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Background: Mycobacterium tuberculosis is one of the deadliest pathogens in
humans. Co-infection of M. tuberculosis with HIV and the emergence of multi-drug-
resistant tuberculosis (TB) constitute a serious global threat. However, no effective
anti-TB drugs are available, with the exception of first-line drugs such as isoniazid. The
cell wall of M. tuberculosis, which is primarily responsible for the lack of effective anti-
TB drugs and the escape of the bacteria from host immunity, is an important drug
target. The core components of the cell wall of M. tuberculosis are peptidoglycan,
arabinogalactan, and mycotic acid. However, the functional genome and metabolic
regulation pathways for the M. tuberculosis cell wall are still unknown. In this study,
we used the biclustering algorithm integrated into cMonkey, sequence alignment,
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and other
bioinformatics methods to scan the whole genome of M. tuberculosis as well as to
identify and statistically analyze the genes related to the synthesis of the M. tuberculosis
cell wall.

Method: We performed high-throughput genome-wide screening for M. tuberculosis
using Biocarta, KEGG, National Cancer Institute Pathway Interaction Database (NCI-
PID), HumanCyc, and Reactome. We then used the Database of Origin and Registration
(DOOR) established in our laboratory to classify the collection of operons for
M. tuberculosis cell wall synthetic genes. We used the cMonkey double clustering
algorithm to perform clustering analysis on the gene expression profile of M. tuberculosis
for cell wall synthesis. Finally, we visualized the results using Cytoscape.

Result and Conclusion: Through bioinformatics and statistical analyses, we identified
893 M. tuberculosis H37Rv cell wall synthesis genes, distributed in 20 pathways,
involved in 46 different functions related to cell wall synthesis, and clustered in 386
modules. We identified important pivotal genes and proteins in the cell wall synthesis
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pathway such as murA, a class of operons containing genes involved in cell wall
synthesis such as ID6951, and a class of operons indispensable for the survival of the
bacteria. In addition, we found 41 co-regulatory modules for cell wall synthesis and five
co-expression networks of molecular complexes involved in peptidoglycan biosynthesis,
membrane transporter synthesis, and other cell wall processes.

Keywords: Mycobacterium tuberculosis, cell wall, module, regulatory networks, enrichment analysis

INTRODUCTION

Mycobacterium tuberculosis is considered one of the world’s
most successful pathogens. The disease caused by it has been a
major global health challenge (Sher et al., 2020). Since the 1950s,
the discovery of first-line anti-tuberculosis (TB) drugs such as
isoniazid, rifampicin, and ethambutol has effectively improved
the cure rate and survival rate of TB patients. However, the
emergence of multiple forms of drug-resistant strains, including
a single isoniazid-resistant strain, a multi-drug-resistant strain,
and a widely drug-resistant strain, has again made M. tuberculosis
one of the leading causes of death worldwide, with a mortality
of 1.5 million people in 2018 (Merker et al., 2020). Co-infection
of HIV and M. tuberculosis increases the burden of curing TB;
therefore, the development of new and effective anti-TB drugs is
critical (Turner et al., 2020).

The cell wall structure of M. tuberculosis is unique
and is extremely important for the invasion, survival, and
reproduction of the bacterium in a host. The main reason
for the difficulty in developing drugs for M. tuberculosis
is that the bacterium has a hard cell wall and very low
permeability. The development of M. tuberculosis resistance is
also associated with the cell wall. Howard et al. (2018) found
that M. tuberculosis carrying a rifampicin-resistance mutation
reprograms macrophage metabolism through cell wall lipid
changes. Maitra et al. (2019) described M. tuberculosis cell
wall peptidoglycan as its fatal weakness. Thus, the cell wall of
M. tuberculosis is an important target for the development of
new anti-TB drugs.

In this study, we performed high-throughput screening of
M. tuberculosis cell wall synthesis genes and screened key genes
using bioinformatics and statistical methods to obtain new key
targets for the development of anti-TB drugs.

MATERIALS AND METHODS

Synthetic Gene Data for M. tuberculosis
H37Rv Cell Wall
The relevant data forM. tuberculosis cell wall synthesis genes used
in this study were obtained from the screening and integration
of the following databases: TubercuList (Lew et al., 2011), TBDB
(Galagan et al., 2010), PATRIC (Gillespie et al., 2011), MycoDB
(Chaudhuri, 2009), GenoMycDB (Catanho et al., 2006), MyBASE
(Zhu et al., 2009), MabsBase (Heydari et al., 2013), and MGDD
(Vishnoi et al., 2008).

