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Host response biomarkers offer a promising alternative diagnostic solution for identifying
acute respiratory infection (ARI) cases involving influenza infection. However, most of
the published panels involve multiple genes, which is problematic in clinical settings
because polymerase chain reaction (PCR)-based technology is the most widely used
genomic technology in these settings, and it can only be used to measure a small
number of targets. This study aimed to identify a single-gene biomarker with a high
diagnostic accuracy by using integrated bioinformatics analysis with XGBoost. The
gene expression profiles in dataset GSE68310 were used to construct a co-expression
network using weighted correlation network analysis (WGCNA). Fourteen hub genes
related to influenza infection (blue module) that were common to both the co-expression
network and the protein–protein interaction network were identified. Thereafter, a
single hub gene was selected using XGBoost, with feature selection conducted using
recursive feature elimination with cross-validation (RFECV). The identified biomarker was
oligoadenylate synthetases-like (OASL). The robustness of this biomarker was further
examined using three external datasets. OASL expression profiling triggered by various
infections was different enough to discriminate between influenza and non-influenza
ARI infections. Thus, this study presented a workflow to identify a single-gene classifier
across multiple datasets. Moreover, OASL was revealed as a biomarker that could
identify influenza patients from among those with flu-like ARI. OASL has great potential
for improving influenza diagnosis accuracy in ARI patients in the clinical setting.

Keywords: influenza infection, host response, OASL, XGBoost, WGCNA

INTRODUCTION

Acute respiratory infection (ARI) is responsible for significant levels of morbidity and mortality
worldwide related to infectious diseases. Viruses and bacteria are the main causes of ARI. Among
the viruses, influenza virus kills more people than other viruses. It has been estimated that there
were 250,000–500,000 additional deaths during the first 12 months of the global circulation of the
2009 pandemic H1N1 influenza A virus (Dawood et al., 2012). Better diagnostics for ARI (with or
without influenza virus) are urgently needed in both inpatient and outpatient settings. However,
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discriminating between influenza and non-influenza flu-like
illnesses on clinical grounds is often difficult, because these ARIs
share similar clinical features (e.g., cough and fever).

Diagnostic methods for viral pathogens, such as culture,
serodiagnosis, nucleic acid-based methods, and high-throughput
sequencing, are important to guide disease management. When
the presence of a viral pathogen is confirmed by these methods,
this does not exclude a possible coinfection with bacteria, leading
to antimicrobial prescriptions “just in case” (Tsalik et al., 2016).
Moreover, as for most respiratory pathogens, the presence of
influenza virus is sometimes unrelated to the presenting illness
(Jansen et al., 2011). There is currently widespread interest in tests
for virus detection in general and tests for “active” virus detection.

The host response to infection provides an alternative
target for “active” virus detection. It has been reported that
biomarkers based on host gene expression have great potential for
distinguishing ARI patients infected with viruses versus bacteria
(Herberg et al., 2016; Sweeney et al., 2016b; Tsalik et al., 2016; Yu
et al., 2019). In addition to ARI, other infectious diseases such
as tuberculosis (Sweeney et al., 2016a), systemic inflammation
(Sampson et al., 2017) and hemorrhagic fevers (Robinson et al.,
2019) have been studied using this approach. Most published
panels for detecting the host response to infections contained
multiple genes, making it difficult to apply them in clinical
settings, as polymerase chain reaction (PCR)-based technologies
could only measure a small number of targets. Recently,
interferon alpha-inducible protein 27 (IFI27) was found to be able
to distinguish influenza and non-influenza flu-like illnesses in a
large cohort, with an area under the curve (AUC) value of 0.87
(Tang et al., 2017). However, IFI27 was the most upregulated gene
during influenza virus, respiratory syncytial virus (RSV), and
human rhinovirus (HRV) infections (Ioannidis et al., 2012; Zhai
et al., 2015). Here, we aimed to follow the single-gene strategy to
improve the discrimination between influenza and non-influenza
flu-like illnesses based on an integrated bioinformatics analysis
with XGBoost (Figure 1).

