.

Information entropy was proposed by Shannon (1948) to
describe the uncertainty of information sources. Although the
signal is uncertain, it can be measured according to the
probability of its occurrence. For the state spaceX: {x1, x2, . . . , xq},
nj is the occurrence number of xj (j= 1, 2, . . . , q), and information
entropy was defined as follows:

H(x) = −
q

∑

j=1

pjlog2pj (6)

pj =
(nj +

√
N
q )

(N +
√
N)

(7)

where, N =
q

∑

j=1
nj.xj represents hydrophilic–hydrophobic (or

polarization charge) classifications of amino acids and virtual
residue “X”. pj represents the probability of the information
symbol xj. When xj represents hydrophilic–hydrophobic
classifications of amino acids, q = 7, whereas when it represents
polarization charge classifications of amino acids, q = 4. For
arbitrary sequence segment, we can get the one-dimensional (1D)
information entropy value according to Equation (6). Therefore,
we used the 1D information entropy value as a feature.

The RF Algorithm
The RF algorithm is a machine learning algorithm proposed
by Breiman (2001). It is composed of multiple independent
decision trees, each of which is a classifier. The basic principle
is to integrate weak classifiers into one strong classifier, and the
final result is determined by voting. The RF algorithm has been
successfully applied to the prediction of β-hairpin and protein

FIGURE 8 | Flowchart of the proposed method. AA is amino acids; DH is polarization charge of amino acids; QS is hydrophilic and hydrophobic of amino acids; SS is

predicted second structure; RSA is relative solvent accessibility; and DA is dihedral angle; 2L is 2L-dimensional position conservation feature; PS is composition

feature; and SH is information entropy value.
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fold (Jia and Hu, 2011; Chen et al., 2014; Feng andHu, 2014). The
advantage of the RF algorithm is that fewer parameters need to
be adjusted (Kandaswamy et al., 2010); in comparison with other
algorithms, when the dimension is relatively high, the overfitting
problem of RF algorithm is not so serious. The RF algorithm has
two important parameters, one is the m (m =

√
M,and M is the

number of the feature initially selected), which is the size of a
random feature subset for splitting the nodes; the other is the
k that is the number of decision trees in the RF, generally k =
500 (Liaw and Wiener, 2002). In this article, we established our
prediction model using the 4.6–12 RF algorithm package of R
software version 3.4.3 (Vienna, Austria; https://www.R-project.
org/).

TABLE 3 | Prediction results with adding dihedral angle information by 5-fold

cross-validation.

Ligand L Sn (%) Sp (%) Acc (%) MCC

Zn2+ 7 93.0 (99.8) 93.2 (99.5) 93.1 (99.7) 0.862 (0.993)

Cu2+ 13 87.8 (95.5) 93.4 (97.1) 90.6 (96.3) 0.814 (0.926)

Fe2+ 9 90.3 (91.9) 90.1 (90.7) 90.2 (91.3) 0.804 (0.826)

Fe3+ 9 86.4 (86.9) 92.3 (88.7) 89.4 (87.8) 0.789 (0.756)

Co2+ 11 86.1 (80.8) 88.2 (85.1) 87.1 (83.0) 0.743 (0.660)

Mn2+ 7 84.9 (82.1) 89.6 (84.4) 87.3 (83.2) 0.747(0.664)

Ca2+ 9 94.8 (71.3) 85.5 (79.1) 90.2 (74.8) 0.807 (0.502)

Mg2+ 9 88.2 (76.6) 84.9 (73.9) 86.5 (75.3) 0.731 (0.505)

Na+ 9 88.1 (82.2) 76.3 (76.2) 82.2 (79.4) 0.649 (0.586)

K+ 11 89.3 (77.3) 71.0 (83.2) 80.2(80.3) 0.614 (0.607)

NO−
2 13 75.5 78.6 77.0 0.541

CO2−
3 15 80.7 82.0 81.3 0.627

SO2−
4 13 94.2 87.9 91.0 0.822

PO3−
4 13 91.5 90.9 91.4 0.827

The above values were calculated on downsampling negative samples. The

values in brackets are the 5-fold cross-validation results obtained by SVM in

literature (Cao et al., 2017).

TABLE 4 | Data of the training dataset and independent test dataset.

