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Cancer of unknown primary site (CUPS) is a type of metastatic tumor for which the

sites of tumor origin cannot be determined. Precise diagnosis of the tissue origin

for metastatic CUPS is crucial for developing treatment schemes to improve patient

prognosis. Recently, there have been many studies using various cancer biomarkers

to predict the tissue-of-origin (TOO) of CUPS. However, only a very few of them use

copy number alteration (CNA) to trance TOO. In this paper, a two-step computational

framework called CNA_origin is introduced to predict the tissue-of-origin of a tumor

from its gene CNA levels. CNA_origin set up an intellectual deep-learning network mainly

composed of an autoencoder and a convolution neural network (CNN). Based on real

datasets released from the public database, CNA_origin had an overall accuracy of

83.81% on 10-fold cross-validation and 79% on independent datasets for predicting

tumor origin, which improved the accuracy by 7.75 and 9.72% compared with the

method published in a previous paper. Our results suggested that the autoencoder model

can extract key characteristics of CNA and that the CNN classifier model developed in

this study can predict the origin of tumors robustly and effectively. CNA_origin was written

in Python and can be downloaded from https://github.com/YingLianghnu/CNA_origin.

Keywords: tumor, tissue-of-origin, copy number alteration, autoencoder, convolution neural network

1. INTRODUCTION

Cancer metastasis is the process in which tumor cells fall off from the primary site, enter the
circulatory system, transfer to other parts of the body, and continue to grow. In about 3–5% of
metastatic tumors, the sites of origin cannot be found, and this is known as cancer of unknown
primary site (CUPS). Patients diagnosed with CUPS are treated with broad-spectrum anticancer
drugs and have a low median survival time of 9–12 months. Precise diagnosis of the tissue of
origin for metastatic CUP is essential for deciding on the treatment scheme to improve the patient’s
prognosis (Chen et al., 2017). Clinical, imaging and pathological examination are used to detect the
tissue of origin, but these approaches can only determine the tissue of origin in about 50–80% of
CUP patients.

Recently, a large number of studies have tried to use cancer biomarkers to predict the primary
tumor site for CUPs so as to provide much-needed guidelines for timely patient care and cancer
therapy (Liang et al., 2016; Grewal et al., 2019; Wang et al., 2019; Zheng et al., 2019). The gene
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expression patterns in tumors have high specificity, and so
these the most widely used biomarkers for tumor classification
(Bloom et al., 2004; Tothill et al., 2005; Staub et al., 2010;
Wu et al., 2010; Handorf et al., 2013; Xu et al., 2016; Wang
et al., 2018; Li et al., 2019). For example, Li used the within-
sample relative gene expression orderings of gene pairs within
individual samples to identify a prediction signature (Li et al.,
2019). Wang proposed a general framework to identify a subset
of genes for each tumor subtype and presented a corresponding
classification model for distinguishing different tumor subtypes
(Wang et al., 2018). Xu established a comprehensive database
integrating microarray- and sequencing-based gene expression
profiles of 16,674 tumor samples covering 22 common human
tumor types to discriminate the origins of tumor tissue, which
will be an additional useful tool for determining the tumor origin
(Xu et al., 2016).

DNA methylation and miRNA regulate the expression of
genes involved in numerous biological processes (Rosenfeld et al.,
2008; Rosenwald et al., 2010; Ferracin et al., 2011; Mueller
et al., 2011; Søkilde et al., 2014). Tang developed a user-
friendly webserver to predict tumor origin by identifying highly
tissue-specific CpG sites and miRNA expression (Tang et al.,
2017). Bae tried to discover tissue-specific methylation markers
and predicted the tissue-of-origin in CUPS (Bae et al., 2018).
Yang proposed an inverse space sparse representation model
to distinguish tumor origins considering the characteristics of
gene-based tumor data (Yang et al., 2019). Visual imagery
is one of the main methods used by pathologists to assess
the stage, type, and subtype of tumors (Shi et al., 2016;
Coudray et al., 2018; Mohsen et al., 2018). Coudray employed
visual inspection of histopathology slides to classify lung
adenocarcinoma, lung squamous cell carcinoma, and normal
lung tissue, which achieved performance comparable to that
of pathologists (Coudray et al., 2018). Ultrasound imaging can
also be used for tumor detection and diagnosis with a deep
polynomial network algorithm (Shi et al., 2016).

