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In situ immobilization of enzyme into metal–organic frameworks (MOFs) is performed
through a one-step and facile method. Candida antarctica lipase B (CalB) is directly
embedded in zeolitic imidazolate framework (ZIF)-8 by simply mixing an aqueous
solution of 2-methylimidazole and zinc nitrate hexahydrate [Zn(NO3)2·6H2O] containing
CalB at room temperature. Due to the intrinsic micropores of ZIF-8, the obtained
CalB@ZIF composite is successfully applied in size-selective transesterification reaction
in organic solvent. CalB@ZIF not only shows much higher catalytic activity but also
exhibits higher thermal stability than free CalB. Besides, the robust ZIF-8 shell also offers
the hybrid composites excellent reusability.

Keywords: metal–organic frameworks, enzymatic reactions, size-selective catalysis, heterogeneous catalysis,
biocatalysis

INTRODUCTION

Enzymatic catalysis is one of the most important catalytic processes used in modern industries
to manufacture chemicals, pharmaceuticals, food, and materials for human society. Immobilized
enzymes are preferred in the industry since free enzymes are usually vulnerable in non-aqueous
media or at elevated temperatures (Sheldon, 2007; Zhang et al., 2015). To date, various kinds
of solid materials have been employed as carriers for the immobilization of enzymes, including
natural polymers, synthetic polymers, inorganic materials, etc. (Hartmann and Jung, 2010; Datta
et al., 2013; Zhou and Hartmann, 2013). The immobilization can be approached by different
techniques, e.g., adsorption (Wang et al., 2019), covalent binding (Engstrom et al., 2013), affinity
immobilization (Keller et al., 2017), and entrapment (Majewski et al., 2017). Generally, the stability
of immobilized enzymes is usually enhanced compared with free enzymes, which thus enables the
long-term and repeated usage of the enzymes. The ideal enzyme immobilization method should
retain maximal enzyme activity while minimizing mass transfer limitation of substrates/products.
However, no existing method has entirely fulfilled these requirements (Gkaniatsou et al., 2017).
Therefore, developing novel immobilization matrices and methods still remain of key interest.
Moreover, the immobilization of enzymes for size-selective catalysis has been rarely reported,
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though size-selective catalysis is quite important when a reaction
is conducted in a complex system containing substrates with the
same or similar reaction groups.

Metal–organic frameworks (MOFs) are an attractive class
of porous crystalline solids built from metal ions and organic
linkers. Due to the easily tunable chemical and structural
properties, MOFs have shown great potential in applications
in various areas, including gas adsorption (Xiao et al., 2016),
catalysis (Huang et al., 2017; Zhu et al., 2017), and drug delivery
(Chen et al., 2017; Wu and Yang, 2017). Recently, the application
of MOFs as matrices for immobilizing proteins/enzymes has also
emerged (Liang et al., 2020). Enzymes could be immobilized
through adsorbing (Liu et al., 2013, 2014, 2015; Zhao et al.,
2015; Cao Y. et al., 2016; Lu et al., 2016; Zhang et al., 2017;
Samui and Sahu, 2018) or crosslinking (Jung et al., 2011; Shih
et al., 2012; Doherty et al., 2013; Patra et al., 2015; Cao S.
et al., 2016; Patra et al., 2016; Wang et al., 2016; Wen et al.,
2016) onto the surface of MOFs. It was also reported that some
enzymes could enter the interior of MOFs and be stabilized in the
pores (Lykourinou et al., 2011; Chen et al., 2012a; Deng et al.,
2012; Kim et al., 2015), whereby enzymes undergo significant
conformational change due to the strong interactions between
enzymes and organic linkers in MOFs (Chen et al., 2012b, 2014).
Prominent enhancement of stability and/or activity of enzymes
was observed when they were immobilized on MOFs, indicating
that MOFs were among the promising matrices for immobilizing
enzymes (Li et al., 2016a,b; Nadar and Rathod, 2018a).