Ligand Training dataset Independent test dataset

Chains P N Chains P N

Zn2+ 1,142 5,145 321,161 286 1,263 83,952

Cu2+ 93 377 27,548 24 108 6,400

Fe2+ 73 301 23,824 19 81 5,521

Fe3+ 173 859 54,945 44 198 13,884

Co2+ 155 707 44,300 39 168 10,750

Mn2+ 367 1,685 124,543 92 439 32,082

Ca2+ 989 5,256 312,876 248 1,533 84,081

Mg2+ 1,168 4,069 384,365 293 1,143 95,942

Na+ 62 408 22,411 16 81 4,997

K+ 45 410 14,882 12 125 3,895

NO−
2 17 76 6,218 5 22 1,926

CO2−
3 49 252 18,066 13 64 4,700

SO2−
4 242 1,751 79,164 61 374 20,565

PO3−
4 271 1,730 90,786 68 438 21,493

P, is the number of binding residues; N, is the number of nonbinding residues.

The Validation Methods and Evaluation
Metrics
The Validation Methods
The constructed model was tested by the 5-fold cross-
validation and independent test, which were commonly used
on ligand–binding residues predictions (Sodhi et al., 2004; Lin
et al., 2005; Hu et al., 2016a,b; Jiang et al., 2016; Cao et al., 2017;
Li et al., 2017).

In the 5-fold cross-validation, the dataset was randomly
divided into five subsets with same size. Each subset was regarded
as test dataset in turn, and the rest of the four were accordingly as
training dataset. After prediction process was repeated five times,
the average value of five results was adopted as the final result.

In the independent test, the protein chains binding to each
ion ligand were divided into two parts: one part accounted
for 80% of the total protein chains, which was the training
dataset for training the model; the other part accounted for
20% of the total protein chains, which was the independent test
dataset for testing the model. Because the protein chains that
generated the independent test dataset and the training dataset
were different, the data of independent test dataset and training
dataset were independent.

The Evaluation Metrics
The following four measures were used to evaluate the prediction
performance of ion ligand–binding residues: sensitivity (Sn),
specificity (Sp), accuracy (Acc), and Matthew’s correlation
coefficient (MCC) (Hu et al., 2016a,b; Lin et al., 2016; Cao et al.,
2017; Li et al., 2017). These measures were defined as:

Sn =
TP

TP + FN
× 100% (8)

Sp =
TN

TN + FP
× 100% (9)

TABLE 5 | Prediction results of the independent test.

Ligand Sn (%) Sp (%) Acc (%) MCC

Zn2+ 92.2 (94.1) 90.7 (84.3) 90.7 (84.4) 0.326 (0.2528)

Cu2+ 88.0 (91.7) 93.9 (82.9) 93.8 (83.0) 0.399 (0.2458)

Fe2+ 79.0 (90.1) 93.7 (73.6) 93.5 (73.9) 0.333 (0.1708)

Fe3+ 72.7 (87.9) 94.3 (72.7) 94.0 (72.9) 0.316 (0.1584)

Co2+ 75.6 (73.2) 87.6 (82.3) 87.4 (82.2) 0.229 (0.1760)

Mn2+ 72.9 (76.5) 91.9 (79.8) 91.7 (79.8) 0.262 (0.1599)

Ca2+ 51.1 (59.5) 88.7 (79.2) 88.1 (78.9) 0.163 (0.1251)

Mg2+ 74.6 (50.2) 81.8 (81.9) 81.7 (81.6) 0.150 (0.0871)

Na+ 54.3 (33.3) 72.8 (78.2) 72.5 (77.5) 0.076 (0.0348)

K+ 87.2 (45.6) 51.2 (62.8) 52.3 (62.3) 0.133 (0.0301)

NO−
2 86.4 95.4 95.3 0.377

CO2−
3 70.3 86.7 86.5 0.189

SO2−
4 50.8 88.4 87.7 0.158

PO3−
4 75.6 88.8 88.5 0.272

The values in brackets are the independent test results obtained by SVM in literature (Cao

et al., 2017).
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Acc =
TP + TN

TP + TN + FP + FN
× 100% (10)

MCC =
(TP × TN)− (FP × FN)

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(11)

where TP represents the number of correctly predicted ion
ligand–binding residues, TN represents the number of correctly

TABLE 6 | Comparison of independent test results obtained by RF, SVM, and

ANN.