Sequence Alignment
We used online software1 to compare the amino acid
sequence of M. tuberculosis H37Rv with the amino acid
sequence of Mycobacterium smegmatis, Mycobacterium leprae,
Mycobacterium bovis, and M. tuberculosis H37Ra. Genes with
homology greater than 60% were selected (Kuroda et al., 2001;
Hellweger et al., 2014).

Screening Essential Genes
The whole genome information for M. tuberculosis H37Rv
was obtained from the National Center for Biotechnology
Information (NCBI) and annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
with KEGG Orthology (KO) in accordance with the “binary
relationships” provided by the KEGG Brite database. The types
and functions of cell wall synthesis genes were determined using
Clusters of Orthologous Groups with KO (KO COG) and the
P-Score and E-Score for each KO were calculated. The E-Score
was calculated with KO using the same path annotation and the
P-Score was determined from the e-score. The P-Score-KEGG
and P-Score-COG were also calculated based on the KEGG and
COG annotations (Kong et al., 2019). These two values were in
the range of 0 to 1, with 0 indicating a lack of necessity and 1
indicating necessity.

Screening Operon Set
We applied the operon Database of Origin and Registration
(DOOR) (Cao et al., 2019) established in our laboratory to
classify the operon collection of cell wall genes. The DOOR
database uses two prediction procedures. For operon genomes
with a large number of experimental verifications, we used a
non-linear classifier to train the known operon subsets based on
the general characteristics of the genome and the characteristics
of specific genomes. For genomes without experimental data,
we used linear classification to predict operons for the general
characteristics of the genome.

Screening Co-regulatory Gene Modules
We selected all M. tuberculosis H37Rv gene chips in NCBI
after filtering out irrelevant chip data and performed min-
max normalization on each chip. We used the cMonkey
double clustering algorithm to establish seed clusters (Waltman
et al., 2010). We calculated the P-values of three such model
components based on the amount of co-expressed genes,
upstream sequences, and association networks. We optimized

1www.ncbi.nlm.nih.gov/blast/
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seed clusters by adding or removing related genes and proceeded
to build new clusters. We used the Monte Carlo procedure
to calculate the probability of each gene or condition sampled
as a dual cluster gene with the conditional probability at each
stage. Through these procedures, the genomic co-regulation
network was identified.

Functional Enrichment Analysis
We performed a Gene Ontology (GO) analysis of the target
genes using the comprehensive database Davide2 for enrichment
analysis, annotation, and visualization. We used the Biocarta,
KEGG, National Cancer Institute Pathway Interaction Database
(NCI-PID), HumanCyc, and Reactome pathway databases for
pathway enrichment of the target genes. P < 0.05 was considered
statistically significant when the threshold was ≥ two genes. We
used R software and the Perl language to visualize the enrichment
results. We also installed “Rcpp,” “ggplot2,” and other related
software packages (Postma and Goedhart, 2019).

Construction of Gene Regulatory
Network
The protein–protein interaction (PPI) network was constructed
using a gene interaction search tool database (STRING) and
Cytoscape 3.6.1 was used for visualization. The Minimal
Common Oncology Data Elements (MCODE), a Cytoscape
network analysis plug-in for molecular complex detection, was
used to deeply mine the existing modules in the network structure
to find the core gene clustering modules with the highest
levels of interaction.

RESULTS

Statistical Analysis of Cell Wall-Related
Genes in Mycobacteria
Through database annotation and sequence alignment, we
screened the cell wall synthesis genes for mycobacteria. As
shown in Table 1, there were 892 cell wall synthesis genes for
M. tuberculosis H37Rv, 888 for M. tuberculosis H37Ra, 780 for
M. bovis, 508 for M. smegmatis, and 454 for M. leprae.

We used the operon database DOOR to assess the module
distribution of cell wall synthesis genes. In M. tuberculosis H37Rv,
893 genes related to cell wall synthesis were located in 684

2https://david.ncifcrf.gov/

TABLE 1 | Cell wall synthesis network module in mycobacteria.

Strain Cell wall-related
genes

Essential genes
in cell wall

Operon Pathway

H37Rv 892 236 684 20

H37Ra 888 323 689 15

M. leprae 454 149 455 6

M. bovis 780 160 636 7

M. smegmatis 508 92 394 11

operons and 37 operons contained three or more cell wall-related
genes. Multiple genes located in an operon are usually regulated
by the same control region and constitute a transcription unit.
The 149 genes contained in these 37 operons may be key genes
that play an important role in the synthesis of the M. tuberculosis
cell wall. There are four sets of operons, which contain more
than seven genes related to the cell wall, including operons
with ID numbers 7375, 7760, 6927, and 7590 displayed in the
DOOR database. The ID number of the operon with the largest
number of genes is 7558, up to 9. The genes yrbE1A and yrbE1B
encode cell wall membrane proteins (Pasricha et al., 2011). The
proteins encoded by mce3A and mce3B are not only present
in the cell wall, but are also important for the virulence of
M. tuberculosis during host invasion (Ahmad et al., 2005); 37
pairs of operons in this pathway and their details are shown in
Supplementary Table S1.