As yet, few studies have investigated the roles of genome
variants on tissue-of-origin in CUPS. Genome variants include
mutation, small insertion, and deletion (INEDL) and copy
number alteration (CNA). CNA is amplification and deletion of
genomic sequences ranging from kilobases (Kb) to megabases
(Mb) in size, which covers 360 Mb and encompasses hundreds of
genes, disease loci, and functional elements (Redon et al., 2006).
As the main genetic marker of the genome, CNA can affect the
gene function through gene dose, gene breakage, gene fusion,
and position effects and is closely related to the occurrence and
development of tumor (Poduri et al., 2013). CNA also plays
an increasingly important role in targeted therapy, personalized
treatment, and prognosis judgment for tumors. Marquard
developed a tool named TumorTracer by using publicly available
somatic mutation data to train random forest classifiers and
thus to identify the tissue of origin. This was demonstrated to
be accurate enough to aid in the clinical diagnosis of cancers
with unknown primary origin (Marquard et al., 2015). Zhang
conducted a comprehensive genome-wide analysis of CNAs from
six cancer types and selected 19 discriminative genes for tumor
classification, but their overall prediction accuracy was about

TABLE 1 | Number of samples per tissue for CNA profiles.

Primary site Histology CNA datasets

Breast BRCA (Breast invasive carcinoma) 847

Colorectal COADREAD (Colorectal adenocarcinoma) 575

Brain GBM (Glioblastoma multiforme) 563

Kidney KIRC (Kidney renal clear cell carcinoma) 490

Ovarian OV (Ovarian serous cystadenocarcinoma) 562

Uterine UCEC (Uterine Corpus Endometrial Carcinoma) 443

75% (Zhang et al., 2016). In the current study, a computational
method called CNA_origin is proposed to predict the tissue of
origin with the information of gene CNA levels. CNA_origin set
up an intellectual deep-learning network mainly composed of
an autoencoder and a convolution neural network (CNN). This
predictor successfully learned the inherent information of gene
copy number and exhibited superior performance to classical
algorithms for the same benchmark datasets.

2. MATERIALS AND METHODS

2.1. Datasets
The copy number signal was produced by Affymetrix SNP
6.0 arrays for the set of samples in the cancer genome
atlas (TCGA) study, as generated with the Firehose analysis
pipeline. The preprocessing analysis of the dataset was performed
with GISTIC (Beroukhim et al., 2007). These datasets were
from primary solid tumor samples released by MSKCC in
2013 that could be downloaded from http://cbio.mskcc.org/
cancergenomics/pancan_tcga/. The datasets with a sample size
greater than 400 were selected. The details of all tissue samples,
including tumor status, histopathology details, and sample sizes,
are summarized in Table 1.

Each sample had 24,174 genes with discrete copy number
values denoted as “–2,” “–1,” “0,” “1,” “2,” where “–2” was
homozygous deletion, “–1” was heterozygous loss, “0” was
diploid, “1” was one copy gain and “2” was high-level
amplification or multiple-copy gain (Ciriello et al., 2013). The
CNA values were scaled to [–1, 1] with Equation (1).

x′ =
x

|x|max

(1)

where x was the CNA value of the gene, |x|max was the maximum
absolute value of CNA among samples, and x′ was the value
after correction.

2.2. Feature Extraction
Each sample had 24,174 gene-level CNA values. High
dimensionality and small sample sizes have seriously obscured
the intrinsic nature of CNA data. In this paper, CNA_origin
applied a stacked autoencoder (SAE) to extract the features of
CNA values, which converted the high-dimensional data into
low-dimensional codes by training a multilayer neural network
with small central layers to reconstruct high-dimensional input
vectors (Hinton and Salakhutdinov, 2006). The SAE consisted
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of an adaptive multilayer “encoder” network and an asymmetric
“decoder” network, and high-dimensional abstraction whilst
maintaining the key information was achieved for feature
reduction with the help of hidden nodes in the code layer, as
illustrated in Figure 1A.

In the encoder network, the 24,174 gene-level CNA values
used as inputs were mapped to the latent representation of next
layer using Equation (2).

X[i] = f (WiX
[i−1] + bi) (2)

where f (x) = max (0, x)was ReLU activation function, bi was the
bias of layer i, and Wi was the weight between layer i-1 and i. In
the decoder network, the code layer was used to reconstruct the
input by a reverse mapping using Equation (3).