Ligands Methods Sn (%) Sp (%) Acc (%) MCC

Zn2+ RF 92.2 90.7 90.7 0.326

SVM 93.4 88.6 88.7 0.298

ANN 90.4 86.2 86.2 0.260

Cu2+ RF 88.0 93.9 93.8 0.399

SVM 96.3 84.4 84.6 0.275

ANN 87.0 93.0 92.9 0.371

Fe2+ RF 79.0 93.7 93.5 0.333

SVM 96.3 80.1 80.3 0.224

ANN 82.7 91.2 91.1 0.296

Fe3+ RF 72.7 94.3 94.0 0.316

SVM 83.8 83.6 83.6 0.210

ANN 78.8 87.2 87.0 0.225

Co2+ RF 75.6 87.6 87.4 0.229

SVM 79.2 88.1 88.0 0.247

ANN 77.4 84.2 84.1 0.203

Mn2+ RF 72.9 91.9 91.7 0.262

SVM 79.3 86.5 86.4 0.217

ANN 81.5 76.9 77.0 0.158

Ca2+ RF 51.1 88.7 88.1 0.163

SVM 67.0 77.6 77.4 0.149

ANN 69.2 65.5 65.6 0.097

Mg2+ RF 74.6 81.8 81.7 0.150

SVM 77.2 78.9 78.8 0.141

ANN 70.2 79.9 79.8 0.129

K+ RF 87.2 51.2 52.3 0.133

SVM 80.0 70.1 70.4 0.187

ANN 75.2 67.4 67.7 0.156

Na+ RF 54.3 72.8 72.5 0.076

SVM 64.2 67.1 67.1 0.083

ANN 44.4 80.4 79.8 0.078

NO−
2 RF 86.4 95.4 95.3 0.377

SVM 59.1 96.2 95.8 0.284

ANN 86.4 77.9 78.0 0.162

CO2−
3 RF 70.3 86.7 86.5 0.189

SVM 76.6 83.9 83.8 0.186

ANN 95.3 65.8 66.2 0.147

SO2−
4 RF 50.8 88.4 87.7 0.158

SVM 83.4 62.2 62.6 0.124

ANN 95.5 25.1 26.4 0.063

PO3−
4 RF 75.6 88.8 88.5 0.272

SVM 88.1 72.0 72.4 0.185

ANN 93.2 75.7 76.1 0.221

predicted nonbinding residues, FP represents the number
of nonbinding residues predicted as binding residues, and
FN represents the number of binding residues predicted as
nonbinding residues.

RESULTS AND DISCUSSION

The Predicted Results of 5-Fold
Cross-Validation
Because of the heavy imbalance in the original dataset, we took
the number of positive segments as the standard and randomly
sampled the equal number of negative segments 10 times, which
generated 10 negative subsets. For each negative subset and the
positive set, we extracted related feature parameters. Then, with
five-fold cross-validation, we combined the feature parameters
and inputted them into the RF algorithm. In this way, the
progress was repeated 10 times, and the average result was taken
as the result of one subset. Finally, we averaged the above results
of 10 subsets as the prediction results.

The Prediction Results Obtained Without Adding

Dihedral Angle Information
The composition and 2L-dimensional position conservation
information of amino acids, secondary structure, RSA, and
information entropy of polarization charge and hydrophilic–
hydrophobic were used as feature parameters, and then we
inputted them into the RF algorithm to predict the ion ligand–
binding residues, and the predicted results obtained by the 5-fold
cross-validation are shown in Table 2.

As can be seen from Table 2, comparing to the results of Ca2+,
Mg2+, Na+, K+ ligands, the results of transitionmetal ions Zn2+,
Cu2+, Fe2+, Fe3+, Co2+, and Mn2+ were better, with MCC value
greater than 0.630, Acc value>81%, Sn value>76%, and Sp value
>86%. This is because transition metal ion binding residues have
a preference for conservation. For example, Zn2+ ligand–binding
residues prefer to use C, H, D, E, and so on; Cu2+ ligand–binding

FIGURE 9 | The combination ways of phi and psi angles.
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TABLE 7 | Optimal Predicted models of ion ligands and corresponding predicted

results.

