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Observing, classifying and assessing human movements is important in many applied

fields, including human-computer interface, clinical assessment, activity monitoring and

sports performance. The redundancy of options in planning and implementing motor

programmes, the inter- and intra-individual variability in movement execution, and the

time-continuous, high-dimensional nature of motion data make segmenting sequential

movements into a smaller set of discrete classes of actions non-trivial. We aimed to

develop and validate a method for the automatic classification of four popular functional

fitness drills, which are commonly performed in current circuit training routines. Five

inertial measurement units were located on the upper and lower limb, and on the trunk

of fourteen participants. Positions were chosen by keeping into account the dynamics

of the movement and the positions where commercially-available smart technologies

are typically secured. Accelerations and angular velocities were acquired continuously

from the units and used to train and test different supervised learning models, including

k-Nearest Neighbors (kNN) and support-vector machine (SVM) algorithms. The use of

different kernel functions, as well as different strategies to segment continuous inertial

data were explored. Classification performance was assessed from both the training

dataset (k-fold cross-validation), and a test dataset (leave-one-subject-out validation).

Classification from different subsets of the measurement units was also evaluated

(1-sensor and 2-sensor data). SVM with a cubic kernel and fed with data from 600ms

windows with a 10% overlap gave the best classification performances, yielding to

an overall accuracy of 97.8%. This approach did not misclassify any functional fitness

movement for another, but confused relatively frequently (2.8–18.9%) a fitness movement

phase with the transition between subsequent repetitions of the same task or different

drills. Among 1-sensor configurations, the upper arm achieved the best classification

performance (96.4% accuracy), whereas combining the upper arm and the thigh sensors

obtained the highest level of accuracy (97.6%) from 2-sensors movement tracking.
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We found that supervised learning can successfully classify complex sequential

movements such as those of functional fitness workouts. Our approach, which could

exploit technologies currently available in the consumer market, demonstrated exciting

potential for future on-field applications including unstructured training.

Keywords: automatic classification, inertial measurement unit, sport, on-field testing, activitymonitoring, machine

learning, wearable sensors

INTRODUCTION

The problem of tracking, identifying and classifying human
actions has received increasing interest over the years, as it plays
a key role in many applied contexts, such as human-computer
interface (Popoola and Wang, 2012; Sarig Bahat et al., 2015;
Quitadamo et al., 2017; Bachmann et al., 2018), daily-life activity
monitoring (Mannini and Sabatini, 2010; Cheng et al., 2015;
Chetty and White, 2016), clinical assessment (Rawashdeh et al.,
2016; Arifoglu and Bouchachia, 2017; Howell et al., 2017) and
sports performance (Attal et al., 2015; Ghazali et al., 2018; Hsu

et al., 2018). The development of unobtrusive technologies
for motion capture (e.g., wearable inertial measurement
units—IMUs), their widespread integration in relatively cheap,

commercially available devices (e.g., smartphones, watches,
activity trackers, heart rate monitors, sensorized insoles), and the
push toward healthier, more active life styles, have generated a
multitude of existing and potential applications where automatic

movement classification and assessment is fundamental (Attal
et al., 2015; Cheng et al., 2015; Cust et al., 2019).

Sport coaching and training still largely rely on visual
observation and subjective feedback, and they could benefit
from quantitative input supporting decision making. Having
quantitative real-time information about the amount, quality
and intensity of the work carried out may play an important
role at multiple levels. It could inform coaching and strength
& conditioning planning, help monitoring training load, and
evaluating the quality of movement performance (i.e., the
outcome achieved) and movement execution (i.e., technique).
It could also help improving injury prevention, as continuous
monitoring could enable systematic screening of movement
behavior, help identifying risk factors and mechanisms of injury,
and support decision making in terms of pre- and rehabilitation
programmes (Jones and Wallace, 2005).

Motion capture has traditionally relied on optical-based
solutions, but recent development in microelectronics has
generated increased interest and research efforts into wearable
technologies (Adesida et al., 2019). Wearable systems are
particularly suitable to sport-specific needs (van der Kruk
and Reijne, 2018), since: (1) sport usually takes place in
uncontrolled and unstructured settings, with environmental
conditions difficult to be predicted a priori (e.g., weather,
interaction with equipment and other people) and many possible
measurement interferences (e.g., electromagnetic noise); (2) the
size of the acquisition volume inherently depends on the type of
practiced sport (e.g., team vs. individual, indoor vs. outdoor); (3)
sensors used to capture sports movements should be both robust

and non-obtrusive for the athlete (i.e., ecologically transparent).
Systems based on wearable devices, including low-cost activity
trackers, smartwatches and smartphones (Ahmad et al., 2017),
have kept evolving and are widely available for the consumer
market, including clinical uses and sports applications (Ghazali
et al., 2018; Hsu et al., 2018). Wearable technologies for motion
analysis are predominantly inertial measurement units (IMUs)
(Davila et al., 2017), which, thanks to their low cost and minimal
obtrusiveness, represent an optimal solution for tracking and
assessing sports movement on-field (Hsu et al., 2018; van der
Kruk and Reijne, 2018; Adesida et al., 2019).