X[i] = f (Wi
′X[i−1] + bi

′) (3)

where Wi
′ = WT

i . The tanh activation function f (x) = ex−e−x

ex+e−x

was added to predict the final value, and the dimensionality of
the final output layer was the same as that of the input layer. To
determine the optimized parameters of W and b, layer-by-layer
pretraining was used to minimize the error between the input
X and output X′. The middle features were extracted through
hidden nodes in the code layer.

CNA_origin was implemented in Python 3.7.3 using Keras
(2.24) with the backend of TensorFlow (1.14.0). For the feature
extraction of gene CNA, the neuron numbers in symmetrical
hidden layers were set at 4,096, 1,024, 256, 100, 256, 1,024, and
4,096, respectively. The middlemost 100 neurons represented
the extracted features, as it was found that features with more
than 100 dimensions were not helpful to improve the classifier
performance. The initial learning rate was set to 0.01, batch size
to 64, and epochs to 16. This autoencoder was optimized using
the Adam algorithm to learn the model parameters, and the loss
function was mean square error.

2.3. Classifier Construction
The fully connected layer learns the global patterns in feature
space, but convolution layer applies filters in the form of
convolution operations to learn local patterns from the image
(Baek et al., 2018). Inspired by the visual world, CNN has
two interesting properties, translation invariant and spatial
hierarchies of patterns, which allow a convolution network
to efficiently learn increasingly complex and abstract visual
concepts (Chollet, 2015, 2017). These properties are specialized
for image data and also show outstanding performance in
sequence processing (Le et al., 2017, 2019b). The same
input transformation was performed on every subsequence;
a pattern learned at a certain position in a sequence was
later recognized at a different position, making 1D convnets
translation invariant. A 1D convolution layer could catch local
patterns in a sequence, making it competitive with recurrent
neural networks (RNN) on sequence-processing at a considerably
cheaper computational cost.

CNA_origin reshaped the 100 features of the sample into a
100 × 1 vector; each input tensor was 100 in width, 1 in height,

and 1 in depth. The 1D convolution was used to extract local
subsequences with D filters, and each filter was of k × 1 in
size, which means the filter was k in width and 1 in height.
CNA_origin utilized multi-scale convolution kernels, such as
1× 1, 3× 1, 5× 1, 7× 1, and 9× 1, to extract high-order features
of different levels and increase the diversity of feature extraction.
Among them, the 1× 1 convolution kernel changed the number
of channels, increased the non-linear transformation of features,
and improved the generalization ability of the network. The
number 48 or 64 in parentheses behind k× 1 meant convolution
with 48 or 96 filters. CNA_origin padded the features by adding
k/2 columns with elements being zero to the head and tail of
the sequence; therefore, the width of the new sequence after
convolution with stride 1 was still the same.

The Concat operation in Figure 1meant that the layer stacked
features from each branch together. Different convolution layers
and max-pooling layers concatenated like the Inception module,
which increased the depth of the network and improved the
robustness of the CNN. At the beginning of the network, a larger
convolution kernel was used to reduce the number of parameters
and computation, as illustrated in Figure 1B. In the last, the
network connected two full connection layers, with a dropout
layer to avoid overfitting. Usually, the number of hidden units
was far larger than the obtained data, resulting in overfitting. The
dropout layer helped alleviate this problem by removing some of
the connections in the network (Baek et al., 2018). Output such
as 50 × 1× 128 meant that the feature maps were 50 in width, 1
in height, and 128 in depth. The final result was the probability
that the sample belonged to each class and was found with the
“softmax” activation function, which is often used in solving
multi-classification problems. It was defined as Equation (4).

Pk =
exp(αk)∑m
i = 1 exp(αi)

(4)

Pk was the probability that the sample belonged to class k. exp(x)
represented an exponential function, αk was the input value of
class k, and m was the number of tumor classes. The categorical
cross-entropy loss corresponding with the “softmax” activation
function was used, which was a variant of binary cross-entropy
and was defined as Equation (5).

loss = −

n∑

i = 1

yi1logPi1 + yi2logPi2 + · · · + yimlogPim (5)

Pim was the predicted probability, n was the number of samples,
and yim was the true label.