Ligand Model Sn (%) Sp (%) Acc (%) MCC

Zn2+ ③ 92.9 93.5 93.2 0.865

Cu2+ ① 87.8 93.4 90.6 0.814

Fe2+ ① 90.3 90.1 90.2 0.804

Fe3+ ③ 87.3 92.1 89.7 0.796

Co2+ ④ 87.2 91.0 89.1 0.782

Mn2+ ② 86.3 90.9 88.6 0.773

Ca2+ ① 94.8 85.5 90.2 0.807

Mg2+ ③ 88.5 86.3 87.4 0.749

K+ ④ 90.3 75.9 83.1 0.669

Na+ ① 88.1 76.3 82.2 0.649

NO−
2 ① 75.5 78.6 77.0 0.541

CO2−
3 ③ 81.3 84.8 83.1 0.662

SO2−
4 ③ 94.0 90.3 92.1 0.843

PO3−
4 ③ 92.3 92.5 92.4 0.849

residues prefer to use H, C, E, and so on (Cao et al., 2017). It was
visualized in Figure 7.

The Prediction Results Obtained by Adding Dihedral

Angle Information
The dihedral angle has an important influence on local structure
of the protein backbone. The literatures (Chen and Xu, 2016; Hu
et al., 2016a,b; Cui et al., 2019) showed that the dihedral angle
played an important role in predicting the ligand binding sites
on proteins. Therefore, composition feature and 2L-dimensional
position conservation feature extracted from the phi and the psi
angles were added to predict the binding residues of ion ligands.
The flowchart of the proposed method was displayed in Figure 8.
And the results obtained by the five-fold cross-validation are
shown in Table 3.

As shown in Table 3, prediction results were improved after
adding dihedral angle information; the MCC values of Ca2+,
Na+, K+, SO2−

4 , and PO3−
4 ligands increased by at least 20

percentage points; the MCC values of Mn2+, Co2+, Mg2+,
and CO2−

3 increased by at least 10 percentage points; and the
values of Acc, Sn, and Sp of these nine ion ligands were also
significantly improved. The above values of other ion ligands
were also slightly improved. The results showed that the ion
ligand–binding residues were sensitive to the information of
the reclassified dihedral angle. Namely, the information of
the reclassified dihedral angle was effective for identifying ion
ligand–binding residues.

The Comparison of the Predicted Results of 10 Metal

Ion–Ligand Binding Residues
Because the datasets of metal ion ligand–binding residues used
in this article and the optimal window length selected for each
metal ion were the same as used in literature (Cao et al., 2017),
the prediction results of 10 metal ion ligands obtained in this
article were compared with prediction results obtained by SVM
in literature (Cao et al., 2017).

In order to facilitate comparison, prediction results obtained
by SVM were putted into brackets in Table 3. Apparently, the
predicted results of Zn2+, Fe2+, and Cu2+ were lower than those
obtained by SVM, but prediction results of the other seven metal
ion ligands obtained by RF algorithm were all more accurate
than those obtained by SVM. In particular, the MCC values of
Ca2+ and Mg2+ were increased more than 20 percentage points
comparing to SVM.

The Prediction Results of Independent Test
In order to test the practicability of the model established in this
article, independent test was performed. The independent test
datasets of 14 ion ligands are shown in Table 4.

In the independent test, composition and 2L-dimensional
position conservation information of the amino acids, secondary
structure, RSA, and dihedral angle, as well as information entropy
of polarization charge and hydrophilic–hydrophobic, were used
as feature parameters and inputted into the RF algorithm to
predict ion ligand–binding residues. The independent test results
are shown in Table 5.

The predicted results of Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+,
NO−

2 , and PO3−
4 were improved, MCC values were higher than

0.220, the values of Acc and Sp were higher than 87%, and the
Sn values were higher than 72%. The result of Cu2+ ligand was
the highest, in which the MCC value was 0.399, and the values
of Sn, Sp, and Acc were higher than 87%.The obtained results of
Ca2+, Mg2+, Na+, K+, CO2−

3 , and SO2−
4 ligands were lower, the

MCC values were lower than 0.200, in which the predicted result
of Na+ was the lowest, with the MCC value of 0.076 and the Acc
value of 73.5%.

Because the independent test datasets of 10 metal ion ligands
constructed in this article were the same as those used in the
literature (Cao et al., 2017), the results obtained by independent
test in this article were compared with those obtained by SVM in
the literature (Cao et al., 2017). The results of the independent
test in the literature (Cao et al., 2017) are shown in the brackets
of Table 5.

Comparing MCC value, it is obvious that the independent
test results obtained by the RF algorithm were better than those
obtained by the SVM. In terms of values of the Acc and Sp, the RF
algorithm achieved better predicted results of metal ion ligands,
except for Na+ and K+ ligands. As for the Sn value, the prediction
results of Co2+, Mg2+, Na+, and K+ ligands were better than
those obtained by SVM, whereas other ligands were slightly
lower. In general, the model constructed in this article was
practical on the metal ion ligand–binding residues prediction.