MATERIALS AND METHODS

Study Design
The purpose of this study was to use an integrated bioinformatics
analysis to analyze multiple gene expression datasets in order to
identify a biomarker that can accurately classify patients with
influenza or non-influenza flu-like illnesses, including bacterial
infections and other viral infections. The general study workflow
was shown in Figure 1.

Data Collection
In brief, data were obtained from the Gene Expression Omnibus
(GEO) database1 in December 2019 using the keyword “influenza
cohort.” The following exclusion criteria were applied to the
microarray data: (1) only involved influenza infection; (2) no
or insufficient clinical data; (3) concerned influenza vaccine
responses; and (4) used non-baseline (“healthy”) controls. After

1http://www.ncbi.nlm.nih.gov/geo/

review, GSE68310, which contains 880 samples from 133 subjects
with influenza infection or other viral ARIs, was selected for
biomarker discovery (Zhai et al., 2015).

For the validation stage, three external independent
microarray datasets were selected. GSE6269 (Ramilo et al.,
2007) was used to evaluate the diagnostic performance between
influenza and bacterial infections. Both GSE42026 (Herberg et al.,
2013) and GSE38900 (Mejias et al., 2013) were used to estimate
the discriminatory power to differentiate the influenza against
other viral infections. In addition to controls, the three datasets
contained cases with common bacterial and viral respiratory
infections, i.e., Streptococcus pneumoniae, Staphylococcus aureus,
influenza virus, HRV, and RSV etc. Before further analysis, the
expression matrices were normalized and log2-transformed.

Differentially Expressed Genes
Screening
The limma R package was used to screen the influenza infection
associated differential expressed genes (DEGs). DEGs analyses
contrasting the Day 0 influenza A virus infected individual data
with the baseline samples were performed by function for linear
model fitting in the R package limma (Ritchie et al., 2015).
Correction for multiple testing was addressed by controlling the
false discovery rate (FDR) using the Benjamini–Hochberg (B.H.)
method. Criteria for DEGs were an absolute log2 fold change
(Log2FC) of 0 and the FDR-adjusted P-value of <0.05.

Co-expression Network Construction
A co-expression network was constructed using the normalized
GSE68310 data by the weighted correlation network analysis
(WGCNA) in R (Langfelder and Horvath, 2008). Briefly, quality
assessment of GSE68310 samples was conducted using the cluster
method. The soft-thresholding power was then calculated, with
the type of network set to signed. The correlation coefficient
threshold was 0.90. Network construction was then performed
based on the calculated power. In addition, the minimum number
of genes in each module was 30 and the threshold for cut height
was set to 0.25 to merge possible similar modules.

Identification of Modules Related to
Influenza Infection
For a given module, the expression profile was summarized
into a single characteristic expression profile, designated
module eigengenes (MEs). MEs were considered as the first
principal component in the principal component analysis (PCA).
Thereafter, a Pearson correlation analysis, calculating the Student
asymptotic P-values for the correlations, between MEs and
clinical traits (Progression, Baseline, Day0 of viral infection and
gender) was conducted.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Analyses
To understand the functions of enriched genes in interesting
modules, Gene Ontology (GO) (Ashburner et al., 2000) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2017) analyses were performed using clusterProfiler
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FIGURE 1 | General study workflow: data collection, in silico analysis, and external validation. PPI, protein–protein interaction; RFECV, recursive feature elimination
with cross-validation.

(Yu et al., 2012), identifying significant results based on a
Benjamini–Hochberg FDR-adjusted P-value ≤0.05.

Candidate Hub Gene Selection
Three bioinformatics approaches were combined to select the
hub genes. First, the module that was most highly correlated with
influenza infection was selected. Hub genes in the module were
determined by both gene significance and module membership.
Second, all the interesting genes were uploaded to the Search Tool
for the Retrieval of Interacting Genes (STRING) database2 to
create a protein–protein interaction network (PPIN) (Szklarczyk
et al., 2019). Hub genes in PPIN were selected by maximum
neighborhood component (MNC), degree and maximal clique
centrality (MCC) using cytoHubba with Cytoscape (Shannon
et al., 2003; Chin et al., 2014). Thereafter, hub genes common
to both networks were chosen. Finally, a single hub gene was
selected using XGBoost with recursive feature elimination with
cross-validation (RFECV) (Pedregosa et al., 2011; Chen and
Guestrin, 2016).