Despite the widespread of wearable technology in both
applied and research environments, the use of wearable data
as input of algorithms for the detection and classification of
human actions remains non-trivial, especially in sport. Indeed,
sport activities typically involve a large variety of movements,
execution technique demonstrates inherent inter- and intra-
individual variability, and data is of high-dimensionality (Endres
et al., 2012; Hsu et al., 2018). For this reason, no “one-size-
fits-all” approach exists (Crema et al., 2019), and bespoke
solutions have been reported to address only specific needs,
including: recognition/classification (i.e., “what type” of task a
subject performs) or identification of the achieved performance
(i.e., “how good” the subject performs the task, with respect
to a specific reference). In this perspective, the literature has
focused the analysis on very specific sport activities and tasks
(Cust et al., 2019).

Among fitness activities, functional training combines
aerobic conditioning, weightlifting, interval training, balancing,
gymnastics, and functional fitness movements (i.e., exercises that
mimic daily life requirements, such as lifting weights) performed
at high level of intensity (Liebenson, 2006). Functional fitness
has been shown to improve cardiovascular capacity, muscle tone
and central nervous system efficiency (Barbieri et al., 2019; Singh
and Saini, 2019), but may also increase risk of musculoskeletal
injuries affecting shoulder, lower back and knee joints (Gianzina
and Kassotaki, 2019). It is therefore important to provide athletes
with reliable feedback about their efforts, and guide them toward
safe movement technique. The availability of a quantitative
system for the monitoring of movement completion and overall
performance would aid coaching and judging. Functional fitness
workouts often consist of continuous sequences of movements,
and the identification and assessment of individual elements
within the sequence currently relies on visual observation and
the expertise of the coach. The wide spectrum of situations in
terms of dynamics and body part involved represents a difficult
challenge for the automatic classifications of activities and makes
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it a good proof of concept for the scope of our study. Being able
to identify specific movements within a complex movement
sequence could be the starting point of a number of useful
applications such as counting the number of movement tasks
completed, and hence assessing technique and training load for
both performance and injury prevention purposes.

We aimed to develop and validate a bespoke algorithm for
the automatic recognition and classification of four popular
functional fitness drills, when performed in a continuous
workout. In particular, we wanted to test the capability of
supervised machine learning approaches when fed with data
from a network of five wearable inertial sensors on the body.
Also, we carried out a sensitivity analysis, which could indicate
whether subsets of the available measuring units could still
provide acceptable classification performance.

MATERIALS AND METHODS

Population
Fourteen healthy participants (11 males and three females, age
18–50) with at least 6-months experience in functional training
activities volunteered to take part in this study. All participants
were physically active, free from any neurological disease and
musculoskeletal condition at the time of testing, and familiar
with the movement tasks to be performed. The study protocol
received ethical approval by the local research ethics committee
(reference number EP 17/18 247). Volunteers were informed

about experimental procedures and signed informed consent
before participating. Based on the existing literature (Cust et al.,
2019) and the exploratory nature of the study, a sample size >12
was deemed adequate to address the research objectives.

Experimental Setup
Five wearable units (Trigno Avanti Wireless EMG System,
Delsys Inc., USA) were secured to the participants via double-
sided hypoallergenic tape and elastic straps. IMUs were located
onto specific anatomical landmarks (Figure 1), which included
the left ankle, thigh, upper arm and wrist, and trunk (L5-
S1 level). These positions were chosen to: (a) reproduce the
locations where commercially available devices with embedded
motion monitors (e.g., smart watches, smart phones, shoe-
sensors) could be positioned; and, (b) to capture whole body
information and drill dynamics whilst allowing the natural
execution of movements, avoiding obstruction or discomfort for
the subject. The wearable units embed tri-axial accelerometers,
gyroscopes and magnetometers and were able to synchronously
communicate with the system base station via Bluetooth Low
Energy (BLE) wireless protocol ensuring an acquisition rate of
148.15 Hz.

Accelerations and angular velocities (±16 g, ±2,000◦/s) were
acquired continuously throughout the workout by means of
the wearable units; magnetometer measurements were excluded
due to the presence of ferromagnetic materials, very close to
the acquisition volume. Data coming from the sensors were

FIGURE 1 | Experimental setup and movement tasks, where the position of IMU sensors has been highlighted. (A) “Clean and Jerk,” (B) “Box Jump,” (C) “American

Swing,” and (D) “Burpee”. All the five sensors were worn by the participants throughout the execution of the protocol.
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FIGURE 2 | Schematic representation of the execution stages of the fitness training drills used in this study: (A) “Clean and Jerk,” (B) “American Swing,” (C) “Box

Jump,” and (D) “Burpee”.

synchronized with a commercial video-camera (Oqus Video
210c, Qualisys AB, Sweden; 50Hz) via a dedicated trigger
module (Trigger Module, Delsys Inc. USA) connected to
both systems. The video camera was positioned in front of
workout station, thus allowing the correct acquisition of all the
performed movements.

Experimental Protocol
Participants were asked to execute a workout session including
four popular functional training drills (Figure 2). These
consisted of:

- “Clean and Jerk” (C&J). A weighted barbell is lifted from the
ground to over the head in two subsequent movements: the
“clean,” where the barbell is pulled from the floor to a racked
position across the shoulders, and “jerk,” where the barbell is
raised above the head, and a stable position is achieved by
keeping straight legs and arms, and feet, torso and barbell lie
in the same plane.

- “American Swing” (AS). A kettlebell is grasped with both hands
and swung from below the groin to above the head, keeping
the arms straight. The upward momentum of the kettlebell is
predominantly generated by the explosive extension of the hip.

- “Box Jump” (BJ). The participant start from a standing position
in front of a box, performs a countermovement jump to land
on top of it, achieves a stable upright position, and completes
the task by returning to the start position.