It should be noted that the abovementioned immobilizing
enzymes on/in MOFs are usually realized through at least two
steps, namely, preparation of MOFs and immobilization of
enzymes. One-step fabrication of enzyme/MOF hybrids would be
of great interest for its ease of preparation, which requires that the
formation of MOFs should proceed in a fast and mild manner
and would preserve the activity of enzymes (Gascon Perez
et al., 2017). Zeolitic imidazolate frameworks (ZIFs), especially
ZIF-8, which grow under mild biocompatible conditions and
feature with exceptional chemical and thermal stability, have
been primarily studied for the immobilization of enzymes in
a one-pot reaction. Liu et al. did the pioneering work in this
field, embedding protein (cytochrome c, Cyt c) in ZIF-8 in
methanol. During the synthesis, polyvinylpyrrolidone (PVP) was
utilized for enhancing the dispersion and stabilization of Cyt
c (Lyu et al., 2014). Besides, the protective effect of ZIF-8 for
enzymes/proteins, including urease and horseradish peroxidase
(HRP), against polar solvents, high temperature, and trypsin was
demonstrated by Falcaro’s group (Liang et al., 2015). Shieh et al.
(2015) embedded catalase into ZIF-90, showing that the catalase
exhibited hydrogen peroxide degradation even in the presence
of protease because the catalase was sheltered and protected
by ZIF-90 shell. Ge group prepared a hybrid biocatalyst by
embedding glucose oxidase (GOx) into ZIF-8, which was further
modified with polydopamine (PDA). This composite can be used
repeatedly without obvious activity loss (Wu et al., 2015b). Later,
GOx/ZIF-8 composites were reported as chemical sensors (Hou
et al., 2015; Wang et al., 2017). Ge group further investigated the
protective effect of ZIF-8 for the embedded enzymes in various
denaturing organic solvents (Wu et al., 2017). The same group

also developed multienzyme-containing ZIF-8 composites by
immobilizing different enzymes in ZIF-8 in one-pot in aqueous
solution at 25◦C. High catalytic efficiency, selectivity, and stability
of this hybrid material were displayed due to the existence of
ZIF-8 shell (Wu et al., 2015a; Chen et al., 2018). Laccase was
also entrapped into ZIF-8, showing increased thermostability,
reusability, and storage stability (Patil and Yadav, 2018). Based
on these reports, it is demonstrated that embedding enzymes
in ZIF-8 can proceed in biocompatible conditions in a facile
one-step method, holding considerable potential in developing
enzyme/MOF hybrid catalysts.

Candida antarctica lipase B is a well-known and easily
available lipase, which can catalyze esterification, hydrolysis, and
transesterification reaction efficiently. Recently, hybrid materials
prepared through embedding CalB and other lipases in ZIF-
8 were reported by several research groups (Pitzalis et al.,
2018; Cai et al., 2020). Rathod group encapsulated lipase (from
Aspergillus niger source) in ZIF-8 by mixing an aqueous solution
of Zn(NO3)2 containing lipase with an aqueous solution of 2-
methylimidazole (Nadar and Rathod, 2018b). It was found that
the ultrasound treatment of lipase before encapsulation increased
its activity, probably due to the favorable conformational
changes of lipase during sonication. Further, the same group
found that the activity of the lipase could be improved in
the presence of proline, which was able to maintain active
conformation of enzyme and protect active sites under high-
temperature conditions (Nadar and Rathod, 2019). Surfactants
were also capable to enhance the activity of encapsulated lipase
in ZIF-8, as the hydrogen bonding and hydrophobic–hydrophilic
interactions between surfactants and lipase were believed to
improve the 3D conformation of lipase (Vaidya et al., 2020). It is
noticed that these works are mainly focusing on the improvement
of catalytic activity of encapsulated CalB or other lipases in ZIF-8
by various methods. Due to the relatively small aperture diameter
(3.4 Å) of ZIF-8, assembled ZIF-8 particles have been applied
as shells of hybrid catalytic materials for size-selective catalysis
(Huo et al., 2015). However, the direct immobilization of enzymes
in ZIFs for size-selective catalysis in organic solvents has not
been reported so far, which is very important for the controllable
conversion of substrates with the same reactive groups.