External Dataset Validation of the Hub
Gene
We validated the hub gene-based classification performance
related to distinguishing influenza and non-influenza acute

2https://string-db.org

respiratory illness using the external datasets GSE6269,
GSE42026, and GSE38900. We also compared the performance
of the selected hub gene to the performance of IFI27, which
is a biomarker that discriminates influenza from all other
conditions, with an AUC value of 0.87 (Tang et al., 2017).
Additionally, a receiver operating characteristic (ROC) curve
was plotted, and AUC was calculated using “pROC” (Robin
et al., 2011) to evaluate the performance of the selected hub
gene regarding distinguishing influenza infection from all
other conditions.

Statistical Analysis
R (version 3.5.1) was used for most analyses, with hub gene
selection being performed using XGBoost in Python (version
3.6). The statistical significance of pairwise differences between
groups was analyzed using a two-tailed t-test. P-value ≤0.05 was
considered statistically significant.

RESULTS

Quality Control and Sample Selection
Raw data in dataset GSE68310 was subjected to background
adjustment, variance stabilization after log2 transformation, rank
invariant normalization, and quality control evaluation with a
detection P-value less than 0.05 by using corresponding functions
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FIGURE 2 | Co-expression network constructed using weighted correlation network analysis (WGCNA). (A) Analysis of the scale-free fit index with a threshold of
0.90 (top) and mean connectivity (bottom) for various soft-thresholding power values. (B) Distribution of average gene significance and errors in the modules
associated with Influenza infections (FluA-Day0). (C) Heatmap of the correlation between module eigengenes and the clinical traits recorded in GSE68310. FluA,
influenza A virus; FluB, influenza B virus; HRV, human rhinovirus; HCoV, human coronavirus.

in the R package lumi (Du et al., 2008). The preprocessed
expression matrix was then normalized by quantile method
in R package limma. Thereafter, the probe sets with known
gene symbol were kept, with 20,914 probes out of 47,254
remaining. No samples were removed after cluster analysis
(Supplementary Figure S2).

Influenza Associated DEGs
After quality control, we obtained the normalized expression
matrices from GSE68310. Under the threshold of FDR < 0.05 and
| log2FC| ≥ 0, a total of 6142 DEGs (2465 up-regulated and 3677
down-regulated) were achieved. The volcano plot of DEGs were
shown in Supplementary Figure S2.

Weighted Co-expression Network and
Identification of the Influenza
Infection-Related Module
To ensure that a scale-free network was constructed, a soft-
thresholding power of 3 was selected while 0.90 was used as the
correlation coefficient threshold (Figure 2A). After removing the
gray module which contained unassigned genes (n = 10,047),
a total of eight modules were identified and constructed in the
WGCNA analysis (Figure 2B). The module with the most genes
was the turquoise (n = 3127) module, followed by the blue
(n = 1930), and brown (n = 1155) modules (Supplementary
Figure S3). Modules with a greater MS were considered to
have more connection with the influenza infections, and we
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FIGURE 3 | Functional analysis of interesting modules. (A) GO and KEGG enrichment results for the blue module; (B) Venn diagram of KEGG results for the blue and
purple modules; (C) Venn diagram of GO results for the blue and purple modules. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

found that the MS of the blue module was higher than those
of any other modules (Figure 2C). In addition, module–trait
correlation analyses showed that multiple modules were related
to influenza infection. The Pearson correlation analysis, which
involved calculating the Student asymptotic P-values for the
correlations, between the MEs of each module and clinical traits
is shown in Figure 2B. The blue module was the module most
relevant to influenza infection, while the purple module was
related to HRV infection.