- “Burpee” (BP). A four-stage exercise, where the participant
starts from a standing position, squats placing the hands on
the floor, kicks back into a plank position while keeping the
arms extended, returns in the squat position and, jumps up
extending the upper limbs overhead.

All the movement tasks were illustrated to the participants at
the start of the session, following the standards approved for
competition (CrossFit, 2019; WODstar, 2019). A 50 cm box was
used in the Box Jump exercise for all participants, whereas drills
with an added resistance were differentiated between female and
male participants, and set to, respectively: 20 and 40 kg in the
Clean & Jerk; 12 and 16 kg in the American Swing.

After a self-directed warm up, and some repetitions to
familiarize with the experimental setup, each participant
performed 3 sets of functional fitness activities structured
as follows:

Set 1 (classifier training dataset):

- 3× C&J+ 3× BJ+ 3× AS+ 3× BP

Set 2 (workout simulation session, classifier test dataset):

- 1st Round: 1× C&J+ 1× BJ+ 1× AS+ 1× BP
- 2nd Round: 2× C&J+ 2× BJ+ 2× AS+ 2× BP
- 3rd Round: 3× C&J+ 3× BJ+ 3× AS+ 3× BP
- 4th Round: 4× C&J+ 4× BJ+ 4× AS+ 4× BP

Set 3 (classifier training dataset):

- 3× C&J+ 3× BJ+ 3× AS+ 3× BP

Five-minute recovery was allowed between sets, whereas
movements were executed sequentially with no rest allowed
between repetitions of the same exercise, different exercises
or rounds. This was done to ensure ecological validity with
respect to a real functional fitness training session, and to
challenge the capability of the classifying algorithm to recognize
movements when they are performed without clear breaks
in-between them. The order of movement execution was
randomized between participants, to avoid possible bias due to
repetitive patterns.
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TABLE 1 | Features extracted from each time window of each signal collected

(from accelerometers and gyroscopes), and then used as input of the

classification algorithm.

Time domain Frequency domain

Mean value (Magnitude) Mean value

Standard deviation Power

Root mean square Higher frequency

Mean absolute deviation Lower frequency

Max value Median frequency

Min value Mean frequency

Kurtosis Spectral entropy

Skewness

Quartile (25th, 50th, 75th)

The workout simulation (Set 2) was preceded (Set 1) and
followed (Set 3) by a sequence of three repetitions of each task.
The pre- and post-workout session were used as training sets for
the machine learning algorithms, and were both included so that
the classification method could be robust to the possible changes
in movement execution caused by fatigue or learning effects in
the participants.

Data Analysis
The three components of acceleration and angular velocity
from the five IMUs (6 × 5 = 30 continuous timeseries) were
used as input data for the classifying algorithm. Kinematic
quantities were not filtered, and frequency-domain signals were
attained through transforming the time-domain signals via Fast
Fourier Transform. Data features in the time and frequency
domain (Table 1) were extracted from data windows moving
across the original kinematics timeseries. This process aimed
to reduce the signals into distinctive characteristics of specific
movement tasks or part of them. The more each movement can
be separated in feature space, the higher the achieved recognition
and classification performance is Zhang and Sawchuk (2013) and
Hoettinger et al. (2016).

To set suitable ranges for window duration and decide the
amount of window overlap, we analyzed the distribution of
movement durations across the population (Figure 3). Values
between 300 and 600ms (in increments of 100ms) for window
length, and of 0, 10, and 20% for the amount of overlap were
chosen to study the sensitivity of the classification to the choice
of windowing parameters. This allowed to have at least three
time windows covering the execution of each movement or the
transitions between subsequent movements. A [N× 540] feature
matrix was generated for each participant, where N indicates
the number of time windows in each session, and 540 is the
overall number of features included in the analysis (5 sensors× 2
kinematic quantities per sensor × 3 directions per quantity× 18
features per quantity).

Data Labeling
A supervised approach to automatic classification was adopted,
with video-based classification used as the gold standard for

labeling each data window as a transition phase or as a part of
one of the four possible functional fitness movements (Figure 2).
Camera footage was used to identify the start and end of each
movement and for their classification (i.e., labeling), as required
by the supervised learning model. Movement recognition, timing
and labeling were visually carried out by a single expert
operator using freeware video editing software (VirtualDub,
virtualdub.org). When a window spanned between a transition
phase and one of the four movement tasks, a “majory” criterion
was used. This implied assigning a movement label (i.e., “C&J,”
“AS,” “BJ,” or “BP”) to a window where the movement covered
more than 66% of its length. Otherwise, the transition label (i.e.,
“TRANS”) was allocated.

Classifier Training
After the extraction of the features and the labeling of associated
windows, we trained different type of automatic classifiers using
data Set 1 and 3. k-Nearest Neighbors (kNN), with different types
of metrics (Euclidean, cosine, cubic or weighted distance) and
number of neighbors (fine, k= 1; medium, k= 10; and coarse, k
= 100), and Support VectorMachine (SVM) with several types of
kernel functions (i.e., linear, quadratic, cubic and fine-medium-
coarse Gaussian), were selected as the classifying algorithms
to be tested. This choice was driven by the existing literature
in the area of machine learning approaches addressing human
motion (Camomilla et al., 2018; Cust et al., 2019) and sport (Cust
et al., 2019) classification. At this stage, all the reported features
(Table 1) were used to train the models.