Comparison With SVM and ANN
Algorithms
It is objective to compare our proposed methods with previous
model using the same dataset. From Tables 3, 5, we found that
most of the prediction results of this work were better than those
of previous work (Cao et al., 2017).

In order to test the performance of our proposed method,
we further made a comparison between RF and SVM and
ANN algorithms on the same dataset, feature parameters,
classification strategy, and evaluation methods. We inputted the
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same feature parameters extracted in this article into SVM and
ANN algorithms to identify ion ligand–binding residues. The
results obtained by the independent test are shown in Table 6. As
seen, the prediction results of RF algorithm were best, although
the results of Na+ and K+ ligands were slightly lower. At the
same time, we can see that, when using the SVM on the same
dataset, the prediction results obtained by selecting the feature
parameters of this article were also better than those obtained in
literature (Cao et al., 2017).

The Optimization of Model
Because the reclassified phi and psi angles have a good effect
on the prediction of ion ligand–binding residues, we further
classified the phi and psi angles in the other way to optimize
the prediction model for each ion ligand. At first, we classified
the phi and psi angles by distribution. Therefore, we tried to
classify the phi and the psi angles according to peak value. Taking
Mn2+ ligand as an example, according to Figure 3, phi angle was
divided into four categories and defined by function f(x):

f (x) =















A, x ∈ [−180◦,−105◦]
B, x ∈ (−105◦,− 75◦]
C, x ∈ (−75◦,− 60◦]
D, x ∈ (−60◦, 180◦]

(12)

According to Figure 4, psi angle was divided into three categories
and defined by function p(x):

p(x) =







A, x ∈ [−180◦,−15◦]
B, x ∈ (−15◦, 75◦]
C, x ∈ (75◦, 180◦]

(13)

The two classifications of phi angle and the two classifications
of psi angle were combined, respectively (Figure 9). Their
composition and 2L-dimensional position conservation
information were extracted as the characteristic parameters.

The composition and 2L-dimensional position conservation
information of amino acids, secondary structure, RSA,
dihedral angle, and information entropy of polarization
charge and hydrophilic–hydrophobic were used as characteristic
parameters and inputted into the RF algorithm to predict
ion ligand–binding residues. The optimal prediction
model and the corresponding prediction result of each ion
ligand obtained by the five-fold cross-validation are shown
in Table 7.

As seen, not all ion ligand–binding residues were sensitive to
the first combination way of phi and psi angles. For example,
the optimal prediction model of Mn2+ ligand corresponded to
the second combination way of phi and psi angles, and the
optimal prediction model of Zn2+ ligand corresponded to the
third combination way of phi and psi angles. It can be seen
that the different reclassification and combination ways of phi
and psi angles have an important impact on the prediction
of ion ligand–binding residues. Therefore, when using the

reclassified dihedral angle information to predict ion ligand–
binding residues, different classifications and combination ways
of dihedral angle (phi and psi angles) should be considered
to optimize the prediction model of binding residues of each
ion ligand.

CONCLUSION

Many proteins perform their functions by interacting with ion
ligands. To illustrate the protein functions, it is a significant work
to recognize the ion ligand–binding residues. In this article, based
on optimized dihedral angle, we predicted the 14 ion ligand–
binding residues from the BioLip database by RF algorithm and
obtained improved results. During the progress, the dihedral
angle information was statistically analyzed and reclassified.
Besides, the new extraction methods of feature parameter
were proposed, in which the position weight matrices were
constructed to extract the 2L-dimensional position conservation
features; the polarization charge information and hydrophilic–
hydrophobic information of amino acids were extracted by
using information entropy. These changes in extraction methods
improved the predicted results of ion ligand–binding residues.
In particular, the reclassification information of the dihedral
angle has significantly improved the prediction results of the
ion ligand–binding residues, indicating that the reclassification
information of the dihedral angle is an important feature
parameter for the identification of the ion ligand–binding
residues. By classifying and combining phi and psi angles,
we optimized the prediction model for each ion ligand–
binding residue. Thus, with different classification standards and
combined methods of the dihedral angle (phi and psi angles),
it can further improve the prediction results of ion ligand–
binding residues.
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