Quality Control of Modules Using
Functional Analysis
Functional enrichment results of genes in the blue module, which
was highly related to influenza infection, should hypothetically
be related to the immune response to viruses. The GO

and KEGG functional enrichment results were both used to
examine this hypothesis (Figure 3A). The most highly enriched
GO terms included regulation of innate immune response,
neutrophil activation, neutrophil degranulation, neutrophil
mediated immunity, and neutrophil activation involved in
immune response. The KEGG results directly included the
influenza A pathway (Figure 3).

It has been reported that different respiratory viruses can
cause similar symptoms via different mechanisms. As the purple
module was associated with HRV infection, GO and KEGG
analyses were also performed on the genes in the purple
module. The KEGG pathway results clearly suggested that the
blue module (influenza-related) and the purple module (HRV-
related) shared highly similar KEGG pathways (Figure 3B).
Conversely, the GO Biological Process results were very
dissimilar (Figure 3C). Thereafter, the correlation between
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FIGURE 4 | Hub gene selection. (A) Scatter plot of module eigengenes in the blue module with selection thresholds. (B) Visualization of the network connections
among the most connected genes in the blue module. The size of circles was equal to the log2 fold change. (C) Common hub genes in both the PPI and
co-expression networks. (D) Classification accuracy versus number of genes, based on the combination of XGBoost and recursive feature elimination with
cross-validation. (E) Evaluation of classification performance of the selected hub gene, oligoadenylate synthetases-like (OASL), using dataset GSE68310.

module membership regarding the blue module and gene
significance for HRV was assessed. No correlation was found,
as shown in Supplementary Figure S4 (r = −0.11, P = 1.3e-6).
Therefore, the presence of a unique set of genes in the blue
module was correlated with influenza infections.

Hub Gene Selection
The genes in the blue module were identified as candidate hub
genes by the co-expression network approach. A total of 106
genes were selected using a gene significance threshold of 0.9
and a module membership significance of 0.6 (Figure 4A and
Supplementary Table S1). In addition, the network connections

among the most connected genes in the blue module was
displayed through Cytoscape (Figure 4B). Next, a PPIN of all the
genes in the blue module was constructed using Cytoscape based
on the STRING database. The top 101 genes shared by MNC,
degree and MCC through cytoHubba were considered as hub
genes (Supplementary Table S1). Thereafter, 14 genes that were
common to both networks were selected as the candidates to be
further analyzed (Figure 4C and Supplementary Figure S5).

Hub gene selection based on XGBoost and RFECV was carried
out using the 14 candidate genes. The samples labeled “Day0”
(meaning that samples were collected within 48 h of ARI onset,
i.e., in the acute phase) with data on the 14 genes were firstly
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FIGURE 5 | Forest plot of diagnostic performance of OASL and IFI27 on external cohorts. AUC, Area under curve. *Cases with bacterial infections were removed.

standardized. They were then randomly assigned at a 7:3 ratio
to a training set (93 samples) and a test set (40 samples). The
“XGBoost” package in Python was used for data classification.
Parameter max_depth was defined as 3; learning_rate was defined
as 0.01; gamma was defined as 0.05; n_estimators was defined as
100. To obtain the best XGBoost model parameter combination
(learning_rate, max_depth, gamma, and n_estimators) with the
highest classification accuracy, fivefold cross-validation and grid
search were applied to the training set. RFECV was then applied
for feature selection based on the feature importance scores
calculated by XGBoost. Parameter step was defined as 1; cv was
defined as 5. The highest accuracy of classification was 0.944
which could be achieved through a single gene, oligoadenylate
synthetases-like (OASL) (Figure 4D). Moreover, the AUC score
in the training and test sets for this single gene was 0.935 and
0.889, respectively (Figure 4E).