For the classification learning, the number of multi-scale
convolution kernels was set to 64, batch size to 16, and epochs
to 12. The learning rate was dynamically adjusted according to
the loss value of the test dataset, and the initial value was 0.01.
The dropout rate was set to 0.4, and the loss function was sparse
categorical crossentropy.
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FIGURE 1 | The workflow of CNA_origin. CNA_origin applied a stacked autoencoder to extract the feature of CNA values, which was composed of a symmetrical

encoder and decoder network, and 4,096, 1,024, and 256 were the neuron numbers in symmetrical hidden layers (A). A 1D CNN with multi-scale convolution kernels

(1× 1, 3× 1, 5× 1, 7× 1, 9× 1) was used to construct a classifier model, and the number 48 or 64 in parenthesis behind k × 1 meant convolution with 48 or 96

filters. The Concat layer stacked features from each branch together; the output denoted the dimensions of feature maps for each layer (B).
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3. RESULTS AND DISCUSSION

3.1. Performance Evaluation Metrics
The six tumor datasets were used to train CNA_origin. To
understand the generalization performance, CNA_origin was
also tested by independent datasets. In this work, the precision
(P), recall (R), accuracy (ACC), and F1-score were adopted to
assess the performance of the corresponding method; they have
been used as measurement metrics in previous works (Le et al.,
2018, 2019a). They are defined as Equation (6).

P =
TP

TP + FP

R =
TP

TP + Fn

ACC =
TP + Tn

TP + Fp + Fn + Tn

F1− score =
2× P × R

P + R

(6)

where TP, Tn, FP, and Fn were the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
P ∈ [0, 1], R ∈ [0, 1], ACC ∈ [0, 1], and F1− score ∈ [0, 1]. P= 0
indicated that all predicted positive results were actually negative.
When all results were incorrect, TP = 0 and Tn = 0; therefore,
P = 0, R = 0, ACC = 0, and F1-score = 0. When all results were
correct, FP = 0 and Fn = 0; therefore, P= 1, R= 1, ACC= 1, and
F1-score = 1. Precision and recall are two contradictory metrics.
Generally speaking, when the precision is high, the recall is often
low, while when the recall is high, the precision is often low.

3.2. CNA_Origin Performance
Ten-fold cross-validation was utilized to evaluate our algorithm
with the extracted 100-dimensional features. The datasets were
randomly divided into ten subsets of approximately equal size.
Our network was trained 10 times; nine of the 10 subsets were
used as the training datasets, and the remaining one was the test
dataset. All of the above evaluation indices of our algorithm, that
is, P, R, ACC, and F1-score, were calculated according to the
results in our work. The average values of four metrics P, R, ACC,
and F1-score defined in Equation (6) over ten test datasets are
listed in Table 2.

TABLE 2 | CNA_origin performance measured by three metrics via 10-fold

cross-validation.

Cancer Precision Recall F1-score

BRCA 0.8750 0.9231 0.8984

COADREAD 0.8158 0.7381 0.7750

GBM 0.9310 0.8438 0.8852

KIRC 0.8889 0.9600 0.9231

OV 0.8980 0.8672 0.8800

UCEC 0.6792 0.7200 0.6990

3.3. Performance Comparison With Other
Algorithms
The performance of our algorithm was compared with four
other classical classification algorithms with the same benchmark
datasets. Random forest (RF) is an ensemble classifier that
producesmultiple decision trees using a randomly selected subset
of training samples and variables (Liu et al., 2019). XGBoost is
a novel sparsity-aware algorithm for sparse data and weighted
quantile sketch for approximate tree learning and has been
used in many bioinformatics fields (Chen and Guestrin, 2016;
Deng et al., 2020; Hu et al., 2020). Long Short-Term Memory
(LSTM) is an artificial RNN architecture that is well-suited to
classifying, processing, and making predictions based on time
series data (Hochreiter and Schmidhuber, 1997). Zhang proposed
a method to computationally classify cancer types by using CNA

TABLE 3 | Comparison of CNA_origin predictions with those of other algorithms.