In this work, we present the entrapment of enzyme CalB
in ZIF-8 through biomimetic mineralization under room
temperature, obtaining the hybrid material CalB@ZIF. Its
application in size-selective biocatalysis for organic synthesis was
investigated for the first time. In this hybrid CalB@ZIF, the ZIF-8
shell can not only enhance the activity and stability of CalB but
also regulate the accessibility of substrates to the interior CalB.

MATERIALS AND METHODS

Materials and Chemicals
Candida antarctica lipase B was purchased from c-LEcta GmbH
(Leipzig, Germany), and the weight percentage of pure CalB
in the received product is about 10% based on the Bradford
test. Zn(NO3)2·6H2O, ethylenediaminetetraacetic disodium salt
(EDTA-2Na), and Bradford test reagent Roti-Nanoquant were

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 July 2020 | Volume 8 | Article 714

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00714 July 4, 2020 Time: 17:41 # 3

Wang et al. Size-Selective Catalysis

purchased from Carl Roth GmbH & Co. KG (Karlsruhe,
Germany). Vinyl acetate, vinyl laurate, 2-methylimidazole, 1-
butanol, and 3-(4-hydroxyphenyl)propan-1-ol were purchased
from ABCR GmbH & Co. KG. Fluorescein isothiocyanate (FITC)
was purchased from Sigma-Aldrich. Unless otherwise noted, all
the chemicals were used as received without purification.

Characterizations
Bradford test was performed on TECAN infinite M200.
Thermogravimetric analysis (TGA) was carried out on
NETZSCH STA 449F3 (NETZSCH, Germany) by heating
samples from 25 to 800◦C in a dynamic Ar atmosphere with
a heating rate of 10◦C min−1. Fourier transform infrared
spectroscopy (FTIR) spectra were recorded on an FTIR
spectrometer Tensor II (Bruker) with an attenuated total
reflectance (ATR) unit. Powder X-ray diffraction (PXRD) was
performed on a PANalytical X’Pert Pro powder diffractometer
with Bragg–Brentano geometry equipped with a Ge(111)-
monochromator, a rotating sample stage, and a PIXcel detector,
using Cu Kα1 radiation (λ = 154.06 pm). The data were
collected in reflection mode using a divergence slit that kept
the illuminated sample area constant. Optical and fluorescence
microscopy images were recorded on Olympus Provis AX70. N2
sorption was measured at 77 K on BeiShiDe (3H-2000PS2). The
pore diameter of ZIF-8 was calculated through the Horvath–
Kawazoe (H-K) method due to its microporous feature,
while the pore diameter of CalB@ZIF was calculated through
the Barrett–Joyner–Halenda (BJH) method because of its
mesoporous feature. The results were given by the measurement
instrument directly. Gas chromatography (GC) analysis was
performed on a Shimadzu GC2010 PLUS gas chromatograph
equipped with a BPX5 column (25 m × 0.22 mm) using a flame
ionization detector (FID).

Preparations
Preparation of CalB@ZIF
CalB@ZIF was synthesized following a reported method with
modification (Liang et al., 2015). CalB (200 mg) was dissolved
in 400 ml Zn(NO3)2·6H2O aqueous solution (80 mM). After
stirring for 10 min under room temperature, 400 ml 2-
methylimidazole aqueous solution (320 mM) was added. The
mixture was stirred for 30 min, and the precipitated white
solid was isolated through centrifugation at 4◦C. After washing
thoroughly with deionized water, the white solid was lyophilized
and stored at −20◦C before use. The amount of encapsulated
CalB was determined by the Bradford test. CalB@ZIF (24.3 mg)
was first digested in 1 ml saturated EDTA-2Na aqueous solution.
After a transparent solution was obtained, the solution was
dialyzed in deionized water for 24 h and lyophilized. The residual
solid was then dissolved in 4 ml deionized water and subjected to
the Bradford test.