External Validation Cohorts
Three external cohorts were chosen to evaluate the diagnostic
performance of the single gene-based classifier (Figure 5). First
of all, GSE6269 was used to evaluate the diagnostic performance
between influenza and bacterial infections. Both OASL and IFI27
showed high diagnostic accuracy (0.900 and 0.963, respectively).
Next, GSE42026 and GSE38900 were used to estimate the
discriminatory power to differentiate the influenza virus against
other respiratory viruses. To meet this aim, cases with bacterial
infection (n = 18) were firstly removed in GSE42026. After that,
the AUC of OASL was 0.852 (95% CI: 0.738–0.965) while the
AUC of IFI27 was 0.765 (95% CI: 0.658–0.872). For GSE38900,
the AUC of OASL was 0.797 (95% CI: 0.696–0.899) while the
AUC of IFI27 was 0.409 (95% CI: 0.320–0.498). AUC values were
calculated using bootstrapping validation (Robin et al., 2011).
Based on these findings, OASL achieved overall accurate results.

DISCUSSION

Over the last decade, considerable achievements have been
made regarding the discovery of gene expression biomarkers
of infections, especially respiratory illnesses (Herberg et al.,
2016; Sweeney et al., 2016b; Tang et al., 2017; Robinson et al.,
2019; Yu et al., 2019). In clinical settings, panels with multiple
genes are problematic for infection diagnostics, as the most
widely used genomic technology in clinical settings is PCR-based
technologies, which can only be used to assess a handful of
targets. To overcome this barrier, a single gene-based diagnostic
strategy will be highly beneficial. IFI27 has recently been
reported to be able to distinguish between influenza and bacterial
infections (with an AUC of 0.91) and between influenza and
non-influenza but flu-like illness (with an AUC of 0.87) (Tang
et al., 2017). However, IFI27 has been found to be the highest
upregulated gene during both influenza and RSV infections
(Ioannidis et al., 2012). Therefore, an integrated bioinformatics
analysis with machine learning was performed in this study to
identify a hub gene that was specific to influenza infection.

As ARIs share similar clinical features and various respiratory
viruses trigger a variety of interferon-stimulated genes (ISGs),
an ideal dataset for biomarker discovery should include not
only influenza infections, but also other respiratory infections.
GSE68310 was finally selected (Zhai et al., 2015). To discriminate
influenza infections from other viral infections, WGCNA, an
unsupervised analysis method that clusters genes based on
their expression profiles, was the first step to identify the hub
module associated with influenza infection. Moreover, quality
control involving enrichment analysis was performed on both
the blue (influenza-related) module and the purple (HRV-related)
module. Although diverse GO results were observed, similar
KEGG pathways were enriched, which provides insights as to why
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the clinical features are similar among various viral infections
(Figures 3B,C). The ISGs related to different viral infections were
unique, which was consistent with previous research (Ioannidis
et al., 2012; Andres-Terre et al., 2015). Therefore, the presence of
a distinctive set of genes in the blue module was as expected.

To obtain a single hub gene for influenza infection, XGBoost
was applied to the high-dimensional gene expression matrix.
Compared with other ensemble machine learning algorithms,
XGBoost extends simple classification and regression trees
(CARTs) instead of building a single tree. Building many trees
and then aggregating them to form a single consensus prediction
model can improve the prediction accuracy (Chen and Guestrin,
2016). In addition, as a tree-based algorithm, XGBoost provided
an importance score for each gene in each tree model. The
importance score revealed how informative the gene was. RFECV
showed good performance regarding feature reduction. Finally,
the hub gene OASL was selected and tested in the discovery
dataset GSE68310 (Figure 4).

To evaluate the diagnostic performance of OASL, three
external datasets were selected (Figure 1). Firstly, both OASL
and IFI27 shared similar highly accurate performance in
discriminating between influenza and bacterial infections on
GSE6269. To classify influenza and viral infections, OASL
outperformed IFI27 slightly on GSE42026 with an AUC of 0.852
(95% CI 0.738–0.965) versus 0.765 (95% CI 0.658–0.872). In
addition, we investigated another external cohort GSE38900 as a
challenge dataset which contained 121 cases with non-influenza
viral infections. Although both OASL and IFI27 showed reduced
AUC on GSE38900, it was worth of noting that the AUC of OASL
still remained close to 0.8. To avoid poor reproducibility across
external patient populations, more studies with larger sample
sizes were needed to verify the diagnostic performance of OASL.