Cancer Predictor Precision Recall F1-score

BRCA CNA_origin 0.8750 0.9231 0.8984

LSTM 0.8713 0.8462 0.8585

RF 0.8556 0.8645 0.8601

XGboost 0.8214 0.8846 0.8519

CNA_zhang 0.7916 0.8735 0.8306

COADREAD CNA_origin 0.8158 0.7381 0.7750

LSTM 0.8571 0.8077 0.8317

RF 0.7659 0.6923 0.7272

XGboost 0.7959 0.7500 0.7723

CNA_zhang 0.6000 0.7346 0.6605

GBM CNA_origin 0.9310 0.8438 0.8852

LSTM 0.8913 0.8913 0.8913

RF 0.8627 0.8627 0.8627

XGboost 0.9535 0.8913 0.9213

CNA_zhang 0.8870 0.8593 0.8730

KIRC CNA_origin 0.8889 0.9600 0.9231

LSTM 0.8837 0.9268 0.9048

RF 0.9056 0.8571 0.8807

XGboost 0.8780 0.8780 0.8780

CNA_zhang 0.8085 0.9268 0.8636

OV CNA_origin 0.8980 0.8627 0.8800

LSTM 0.7843 0.9091 0.8421

RF 0.7826 0.9000 0.8372

XGboost 0.7551 0.8409 0.7957

CNA_zhang 0.8461 0.7586 0.8000

UCEC CNA_origin 0.6792 0.7200 0.6990

LSTM 0.6897 0.6557 0.6723

RF 0.6451 0.6060 0.6250

XGboost 0.7407 0.6557 0.6957

CNA_zhang 0.7419 0.4693 0.5750

The bold values are the best performance among counterparts.
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level values; this was denoted as CNA_zhang here because the
authors did not give the method a name (Zhang et al., 2016).
CNA_zhang used minimum redundancy maximum relevance
(mRMR) and incremental feature selection (IFS) to select features
and the Dagging algorithm to give the final classification. The
input of LSTM, RF, and XGboost was the extracted features from
the autoencoder, and the GridSearchCV function in the sklearn
package was used to select the optimal super-parameters that,
were promised in the best condition.

Table 3 shows that the performance of CNA_origin was
superior to LSTM, RF, XGboost, and CNA_zhang for BRCA,
KIRC, OV, and UCEC. For BRCA, compared with LSTM and
CNA_zhang, the F1-score was increased by 4.6 and 8.1%,
respectively, and the recall (R) was increased by 9.08 and 5.67%,
respectively. For GBM, CNA_origin performed slightly worse
than the best, XGboost, with reductions of 2.35% in precision,
5.32% in recall, and 3.91% in F1-score. For KIRC, compared
with LSTM and CNA_zhang, the F1-score was increased by
2.02 and 6.88%, respectively, and the recall was increased by
3.58%. For UCEC, compared with LSTM and CNA_zhang, the
F1-score was increased by 3.97 and 21.56%, respectively, and
the recall was increased by 9.80 and 53.41%, respectively. For
COADREAD, CNA_origin performed slightly worse than the
best LSTM algorithm, with reductions of 4.81% in precision,

8.61% in recall, and 6.81% in F1-score, respectively. For OV,
the F1-score of CNA_origin was increased by 4.50% and 10.00%
compared with LSTM and CNA_zhang; the recall was worse than
the best, LSTM, by 5.10%, and precision was better than LSTM
and CNA_zhang by 14.49 and 6.13%, respectively. CNA_origin
exhibited perfect performance for the tumor classification.

The macro-averages of precision, F1-score, recall, and
accuracy of six types of tumors were utilized to evaluate
our predictor. Ten-fold cross-validation was run 100 times to
test CNA_origin, LSTM, RF, XGboost, and CNA_zhang. For
precision, CNA_origin had a mean value of 0.8369, which
was increased by 0.70 and 6.87% compared with LSTM and
CNA_zhang. For recall, the mean value of CNA_origin was
0.8345, which was increased by 0.91 and 8.68% compared with
LSTM and CNA_zhang, respectively. For the F1-score, the mean
value of CNA_origin was 0.8339, which was increased by 0.77
and 8.22% compared with LSTM and CNA_zhang, respectively.
For accuracy, the CNA_origin had a mean value of 0.8381, which
was increased by 0.92 and 7.75% compared with LSTM and
CNA_zhang, respectively. The results are shown in Figure 2.