Classifier Assessment
Two levels of classifier evaluation were carried out. Firstly (Stage
1), we performed a 5-fold cross-validation on the classifier
training dataset (N= 14 participants, Set 1 and 3); this approach
was used to mitigate the risk of overfitting by partitioning the
dataset into k-folds and estimating the accuracy of each fold
(Taha et al., 2018).We used this stage to select themost promising
algorithm amongst themany tested. Finally (Stage 2), assessed the
classifier performance on new data (i.e., the workout simulation
dataset, Set 2) in a Leave-On-Subject-Out (LOSO) fashion
(Hagenbuchner et al., 2015; Willetts et al., 2018). In this stage, the
classifier was trained with data from Set 1 and 3 (including N-1
participants), and validated against data of the N-th participant,
from Set 2; the N-th participant was iteratively changed, and
results were reported averaging the multiple iterations. This
approach guaranteed having independent data, in terms of both
trials and individuals, between training and testing sets.

Classification accuracy (Equation 1) was evaluated as follows
(Hoettinger et al., 2016; Davila et al., 2017):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP and FN represent True Positive, True Negative
and False Positive, respectively.

Once the optimal classifier was identified, the corresponding
confusion matrix and Receiver Operating Characteristic (ROC)
curves (in a multi-label “one-vs.-rest” assessment) were analyzed
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FIGURE 3 | Distribution of individual movement durations in the analyzed population. C&J, Clean and Jerk; AS, American Swing; BJ, Box Jump; BP, Burpee.

to assess the ability of the algorithm to recognize and correctly
classify each functional fitness exercise. From the confusion
matrix, for each exercise, we evaluated:

- the Positive Predictive Value (PPV), representing the precision
of the classifier (Equation 2):

PPV =
TP

TP + FP
(2)

- the True Positive Rate (TPR), representing the sensitivity (also
called recall) of the classifier (Equation 3):

TPR =
TP

TP + FN
(3)

Sensitivity Analysis
Two type of sensitivity analysis were carried out: (a) the effect of
window length and overlapping, where all classifier types and all
the features were included; and, (b) the effect of selecting a subset
of the five available IMUs, which was analyzed starting from
the classifier previously identified as giving the best outcome
performance (as highlighted in validation Stage 1). For (b), the
analysis was carried out starting from the data provided by each
sensor in isolation and by considering data from pairs of sensors,
as follows:

- wrist and ankle;
- wrist and lumbar area;
- wrist and thigh;
- wrist and upper arm;
- upper arm and ankle;
- upper arm and lumbar area;
- upper arm and thigh.

Feature Selection Analysis
Once the best performing subset of the five measurement
units was identified, an exploratory analysis of the most
significant features extracted was carried out. We used the
minimum Redundancy Maximum Relevance (mRMR) filter-
based algorithm applied to the standardized feature matrix, due
to its trade-off between performance and efficiency (Peng et al.,
2005; Wang et al., 2016). To compare the overall accuracy, a fixed
number of features was identified starting from the analysis of the
predictor importance scores performed on the training dataset;
these features were then used to train the models and to test them
following Stage 2 validation.

Training of the supervised learning models and analysis of
classification performance were carried out through the Statistics
andMachine Learning Toolbox and bespoke functions developed
in Matlab (v R2019b, The Mathworks Inc.).

RESULTS

k-Fold Cross-Validation of Classifier
Performance and Sensitivity Analysis: Time
Window and Overlap Parameters
When data input included all the five available sensors, both
SVM- and kNN-type classifiers achieved good level of overall
accuracy (Tables 2, 3, respectively). Accuracy ranged from 82.5%
(SVM classifier with fine gaussian kernel, and 300 ms−10%
overlap windows) to 97.8% (cubic kernel SVM classifier, with 600
ms−10% overlap windows).

Testing SVM Performance With Training
and Test Datasets
Considering the overall accuracy, the training time (a ratio of
more than 20 between the slowest and the fastest classifier)
and the computational costs (a ratio of more than 80 between
the fastest and slowest classifiers, in terms of prediction speed),
the SVM with cubic kernel applied to 600 ms−10% overlap
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TABLE 2 | Overall classification performance (accuracy, in %) for Support Vector Machine (SVM) algorithms, as a factor of different kernel functions, window lengths, and

percentage of window overlap.

Overlap [%] Overlap [%] Overlap [%]

0 10 20 0 10 20 0 10 20

Linear Quadratic Cubic

Window [ms] 300 95.6 95.5 95.7 96.7 96.7 96.8 97.1 97.0 97.3

400 95.7 96.0 96.2 97.2 97.1 97.1 97.3 97.3 97.3

500 96.3 96.6 96.4 97.1 97.1 97.1 97.4 97.4 97.2

600 96.2 97.0 96.4 97.0 97.7 97.7 97.0 97.8 97.7

Fine gaussian Medium gaussian Coarse gaussian

Window [ms] 300 82.6 82.5 82.7 95.5 95.5 95.7 93.5 93.7 94.0

400 82.8 82.9 82.8 95.4 95.6 96.0 93.8 94.0 94.0

500 83.6 83.2 83.3 95.2 95.4 95.5 93.6 94.6 94.3

600 83.6 83.7 83.4 95.2 95.8 95.5 93.6 94.6 94.2

Data from all the five IMUs available were used as input. Green bold numbers = best performance; red bold numbers = worst performance.

TABLE 3 | Overall classification performance (accuracy, in %) for k-Nearest Neighbors (kNN) algorithms, as a factor of different kernel functions, window lengths and

percentage of window overlap.