Oligoadenylate synthetases-like, a member of the OAS family,
mediates antiviral activities via promoting retinoic acid-inducible
gene I (RIG-I)-mediated signaling by mimicking polyubiquitin
(pUb) (Zhu et al., 2014). Notably, to evade host innate
immunity, a number of viruses (especially influenza virus) target
ubiquitin ligases or encode deubiquitinases (DUBs) and DUB-
like molecules (Gack et al., 2009). Thus, in the absence of
pUb (which is caused by influenza viruses), the activation of
RIG-I triggered by OASL plays central roles in host antiviral
activities. Recently, OASL has been considered as a new
player in controlling antiviral innate immunity (Zhu et al.,
2015). In addition, OASL was included by previous panels for
discriminating viral and bacterial infections (Andres-Terre et al.,
2015; Sampson et al., 2017). It was consistent with present results.
OASL has considerable discriminatory power in differentiating
between viral and bacterial infections (Figure 5). It was worthy
of noting the expressions of OASL triggered by various viruses
were different enough to tell influenza infection apart from other
viral infections (Figure 5 and Supplementary Figure S8). The
role of expressions of OASL triggered by different viruses in the
pathogenesis of ARI need to be studied in the future.

Compared with other genomic technologies, influenza-
targeted quantitative reverse transcription polymerase chain
reaction (qRT-PCR) was widespread in clinical practice. The
performance of PCR was limited because samples tend to

be collected prior to ARI onset (and, sometimes, late in
the illness), there is often a limited specimen quantity,
and the nucleic acid (typically RNA) is often degraded.
However, OASL was found to be upregulated during the
progression of influenza infection (Supplementary Figure S9).
To our surprise, OASL remained upregulated at 21 days
after ARI onset which was the timepoint the subject had
clinically recovered. The same trend was observed for IFI27
(Supplementary Figure S9). This might be caused by the
influenza virus load was reduced but not eliminated. Therefore,
identification of OASL expression might indicate the presence
of an influenza infection when PCR indicated a negative
result. As the OASL expression value was important and
influenza is an RNA virus, we suggested using qRT-PCR
to detect both OASL expression and influenza virus to
distinguish between influenza and non-influenza flu-like cases in
clinical settings.

Nevertheless, our study had certain limitations. First of
all, the performances of OASL in the external datasets were
moderate (AUC < 0.9). Secondly, limited types of viral infections
were validated in the datasets. ARI is not caused by one or
two viruses but a diverse viral community in the respiratory
tract. We previously found that RSV, human coronaviruses
(HCoV), human bocavirus (HBoV), influenza virus, human
adenoviruses (HAdV), and human parainfluenza virus (HPIV)
may be the main causes of severe ARI in Beijing, China (Wang
et al., 2016). Thirdly, although it is accepted that the current
study provides useful baseline data for future study, an ideal
approach should be to perform a prospective study to verify
the usefulness of OASL as an influenza ARI biomarker. Yet, it
will be challenging to collect ARI specimens currently during
the COVID-19 pandemic. Moreover, qRT-PCR is a commonly
used validation tool for confirming gene expression results
obtained from microarray. Therefore, we shall apply qRT-
PCR to test the OASL assay’s accuracy with various ARI in
the future work.

On the whole, this study addressed a major challenge related to
translating genomic science into clinical practice. It has recently
been reported that transcriptomes in nasal and blood samples
from ARI patients exhibit similar patterns of type I interferon
response (Yu et al., 2019). Thereafter, we suggested that a
combination of both OASL and universal influenza detection,
as measured by qRT-PCR using nasal samples, could be utilized
to identify influenza infection in individuals with flu-like illness.
Ultimately, before the OASL and influenza assay is used in clinical
practice, there will be a need for prospective studies to establish
its clinical utility as well as cost-effectiveness analyses.
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