Preparation of ZIF-8
Zeolitic imidazolate framework-8 was prepared by mixing 400 ml
Zn(NO3)2·6H2O aqueous solution (80 mM) and 400 ml 2-
methylimidazole aqueous solution (320 mM). After stirring for
30 min under room temperature, the white solid was isolated

through centrifugation and washed thoroughly with deionized
water before being lyophilized.

Catalysis
A Typical Procedure for Transesterification Reaction
To a glass vial containing catalyst (CalB@ZIF or ZIF-8, 20 mg)
or free CalB (366 µg, the amount was determined through
Bradford test), alcohol (300 mM) and vinyl ester (200 mM) in
acetone (250 µl) were added. The sealed vial was shaken at
800 rpm under 25◦C. At interval time, the reaction mixture (5 µl)
was withdrawn and diluted to 100 µl with acetone. The solid
catalyst was removed through centrifugation, and the obtained
supernatant was analyzed by GC. The conversion was determined
by the diminishment of the peak of vinyl ester.

Thermal Stability Measurement
CalB@ZIF (20 mg) or free CalB (366 µg, the amount was
determined through Bradford test) was dispersed in 250 µl
acetone in glass vials. The sealed vials were shaken at 800 rpm
under 50◦C. At intervals (0, 1, 2, 4, and 8 h), the glass vials
were removed from heating. After cooling to room temperature,
n-butanol (5.56 mg, 0.075 mmol) and vinyl acetate (4.30 mg,
0.050 mmol) were added. After being shaken at 800 rpm under
25◦C for 25 min, 5 µl reaction mixture was withdrawn and
diluted to 100 µl. The supernatant was subjected to GC analysis.

Reusability of CalB@ZIF
To a glass vial containing 20 mg CalB@ZIF, n-butanol (300 mM)
and vinyl acetate (200 mM) in acetone (250 µl) were added.
The sealed vial was shaken at 800 rpm under 25◦C for 2 h.
After isolating the solid catalyst from the reaction mixture, the
supernatant was analyzed with GC. The isolated CalB@ZIF was
washed with acetone (3 × 1 ml) and dried in a vacuum under
room temperature before being used in the next run.

RESULTS AND DISCUSSION

CalB@ZIF was prepared by mixing an aqueous solution of
Zn(NO3)2·6H2O containing CalB and an aqueous solution of 2-
methylimidazole, following a reported method with modification
(Liang et al., 2015). The schematic illustration of the synthesis
of CalB@ZIF is depicted in Scheme 1. ZIF-8 was prepared
under identical reaction conditions but in the absence of CalB.
It should be mentioned that the formation of ZIF-8 is much
slower compared with the formation of CalB@ZIF, indicating
that the nucleation of ZIF-8 precursors can be triggered by
CalB (Maddigan et al., 2018). The content of trapped CalB in
CalB@ZIF was determined based on a standard Bradford assay
after digesting CalB@ZIF in EDTA-2Na solution, which turned
out to be 18.3 µg mg−1.

Powder X-ray diffraction measurement was performed
to characterize the crystallinity of CalB@ZIF (Figure 1A).
Unexpectedly, no characteristic peaks from ZIF-8 are observed
in the PXRD pattern of CalB@ZIF, indicating the formation
of amorphous ZIF-8. Amorphous MOFs (aMOFs) are an
emerging family of MOF materials, which maintain the basic
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SCHEME 1 | Schematic illustration of the synthesis of CalB@ZIF.

building blocks but without long-range crystallinity (Bennett
and Cheetham, 2014; Bennett and Horike, 2018). Preparation
of aMOFs usually requires harsh conditions, including high-
pressure treatment (Chapman et al., 2009, 2011), high-
temperature heating (Bennett et al., 2011), electron-beam
treatment (Conrad et al., 2018), and high-energy ball-milling
(Cao et al., 2012). While in our case, the amorphization of
ZIF-8 is realized through a biomolecule-induced process in a
mild condition. The amorphous feature of CalB@ZIF is probably
caused by the coordination between amine groups of CalB and
Zn2+, whereby CalB functions as a competitive ligand against 2-
methylimidazole and disturbs the periodic structure of ZIF-8 (Ge
et al., 2012; Liu et al., 2020).