The main cause of infection of the host with M. tuberculosis
is the virulence factor. We obtained all coding genes related to
virulence of TB from the VFDB database, of which 115 genes
are cell wall synthesis genes. The cell wall genes that belong
to virulence included the mmpl family which encoded cell wall
lipid transporters, the cell wall mycolic acid synthase mmA4,
and Rv2224c with little research and unknown specific function.
Genes related to cell walls and virulence factors are shown in
Supplementary Table S2.

Function Analysis of Cell Wall-Related
Genes
Essential genes are often critical for sustaining the activities of
living organisms. As shown in Table 1, there are 236 essential
genes related to cell wall synthesis in the whole genome of
M. tuberculosis H37Rv. These genes are located in 161 operons,
among which there are 10 operons containing more than three
essential genes and five operons with more than four essential
genes. Three or more operons have five or more essential genes.
The six genes controlled by the operon ID6951 are all required
genes that play key roles in cell wall synthesis. The six required
genes include eccA3-E3, a member of the ESAT6 secretory system
(ESX), and membrane-anchored mycosin mycP3. ESX secretion
systems mediate various functions, participate in the metabolism
of zinc and iron, and play an important role in cell wall integrity
(Gaur et al., 2017).

We used KEGG, BioCyc, and Reactome pathway data
to analyze cell wall synthetic genes (Figures 1A,B). The
892 cell wall synthesis genes in the H37Rv strain were
distributed in 39 signaling pathways. The essential gene
murA participates in the metabolic pathway (KEGG mtu01100),
peptidoglycan biosynthesis (KEGG mtu00550), and UDP-
N-acetylmuramoyl-pentapeptide biosynthesis I (BioCyc
pwy6387). AftB is involved in the super pathways of mycolyl-
arabinogalactan-peptidoglycan complex biosynthesis (BioCyc
pwy6404) and Lipoarabinomannan biosynthesis (KEGG
mtu00571). MurA and aftB are thought to be key node
genes in the cell wall biosynthesis pathway. In addition, we
identified some genes whose functions are currently unknown
but which are located in important pathways such as the
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mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
(BioCyc PWY-6397) pathway.

We annotated the gene functions using GO and identified
46 GO items in the 892 cell wall synthesis genes. As shown in
Figure 2, there were 19 items related to biological processes (BPs),
nine items related to cell components (CCs), and 18 items related

to molecular function (MF). The most significant BP terms were
related to cell wall organization (GO:0071555), regulation of
cell shape (GO:0008360), and peptidoglycan biosynthetic process
(GO:0009252), as shown in Figure 2A.

We also visualized and clustered the enriched GO and KEGG
terms using the cluego in Cytoscape (Figure 3). We found

FIGURE 1 | Enrichment of cell wall-related gene pathways in the standard strain of M. tuberculosis H37Rv. (A) The top 20 pathways with the lowest p-values
(<0.05) for KEGG were selected and a histogram was created. (B) The top 20 pathways with the lowest p-values (<0.05) for Biocarta, KEGG, NCI-PID, HumanCyc,
and Reactome are shown in a bubble chart.

FIGURE 2 | Functional significance analysis of cell wall-related genes in the standard strain of M. tuberculosis H37Rv. (A) Histogram showing the top 20 pathways
identified in function analysis of cell wall-related genes. (B–D) Bubble charts showing the top 20 pathways in BP, CC, and MF.
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that most genes are enriched in important cell wall-related
pathways, such as lipid biosynthetic process, peptidoglycan-base
cell wall synthesis, lipid synthesis, and 3-oxoacyl-acyl-carrier-
protein sythase activity. In addition, it is closely related to
the pathogenicity of the host, symbiosis of the host, secretion,
and pathogenesis.

Analysis of the M. tuberculosis Cell
Wall-Related Modules
By screening the M. tuberculosis cell wall modules using
gene chips and the cMonkey double clustering algorithm,
we found that the total number of M. tuberculosis modules
was 600, among which 386 contained the target genes for
cell wall synthesis.