Overlap [%] Overlap [%] Overlap [%]

0 10 20 0 10 20 0 10 20

Fine Class Medium Class Coarse Class

Window [ms] 300 96.4 96.4 96.7 96.3 96.0 96.5 89.2 89.8 90.6

400 96.3 96.3 97.0 96.1 96.5 96.8 89.0 90.1 90.5

500 96.1 97.0 97.0 96.0 96.5 96.1 89.7 89.8 90.4

600 96.2 97.2 96.7 95.7 96.4 96.2 89.0 89.9 90.5

Cosine Cubic Weighted

Window [ms] 300 96.4 96.3 96.6 94.0 93.7 94.1 96.4 96.3 96.8

400 96.3 96.5 96.5 93.9 94.2 94.9 96.4 96.7 96.9

500 96.1 96.7 96.3 94.6 94.7 94.8 96.3 96.6 96.4

600 96.1 97.2 96.5 94.7 94.9 94.8 96.3 96.9 96.5

Data from all the five IMUs available were used as input. Green bold numbers = best performance; red bold numbers = worst performance.

windows appeared as the optimal learning model. The confusion
matrix for this classifier (Table 4) showed that the trained model
yielded to almost no (validation Stage 1) or few (validation
Stage 2) misclassifications between different functional fitness
movements. Specific accuracy ranged from 99.7% for burpees in
the 5-fold cross-validation to 94.3% for the transition phase when
tested on new data. All but one erroneous classification in the
5-fold cross-validation were from movement tasks identified as
transition phases (64, 1.6% of the total) and, less frequently, from
transitions confused for functional fitness drills (19, 0.5%). We
had up to 18.9% of false negative rates in the AS drill, which
reported the lowest level of precision (93.0%) and sensitivity
(81.1%) (Table 5). Similar outcomes, but with lower percentage
values, were reported by the LOSO validation on the test dataset.
Precision and sensitivity values were always highest in the
transitionmovements (94.9 and 97.8%, respectively), whereas the

Clean & Jerk (89.3 and 82.2%) and American Swing (93.0 and
79.3%) showed the lowest performance results (Table 5).

The analysis of ROC curves gives us the power of our
classifier in a multi-label classification problem, as a function
of the Type I error (i.e., 1—specificity), as it was a binary
predictor. Considering the validation stages, the selected SVM
classifier showed an almost null value for FPR in each functional
fitness movement (<1%), with the TPR ranging from 84%
(BJ classification) to 96% (BP classification). The highest
value of TPR was reached in the classification of transition
phases (99%), although, in TRANS the classifier also reported
the highest level of FPR (7%). Finally, the Area Under the
Curve (AUC), which describes the capability of the supervised
learning model to distinguish between one class and the others,
ranged between 0.98 and 1, therefore showing good overall
classification performances.
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TABLE 4 | Confusion matrixes for the cubic kernel SVM algorithm with a 600ms window length and 10% overlap.

Stage 1: 5-fold Cross-Validation – Training Dataset

Predicted class

C&J AS BJ BP TRANS

True class C&J 228 (5.9%) 22 (0.6%)

AS 107 (2.8%) 25 (0.6%)

BJ 92 (2.4%) 13 (0.3%)

BP 1 (0.0%) 138 (3.6%) 4 (0.1%)

TRANS 2 (0.1%) 7 (0.2%) 5 (0.1%) 5 (0.1%) 3215 (83.2%)

Stage 2: LOSO – Test Dataset

Predicted class

C&J AS BJ BP TRANS

True class C&J 434 (8.1%) 4 (0.1%) 90 (1.7%)

AS 3 (0.1%) 214 (4.0%) 2 (0.0%) 51 (0.9%)

BJ 174 (3.2%) 29 (0.5%)

BP 2 (0.0%) 280 (5.2%) 43 (0.8%)

TRANS 47 (0.9%) 12 (0.2%) 12 (0.2%) 20 (0.4%) 3961 (73.3%)

Classification performance is reported from the two stages of validation as total counts and % of total. Blank cells correspond to a count of zero. LOSO = “leave one subject out.”

Training = sensor data from movements of Set 1 and Set 3 of the experimental protocol, used to train the classifier. Test = sensor data from movements of Set 2 of the experimental

protocol, not used to train the algorithm. Results are the average across multiple iterations. Green = correct prediction, red = misclassification.

TABLE 5 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and

sensitivity (TPR, True Positive Rate) for each functional fitness movement, related

to the cubic kernel SVM algorithm with a 600ms length windows and 10%

overlap.

ACC PPV TPR

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

C&J 99.4 97.3 99.1 89.3 91.2 82.2

AS 99.1 98.7 93.0 93.0 81.1 79.3

BJ 99.5 99.2 94.8 93.5 87.6 85.7

BP 99.7 98.8 96.5 92.7 96.5 86.2

TRANS 97.9 94.3 98.0 94.9 99.4 97.8

Data from all the five IMUs available were used as input. Classification performance is

reported from the two stages of validation as %, and results are the average across

multiple iterations. Stage 1= 5-fold Cross-Validation—Training Dataset; Stage 2 = “leave

one subject out” (LOSO) on test dataset. Green bold numbers = best performance; red

bold numbers = worst performance.