The formation of ZIF-8 structure in CalB@ZIF is confirmed
by FTIR measurement (Figure 1B). In the FTIR spectrum of
CalB@ZIF, the adsorption bands, which can be assigned to ZIF-8
structure, are clearly observed. The sharp signal at 421 cm−1 is
attributed to Zn-N stretching, while the bands at 1,422 and 900–
1,300 cm−1 are derived from the stretching and plane bending
of the imidazole ring, respectively (Hou et al., 2015). The signal
from CalB in CalB@ZIF is almost invisible probably due to the
low amount of trapped CalB. TGA results confirm the presence
of CalB in CalB@ZIF (Figure 1C). The first-stage weight loss of
CalB@ZIF starts from around 250◦C due to the decomposition of
CalB within the framework, while pure ZIF-8 starts to decompose
at nearly 450◦C. It is noted that the thermal stability of ZIF-8
decreases slightly in CalB@ZIF, which is possible because of its
amorphous structure in the hybrid material.

The porosity of CalB@ZIF and pure ZIF-8 was investigated
with the N2 adsorption/desorption experiment (Figure 1D).
The isotherm of ZIF-8 displays a steep increase at low
relative pressure (P/P0 < 0.1), indicating the existence of
permanent micropores. And the average pore diameter of
ZIF-8 is 0.799 nm calculated through the H-K method.
On the contrary, a sharp rise at high relative pressure
in the N2 adsorption isotherm of CalB@ZIF is observed,
suggesting the presence of interparticle mesopores. The
average pore diameter of CalB@ZIF is 18.380 nm calculated
through the BJH method. Meanwhile, the appearance of
hysteresis demonstrates the deformation and swelling of
CalB@ZIF (Weber et al., 2010). The discrepancy between
the N2 adsorption properties of CalB@ZIF and ZIF-8 is

possible because of the presence of CalB and CalB-induced
amorphization of ZIF-8, which may affect its pore structures
(Chapman et al., 2009).

To further confirm the presence of CalB in CalB@ZIF, CalB
labeled with FITC (CalB-FITC) was embedded in ZIF-8 following
the same procedure for preparing CalB@ZIF, and the obtained
sample was denoted as CalB-FITC@ZIF. The black particles
observed on the optical microscopic image are the sample CalB-
FITC@ZIF (Figure 2A). These particles emit green fluorescence
when observed under a fluorescence microscope (Figure 2B).
In a control experiment, no fluorescence is emitted from ZIF-8
particles (Supplementary Figure 1). These results manifest the
successful entrapment of enzymes in CalB@ZIF.

Candida antarctica lipase B is a widely used broad-substrate
lipase for esterification and transesterification reactions. The
catalytic performance of CalB@ZIF was assessed by carrying out
transesterification reactions between a pair of small substrates
(butanol and vinyl acetate) and a pair of larger ones [3-
(4-hydroxyphenyl)propan-1-ol and vinyl laurate] in acetone
(Figure 3A; Huo et al., 2015). The reactions were carried out
under room temperature, and the conversion was monitored
by GC. Initially, the reactions were performed with free CalB
as the catalyst. After 120 min, moderate conversion of vinyl
acetate and vinyl laurate was found, which was 51.4 and 64.7%,
respectively (Supplementary Figure 2). When CalB@ZIF was
used as a catalyst, it was found that vinyl acetate was almost totally
converted within 120 min using the small substrates (Figure 3B).
However, the conversion of vinyl laurate was only 8.2% using
the large substrates. In a control experiment, it was also found
that 8.5% of vinyl acetate was converted in the presence of ZIF-
8 instead of CalB@ZIF. These results reveal that the smaller
substrates and their products can readily diffuse through the
apertures of ZIF-8, while larger substrates cannot pass through
the pores. Leaching test was carried out by isolating CalB@ZIF
from the reaction mixture after reacting 30 min, and almost
no further conversion of vinyl acetate was observed, indicating
that no CalB leached out from CalB@ZIF during the catalysis.
It is noteworthy that CalB@ZIF shows a higher catalytic activity
than free CalB in catalyzing the transesterification reaction.
The enhanced activity of CalB in CalB@ZIF is presumably
derived from the conformational change of CalB induced by
coordination between CalB and Zn2+, which is called allosteric
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FIGURE 1 | (A) Powder X-ray diffraction (PXRD) patterns of CalB@ZIF and ZIF-8. (B) Fourier transform infrared spectroscopy (FTIR) spectra of ZIF-8, CalB@ZIF, and
CalB. (C) Thermogravimetric analysis (TGA) curves of ZIF-8, CalB@ZIF, and CalB. (D) N2 sorption isotherms of ZIF-8 and CalB@ZIF.