Among the modules containing the target genes, 41 modules
contained more than four target genes. Among these 41 modules,
16 were related to the synthesis of sugar in the cell wall,
such as bicluster_0098 for the mannosyl transfer process and

bicluster_0329 for the peptidoglycosyl transfer process. Fifteen
modules were related to the synthesis of lipids. The modules
bicluster_0068 and bicluster_0012 were related to the synthesis
of mycobacterial acid (Saelens et al., 2018). There were 10
modules related to cell wall surface proteins and virulence.
Among them, bicluster_0384 contained the largest number of
target genes for cell wall synthesis in a single module. The
nine genes contained in this module are all involved in the
biosynthetic process for arabinose. For example, the Rv0129c
coding protein plays a role in the addition of mycosyl residues
in the cell wall arabinose (Jiang et al., 2020) and Rv3806c
plays a role in the synthesis of decenyl phosphate D-arabinose
(Safi et al., 2013).

In the process of gene transcription, transcription factors
complete the binding of proteins to DNA by identifying specific
sequences of the double helix structure (motif). The motif
is short and conservative, consisting of about 20 base pairs.
Many key regulatory pathways in the cell are usually recruited
by a motif (Ivarsson and Jemth, 2019). Genes located in a

FIGURE 3 | The enrichment map of GO annotation and KEGG pathway. Node size represents the number of cell wall genes expressed in specific terms. The edge
thickness represents the number of genes shared by the two items connected by the edge.
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module are regulated by a transcription factor and have the
same motif. We mapped the motif base distribution for the four
modules with the largest number of cell wall genes, as shown
in Figures 4A–D.

Establishment of PPI Network and
Screening of Key Genes
We enriched the function of cell wall synthesis gene and
constructed the network between cell wall synthesis gene and
gene function. As shown in Figure 5, the cell wall genes
screened are mainly related to 18 functions, including fatty
acid biosynthesis process, DIM cell wall layer assembly, and
plasma membrane.

Using the STRING database, we analyzed the interaction
relationships between the cell wall synthesis genes of
M. tuberculosis and constructed a PPI network of cell wall-
related genes after deleting unconnected nodes. As shown in
Figure 6A, in order to identify the key genes in the network
diagram, we used MCODE to screen out five important subnets
and several related genes under the condition of k-score = 2.

As shown in Figure 6B, Subnet 1 contains 14 key genes in
the cell wall peptidoglycan synthesis process. Alr, the ddla coding
protein, plays a role in the synthesis of alanine peptidoglycan
(Bhat et al., 2017; Meng et al., 2019). Ftsw, ftsz, and pbp3-
encoded proteins can form a ternary complex to potentially

regulate peptidoglycan biogenesis. Roda glycosyltransferase is
also involved in peptidoglycan synthesis (Wu et al., 2016).
Figure 6C shows that Subnet 2 contains 13 ESX-1 secretory
system-related genes. The ESX-1 secretory system is not only
an important determinant of M. tuberculosis virulence, but is
also closely related to cell wall synthesis (Wong, 2017). After
elimination of the espa gene encoding the ESX-1 substrate,
M. tuberculosis bacteria lose the ability to synthesize a complete
cell wall structure (Chen et al., 2013). ESX-A is an early secreted
antigen target that promotes the synthesis of the ESX-1 substrate
and interacts with the cell membrane and cell wall of bacteria.
Subnet 3 (Figure 6D) contains membrane lipid transporters.
In Subnet 4 (Figure 6E), ddrA-C is not only the key gene in
cell wall synthesis, but also the key gene for drug resistance
in M. tuberculosis bacteria (Selvam et al., 2013). The other
eight genes are related to the synthesis of lipid phthiocerol
dimycocerosates (PDIM) in the cell wall. Among them, ppsA-E
encodes the PDIM catecholic dipolyoleate (Gopal et al., 2016).
All seven genes in Subnet 5 (Figure 6F) are regulated by the
mymA operon and play a role in cell wall fatty acid modification
(Singh et al., 2005).

Through PPI, we identified some node genes that are crucial in
cell wall biosynthesis of important sugars and lipids. In Figure 7,
the petal diagram shows the genes contained in the top five
annotations in BP, MF, and CC and the genes contained in the
first five paths in KEGG BioCyc and Reactome. We selected the

FIGURE 4 | Motif analysis results with the largest number of cell wall genes in a single module cluster. (A–D) The motif base distribution of the four modules with the
largest number of cell wall genes. In each BP base distribution in the motif, the size of the base is proportional to the corresponding frequency.
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FIGURE 5 | Cell wall synthesis gene and gene function regulatory network. Diamond-shaped nodes and rectangular nodes, respectively, represent gene functions
and genes related to cell wall synthesis.

top five groups with the lowest P-values in all enrichments. This
is to intuitively demonstrate the functional enrichment pathway
for the co-regulation of key genes. The key genes for this pathway
are shown in Supplementary Table S3.