Sensitivity Analysis: Number of Sensors
When considering the data coming from a single sensor, the
selected SVM classifier achieved good values of recognition
rates in most cases (Table 6), with an overall accuracy between
83.2% (data from the ankle sensor, validation Stage 2) and
96.4% (data from the upper arm sensor, cross-fold validation).
Using input data from pairs of IMUs generally improved the
overall classification accuracy, pushing it up of several percentage
point when testing on new data (Stage 2: from 83.2−91.0% to

92.0−93.0%). However, using two sensors did not match the
performances obtained when data from all the sensors were
utilized (93.0 vs. 97.8%).

In relation to the contribution of each sensor to the correct
classification of individual functional drills, including data from
the sensor placed on the upper limb (upper arm or wrist), or from
a combination of a sensor on the upper limb and a sensor on the
lumbar area or thigh, seemed to improve classifier performance,
in at least 3 out of 4 movements and in the transition phases
(Tables 7, 8). Only in the AS, the classifier seemed to perform
relatively better when using data from the sensor placed on the
lumbar spine (single sensor configuration). The worst overall
performance was obtained when considering the data acquired
by the only sensor placed on the ankle. Only for the AS, the
algorithm did worse considering the data registered by the sensor
placed on the wrist.

Feature Selection Analysis
From the sensitivity analysis we identified two configurations to
be further tested by using the feature selection.We considered the
data collected by the sensor on the upper arm (UA configuration,
for a total of 108 features) and by the combination of sensors on
the upper arm and thigh (UA+T configuration, for a total of 216
features). After a qualitative analysis of the trend in prediction
scores, from the most important predictor to the less significant,
we set the number of the features to keep to 20.

The reduction of the number of the features did not
compromise the overall accuracy of the classifier, thus
underlining the reliability of the approach. In particular, the
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TABLE 6 | Overall classification performance (accuracy, in %) for Support Vector Machine (SVM) algorithms, with 600 ms−10% overlap windows.

Validation W UA T A L W+A W+L W+T W+UA UA+A UA+L UA+T

Stage 1 94.5 96.4 93.5 92.4 93.5 96.4 96.5 97.0 96.8 96.8 97.4 97.6

Stage 2 89.3 91.0 86.8 83.2 87.5 92.0 92.0 92.6 92.2 92.2 93.0 93.0

Data from individual or pairs of IMUs were used as input. Stage 1= 5-fold Cross-Validation—Training dataset; Stage 2 = “leave one subject out” (LOSO) on workout dataset. Green

bold numbers = best performance; red bold numbers = worst performance. W, Wrist; UA, Upper Arm; T, Thigh; A, Ankle; L, Lumbar Segment.

TABLE 7 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and sensitivity (TPR, True Positive Rate) for each functional fitness movement, related to the cubic

kernel SVM algorithm with a 600ms length windows and 10% overlap.

W UA T A L

ACC PPV TPR ACC PPV TPR ACC PPV TPR ACC PPV TPR ACC PPV TPR

C&J 96.4 85.7 75.9 96.2 86.7 72.9 93.0 65.1 62.9 90.9 53.6 55.7 93.2 67.6 58.5

AS 96.8 81.3 48.1 97.3 78.5 63.7 97.5 81.7 65.9 97.6 82.6 65.2 97.8 82.1 71.1

BJ 98.6 83.9 76.8 99.1 90.9 83.7 96.9 61.3 45.3 95.4 36.5 28.1 98.1 87.9 57.1

BP 97.0 88.3 58.2 97.9 83.6 81.5 97.5 85.3 69.8 97.1 79.5 69.2 97.0 78.9 68.0

TRANS 89.7 90.2 96.8 91.5 92.7 96.3 88.6 90.6 94.7 85.3 89.0 91.8 89.0 90.5 95.5

Data from individual IMUs were used as input. Classification performance is reported as %. For sake of clarity, only results from the most stringent validation (Stage 2= “leave one subject

out” on test dataset) are reported. Green bold numbers = best performance; red bold numbers = worst performance. W, Wrist; UA, Upper Arm; T, Thigh; A, Ankle; L, Lumbar Segment.

highest value of accuracy was maintained when considering the
UA configuration (99.1% for BJ), whereas UA+T configuration
reported a reduction of only 0.3% (99.1 vs. 98.8%) (Table 9).
Furthermore, in both configurations, all the values of accuracy
were >89.5% (TRANS in UA). Larger differences concerned
precision and recall in classifying the AS task, which decreased
to 59.3% and 49.6% (UA), and 71.9% and 62.6% (UA+T),
respectively. For AS alone, both PPV and TPR decreased by
15–20%, showing risk of misclassification.

Most of the identified features were time-domain features
(15 out of 20 for the UA configuration and 16 out of 20 for
the UA+T configuration), and was information coming from
gyroscope data (13 out of 20 for the UA configuration and 12
out of 20 for the UA+T configuration). In UA+T, the identified
features were equally spread between the sensor placed on the
upper arm and on the thigh (10 out of 20, each).

DISCUSSION

We developed and tested a supervised learning approach
to recognizing and classifying functional fitness movements
within a continuous workout, combining four different drills.
Accelerations and angular velocities from a set of wearable
inertia sensors were used as input of the classifier. Different
machine learning algorithms, time segmentation strategies and
combination of sensors were assessed. Classification accuracy
was generally high in both Support Vector Machine (SVM) and
k-Nearest Neighbors approaches (>82.5% in the worst case);
the SVM model with cubic kernel and applied to 600 ms−10%
overlap data windows gave the best performance overall (94.4–
97.8% accuracy, depending on the type of validation carried

out). Information coming from sensors from the upper limb,
alone or in combination with a wearable unit in the lumbar
area or on the thigh, appeared to be key to achieve optimal
classification performance.