FIGURE 2 | (A) Optical and (B) fluorescent microscopy images of CalB-FITC@ZIF.

effect (Ge et al., 2012; Wang et al., 2013). Meanwhile, the
microenvironments created by ZIF-8 shell may also contribute
to the enhanced activity of encapsulated CalB (Lyu et al.,
2014; Sun et al., 2018). Additionally, CalB@ZIF has a much
better dispersibility than free CalB in acetone, which is very
important to the higher catalytic activity as well. As shown
in Figure 3C, when CalB-FITC@ZIF is added into acetone
and observed under a UV light (245 nm), the whole mixture
emits green fluorescence due to the good dispersibility of CalB-
FITC@ZIF. But when CalB-FITC is added into acetone, green
fluorescence is only observed at the bottom part. The aggregation
of free CalB restricts its catalytic ability in organic solvents
(Stepankova et al., 2013).

The encapsulation of CalB with ZIF-8 not only offers the
catalyst size selectivity and enhanced activity but also elevates the
thermal stability of CalB. When CalB@ZIF was used to catalyze
the transesterification between vinyl acetate and n-butanol after
being incubated in acetone under 50◦C for 8 h, it was found
that the conversion of vinyl acetate was still higher than 80%
of that catalyzed with untreated CalB@ZIF (Figure 3D). Yet the
retained activity of free CalB decreased to only about 50%. These
results illustrate the high thermal stability of CalB encapsulated
in ZIF shells and their potential as a robust catalyst for industry-
relevant application in organic solvents. Reusability is also a
crucial parameter when catalysts are used in the industry. The
reaction between vinyl acetate and n-butanol was still used as the
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FIGURE 3 | (A) Reaction schemes of the model reactions. (B) Time-dependent conversion of vinyl acetate or vinyl laurate: (1) conversion of vinyl acetate when
CalB@ZIF is used, (2) conversion of vinyl laurate when CalB@ZIF-8 is used, (3) conversion of vinyl acetate in the leaching test (CalB@ZIF was isolated at 30 min), and
(4) conversion of vinyl acetate in the presence of ZIF-8 instead of CalB@ZIF. (C) Photo picture of CalB-FITC@ZIF (I) and CalB-FITC (II) in acetone observed under a
UV light (245 nm). (D) Thermal stability test of CalB@ZIF and free CalB. (E) Reusability test of CalB@ZIF.

model reaction. As shown in Figure 3E, only a slight decrease
in conversion is observed even after CalB@ZIF is used for 10
times. The high reusability of CalB@ZIF is probably because the
conformational change of CalB caused by acetone is inhibited
by the ZIF shells.

CONCLUSION

In conclusion, a facile method for the direct encapsulation of the
enzyme CalB in ZIF-8 is reported. Interestingly, amorphous ZIF-
8 shell forms during the preparation, which is probably induced
by the coordination between CalB and Zn2+. Size-selective
biocatalysis properties of the hybrid CalB@ZIF is investigated
for the first time through catalyzing transesterification reaction
in organic solvent. The embedded CalB also shows enhanced
activity and thermal stability. This work sheds light on the
possibility to fabricate enzyme-MOF hybrid catalysts in a

straightforward way for task-specific and long-term usage in
industrial applications.
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