The results showed that the sensitivity, accuracy, and
specificity of UCEC were significantly lower than those of other
tumors. The results of UCEC were further analyzed, and it
was found that about 48–76% of UCEC samples were predicted

FIGURE 2 | Performance comparison between CNA_origin and other algorithms (basic LSTM, RF, XGboost, and CNA_zhang) for the macro-averages of precision,

F1-score, recall, and accuracy from 10-fold cross-validation 100 times.
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FIGURE 3 | Effect of cross-validation fold k value on classifier performance.

When the value of k became larger, the performance of classifiers was

improved, but a small sample size of the test set had a negative impact on

model evaluation.

to be OV, while 24–52% of UCEC samples were predicted to
be BRCA. This may be because BRCA, OV, and UCEC are
hormone-dependent tumors, which have a close relationship
in tumorigenesis. Many reports have pointed out that BRCA,
OV, and UCEC are related to changes in estrogen and estrogen
receptors (Rodriguez et al., 2019; Scherbakov et al., 2019; Sehouli
et al., 2019). Moreover, the physical location of ovary and uterus
is very close, which may lead to contamination of tissue samples
and difficulty in distinguishing UCEC from OV samples.

3.4. Impact of Sample Size
Different cross-validation fold k values were used to study the
effect of sample number on the performance of the classifier. The
larger k was, the more samples there were in the training set,
and then the fewer samples there were in the test set, and vice
versa. The range of k ranged from 5 to 30 with step size = 1, and
Figure 3 shows the accuracy of CNA_origin, LSTM, RF, XGboost,
and CNA_origin with the different fold k values. With increasing
k value, the performance of CNA_origin was gradually improved
at first, which could be due to a bigger k including more training
samples. But, as k became larger, the number of samples in the
test set became smaller, and the performance of the classifiers
was weakened. The results indicated that the performance of
CNA_origin would be further improved if the training samples
were expanded and that sufficient test samples were also very
important for model evaluation.

3.5. Performance Comparison of
Independent Datasets
In order to compare generalization performance on the
independent data, experiments were performed with CNA
datasets released by TCGA in 2016 downloaded from http://gdac.
broadinstitute.org/. The TCGA datasets had 1080 BRCA samples,
611 COADRAD samples, 577 GBM samples, 528 KIRC samples,
552 OV samples, and 533 UCEC samples, respectively. The
preprocessing analysis of 24776 gene CNA values was performed
with GISTIC2 (Mermel et al., 2011). The TCGA datasets

FIGURE 4 | Performance comparison of CNA_origin and other algorithms

(basic LSTM, RF, XGboost, and CNA_zhang) for independent datasets from

the TCGA.

were reasonably independent of the training data because of
preprocessing analyses such as quality control, alignment, and
variation detection, which had a different systematic bias. The
genes involved in bothMSKCC datasets and TCGA datasets were
selected, and the TCGA samples existing in MSKCC datasets
were removed. There were 19895 common genes present in
the MSKCC and TCGA datasets, and the independent datasets
contained 234 BRCA samples, 50 COADRAD samples, 25
GBM samples, 41 KIRC samples, 21 OV samples, and 99
UCEC samples (see Supplementary Material for details). The
independent datasets were used to evaluate the performance
of CNA_origin. As shown in Figure 4, the overall performance
of CNA_origin in terms of precision, recall, accuracy, and F1-
score was the highest among the tools, at 0.74, 0.85, 0.79,
and 0.77, respectively (see Supplementary Material for details).
According to the results shown in Figure 4, it was concluded that
CNA_origin performed successfully in the independent datasets.

4. CONCLUSIONS

Patients with CUPS often have a low median survival time of 9–
12 months. Precise diagnosis of the tissue origin for metastatic
CUPS is essential for determining the treatment scheme to
improve patient prognosis. A lot of studies have tried to use
cancer biomarkers to predict the primary tumor site for CUPS
so as to provide important guidelines for timely patient care and
cancer therapy. CNA provides a new way to identify and classify
tumor types. In this study, a computational method, CNA_origin,
was proposed to predict the tissue of origin from information on
gene CNA levels. CNA_origin set up an intellectual deep-learning
network mainly composed of an autoencoder and a CNN. This
predictor successfully learned the inherent information of gene
copy number and exhibited superior performance to the classical
algorithms on k-fold cross-validations and independent datasets.

At present, the accuracy of using only CNA as the biomarker
for tumor traceability is not very high. Integrating multiple
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biomarkers, such as CNA and DNA methylation or gene
expression data, to trace tumor is our future goal.
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