By using SVM on the whole dataset, misclassifications (as
False Negative Rate—NFR) were lower in the “Transition” phase
(0.6–2.2%) and higher in the other four drills, particularly in
the “American Swing” (18.9–20.7%). Ex post analysis highlighted
that the higher percentages of errors could be typically related to
three main factors. (1) The overall smaller number of windows
associated with functional movements as opposed to transitions.
(2) The choice made for the “majority” criterion, whereby up to
34% of a functional movement could still belong to a window
labeled as TRANS. This may have an influence on the capability
of the classifier to assign a window to one of the four drills instead
of TRANS. (3) The difficulty in labeling windows as belonging to
a movement or TRANS between repetitions of the same exercise,
when the dynamics of the task makes it difficult to establish
with certainty the start and end of the movement. Combining
these three items, the problem appeared more evident for
the “American Swing,” possibly for the inherent dynamics of
the task.

When analyzing the contribution of each sensor
independently (1-sensor input) or in combination with another
IMU (2-sensor input), the overall classification performance
decreased of few percentage points, but still achieved an
accuracy >83.2% in the worst case (i.e., IMU on the ankle,
with the most stringent validation approach). Ankle kinematics
may contain less information when feet are not moving;
this situation may happen in a number of movement- and
transition-related situations, such as during the “Clean and
Jerk,” thus explaining the decreased performance of the classifier.
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TABLE 8 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and

sensitivity (TPR, True Positive Rate) for each functional fitness movement, related

to the cubic kernel SVM algorithm with a 600ms length windows and 10%

overlap.

C&J AS BJ BP TRANS

W+A ACC 96.4 98.4 98.8 98.0 92.5

PPV 83.5 91.8 89.1 84.8 93.7

TPR 79.5 74.4 76.8 80.6 96.5

W+L ACC 96.6 98.5 98.7 97.8 92.5

PPV 86.1 91.3 84.5 84.6 93.6

TPR 77.7 77.4 80.8 77.5 96.6

W+T ACC 97.3 98.1 98.7 97.9 93.0

PPV 87.8 90.4 87.7 88.4 93.7

TPR 84.7 69.6 77.3 75.1 97.3

W+UA ACC 97.0 97.8 99.1 98.0 92.4

PPV 89.5 88.1 90.9 87.6 93.0

TPR 79.0 65.6 83.3 78.2 97.2

UA+A ACC 95.9 98.2 99.1 98.6 92.6

PPV 81.2 90.6 92.8 89.1 93.8

TPR 75.4 71.1 82.3 87.7 96.6

UA+L ACC 96.7 98.4 99.0 98.5 93.3

PPV 88.6 93.3 89.0 89.9 93.8

TPR 76.3 72.6 83.7 84.9 97.6

UA+T ACC 96.7 98.2 99.1 98.5 93.3

PPV 84.6 89.2 90.6 91.6 94.4

TPR 80.9 73.7 85.7 83.7 96.9

Data from pairs of IMUs were used as input. Classification performance is reported as %.

For sake of clarity, only results from the most stringent validation (Stage 2 = “leave one

subject out” on workout dataset) are reported. Green bold numbers = best performance;

red bold numbers=worst performance. W=Wrist, UP=Upper Arm, T= Thigh, A= Ankle,

L= Lumbar Segment.

In fact, collecting upper arm kinematics alone yielded 91.0–
96.4% accuracy (depending on the validation approach). Also,
adding information from a second sensor generally improved
the capability of the algorithm to identify classes correctly,
narrowing the performance gap between using two IMUs or
the whole sensor network. The best combinations resulted from
adding one further IMU to one sensor on the upper arm, i.e.,
upper arm and lumbar area (93.0–97.4%) or thigh (93.0–97.6%),
which further confirms the need for the system to cover the
widest range of movement dynamics. Similarly to what observed
for the whole sensor network, misclassifications were more
common in the “American Swing” (31.8–36.3% and 21.2–26.3%
FNR for the UA and UA+T configurations, respectively).

To explore the translation of the selected algorithm into more
easily applicable framework, a subset of features, consisting of
the best 20 identified through a filter-based algorithm (mRMR),
was used in a 1-sensor or 2-sensor configuration, and its
classification ability tested (LOSO validation on the test dataset).
The overall accuracy resulted better than 90% for all the
performed task, although the confusion matrixes highlighted
difficulties in distinguishing “similar” gestures (AS misclassified
with TRANS). Further analysis of feature selection suggested that
the most informative characteristics of the dataset were mainly
related to time domain (i.e., kurtosis and skewness). Although

TABLE 9 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and

sensitivity (TPR, True Positive Rate) for each functional fitness movement, related

to the cubic kernel SVM algorithm with a 600ms length windows and 10%

overlap.

ACC (%) PPV (%) TPR (%)

UA C&J 95.4 79.6 70.8

AS 95.8 59.3 49.6

BJ 99.1 90.0 84.2

BP 97.3 78.8 75.4

TRANS 89.5 91.7 94.6

UA+T C&J 96.0 79.3 80.5

AS 96.9 71.9 62.6

BJ 98.8 85.5 81.3

BP 97.5 82.7 75.1

TRANS 91.9 93.9 95.4

Data from the IMU placed on the upper arm (UA) and the combination of upper arm and

thigh (UA+T) were used as input. Classification performance is reported from the only

Stage 2= “leave one subject out” (LOSO) validation on test dataset. Green bold numbers

= best performance; red bold numbers = worst performance in each stage.

these preliminary findings support the use of feature reduction
in the pipeline of data processing, a more in-depth analysis
of feature selection and outcomes derived thereof is advisable,
especially for 1-sensor solutions with lower-end technology (Fan
et al., 2019).