DISCUSSION

As an important target for the development of new anti-TB
drugs, the M. tuberculosis cell wall has attracted increasing
attention. Maan and Kaur (2019) discovered Rv2223c in the
cell wall of M. tuberculosis, which is a carboxyl transferase.
Bothra et al. knocked out mmpl11 and the resulting mutant
strain exhibited a change in the biological activity related to
mycolate wax and long-chain triacylglycerol. The knockout
strain was also damaged compared to the wild strain in vitro
granuloma model, thus demonstrating the important role of

mmpl11 in cell wall and biofilm syntheses (Bothra et al., 2018).
Quigley et al. (2017) found that the expression of lipid PDIM
in the cell wall of M. tuberculosis was negatively regulated by
a novel transcription repressor, Rv3167c. Although extensive
M. tuberculosis cell wall-related research has been conducted,
there is still no comprehensive summary of the key genes
involved in the process of cell wall synthesis.

In this study, we first screened the genes related to cell
wall anabolism using multiple M. tuberculosis gene annotation
databases. Next, we screened the essential genes for cell wall
synthesis by GO functional annotation. We then evaluated the
distribution of cell wall synthesis genes in the whole genome
using the DOOR database established in our laboratory. Using
the above methods, we obtained a lot of valuable information.
For example, we identified the entire operon containing genes
involved in cell wall synthesis, which is necessary for the
survival of the bacterium. We employed module analysis and
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FIGURE 6 | PPI network of cell wall-related genes of M. tuberculosis. (A) Protein interaction networks visualized with Cytoscape. (B) Molecular complex detection
(MCODE) with deep excavation of the core subnet. A modular gene involved in peptidoglycan synthesis in Subnet 1. (C) The gene cluster for the ESX-1 secretory
system. (D) Gene clusters encoding membrane lipid transporters. (E) Key gene clusters for cell wall resistance. (F) Fatty acids modify gene clusters.
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FIGURE 7 | The key genes with multifunctional correlation intermingle through multiple pathways screened for the cell wall-related genes of M. tuberculosis.
Intersecting genes in the five pathways with the most significant differences in KEGG (A), BP (B), CC (C), and MF (D) are displayed in a petal diagram.

the cMonkey double clustering algorithm to cluster the cell wall
synthesis genes. We also identified key genes by screening co-
regulatory clustering modules. Through functional analysis of cell
wall synthesis genes by GO and KEGG, we screened the key genes
for the synthesis of important components of the cell wall, such as
mycotic acid and peptidoglycan, and the key hub genes involved
in multi-pathway synthesis. Finally, we created a PPI network and
identified five important subnets through MCODE analysis. The
intrinsic relationship between proteins in the network was used
to deeply explore the genes. Molecular complexes containing key
genes were extracted based on closely related regions in the PPI.
Finally, we obtained the five most valuable subnets. Using Subnet
3 as an example, all genes contained in this subnet are part of
the mammalian cell entry (MCE) operon (Gioffre et al., 2005).

The MCE operon is present in all genera of mycobacteria
and actinomycetes. However, the number of MCE operons in
different strains varies, with MCE 4 in M. tuberculosis, MCE 3 in
M. smegmatis, and MCE 1, 2, and 4 inM. bovis. It is unknown why
the MCE 3 operon is absent from M. bovis (Kumar et al., 2005).
The MCE operons help M. tuberculosis ingest cholesterol in the
host to keep the bacteria alive. Lack of the MCE operon causes
a serious imbalance of lipid content in the M. tuberculosis cell
wall. Sally et al. reported free mycolic acid accumulation in the
cell wall of the MCE 1 operon mutant strain of M. tuberculosis
(Singh et al., 2018). However, the genes contained in Subnet 4,
such as ppsa and ppsb, were significantly altered in drug-resistant
bacteria (Cantrell et al., 2013). We believe that ppsa changes the
expression of PDIM in the cell wall by changing the approach
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of the multi-subunit non-iterated polyketide synthase system
(Vergnolle et al., 2015). This makes the bacterial cell wall
thicker and causes bacterial drug efflux. We used bioinformatics
and statistical methods to comprehensively scan all the genes
synthesized in the M. tuberculosis cell wall and to screen out
new targets that can be used as new anti-M. tuberculous cell wall
targeting drugs.
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