Supervised machine learning appeared a suitable tool for the
automatic classification of different functional fitness exercises.
Our study addressed a scenario that for number and type of
movements involved appears more challenging than what has
been assessed by other works in the field. Also, we located
our sensors according to where existing consumer technologies
would be placed, and not thinking of what the best configuration
for motion capture would be. Despite these added complexities,
our approach obtained similar performance to what reported
by the literature as the current state of the art. Ghazali et al.
(2018) achieved 91.2% accuracy in tracking several common
sporting activities such as walking, sporting, jogging sprinting
and jumping. Using wearable sensors and SVM/kNN methods,
Mannini and Sabatini (2010) were able to distinguish between
elementary physical activities such as standing, sitting, lying,
walking, climbing and identify activities within sequences
of sitting-standing-walking-standing-sitting with an accuracy
between 97.8 and 98.3%.

Within fitness activities, Adelsberger and Troster (2013),
studied 16 participants performing a squat press, and via
SVM managed to detect movements with 100% accuracy
and differentiate between expert and beginner performance
(94% accuracy). Research on weightlifting has used different
approaches, mainly aiming at recognizing the type of exercise
performed (Pernek et al., 2015; Hausberger et al., 2016; O’Reilly
et al., 2017), or identifying performance metrics (e.g., quality
of execution, intensity, deviation from a standard pattern) for
each exercise (Pernek et al., 2015; O’Reilly et al., 2017a,b,c).
Approaches looking at performance metrics focus on the
possibility of using personalized classifiers to monitor the quality
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of movement execution; they are more complex and demanding
in terms of computational resources and sample sizes than what
we presented in our study. On the other hand, the solutions
presented in literature to address the movement recognition
problem are very similar to what we have proposed. Different
algorithms (such as the Random Forest—RF—and the Linear
Discriminant Analysis—LDA) have been explored in the existing
literature, but the overall accuracies appear comparable to the
values we obtained. For the size of our dataset, SVM resulted
optimal in terms of both classification accuracy and training
costs. RF represented an optimal solution in multi-class problem
in terms of performance and computational costs, despite
requiring larger datasets (O’Reilly et al., 2017), whereas LDA
was reported to perform well in simple drills classification, even
allowing real-time applications, when considering a single sensor
(Crema et al., 2019).

One of the main limitations of the presented work was
the reduced number of involved subjects, compared to some
validated machine learning approaches found in scientific
literature (O’Reilly et al., 2017,a,b). Our study was exploratory,
and the observed sample was relatively homogeneous in terms
of sporting abilities. Having access to a larger and more varied
group of participants would allow covering a wider spectrum
of individual characteristics and, possibly, making the classifier
more robust to inherent intra- and inter-subject variability
(Preatoni et al., 2013) in movement execution. It could also allow
to distinguish between expert and novice performance and/or
between different level of movement intensity. Although our
sample size was relatively small for typical machine learning
studies, our method achieved a classification performance not
inferior to equivalent approaches applied in different sports
scenarios, including simple tasks, such as walking or running,
and even more complex exercise including fitness training.
Another potential limit lies in the labeling procedures, which
relied in the use of footage from a single 50Hz camera.
A single plane of view for four distinguished movements
could make establishing their exact start and finish time more
difficult. Differences in sampling rates between different systems
could also add minor discrepancy in time line reconstruction.
Finally, a potential bias to the assessment of classification
performance could be the disproportion between the periods
of transition and of functional movement execution, with
the former being an order of magnitude more numerous
(>3,000 transition windows vs. ∼100–200 windows per each
functional movement). Arguably, in our application, transitions
are not static, easily detectable situations, and rather contain a
spectrum of movement features that are as or even more varied
than the four movements of interest. Thus, high prevalence
of transition intervals should not decrease the value of the
solution proposed.

CONCLUSIONS

Our study addressed a novel issue in the area of automatic activity
tracking. We used wearable sensor data of the same kind of what
could be provided by modern smart technologies and obtained
from body locations similar to where those technologies could
be secured. Classifying functional fitness movements within a

continuous workout is a non-trivial task that, to the best of
our knowledge, no other research had investigated. Despite the
relatively small dataset used to train the algorithm, the accuracy
achieved in detecting and recognizing four popular training drills
was encouraging, even considering a simpler 1-sensor or 2-sensor
configuration. Reducing input data to accelerations and angular
velocities provided by a single sensor did not degrade excessively
the classification ability of the algorithm, which still generated
an overall level of accuracy similar to what obtained from the
whole dataset available. These findings are particularly interesting
as commercially available devices such as smart watches and/or
phones contain inertial sensors and are typically worn in similar
locations (i.e., upper arm and wrist) to where IMUs were
attached in our study. This work perfectly fits the current
technological trend on the combined use of wearable devices
and artificial intelligence to track human activities automatically
(Attal et al., 2015) and support sports activities (Cust et al., 2019).
In the longer perspective, the proposed approach could drive
the development of software and applications to aid on-field
coaching and judging and provide a more objective, quantitative
way to evaluate movement technique and correct/safe execution
of specific drills.
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