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Protein is one of the most significant components of all living creatures. All

significant and essential biological structures and functions relies on proteins and

their respective biological functions. However, proteins cannot perform their unique

biological significance independently. They have to interact with each other to realize

the complicated biological processes in all living creatures including human beings. In

other words, proteins depend on interactions (protein-protein interactions) to realize their

significant effects. Thus, the significance comparison and quantitative contribution of

candidate PPI features must be determined urgently. According to previous studies, 258

physical and chemical characteristics of proteins have been reported and confirmed

to definitively affect the interaction efficiency of the related proteins. Among such

features, essential physiochemical features of proteins like stoichiometric balance, protein

abundance, molecular weight and charge distribution have been validated to be quite

significant and irreplaceable for protein-protein interactions (PPIs). Therefore, in this

study, we, on one hand, presented a novel computational framework to identify the key

factors affecting PPIs with Boruta feature selection (BFS), Monte Carlo feature selection

(MCFS), incremental feature selection (IFS), and on the other hand, built a quantitative

decision-rule system to evaluate the potential PPIs under real conditions with random

forest (RF) and RIPPER algorithms, thereby supplying several new insights into the

detailed biological mechanisms of complicated PPIs. The main datasets and codes can

be downloaded at https://github.com/xypan1232/Mass-PPI.

Keywords: decision tree, human interactome, prediction, protein–protein interaction, quantitative feature

INTRODUCTION

Protein–protein interactions (PPI) are core biochemical events that directly execute biological
functions in all living creatures (Qian et al., 2014; Wang et al., 2014). As the major executor
of various biological processes, proteins rarely act alone, and protein interactions guarantee the
continuity and controllability of ordinary biological processes (De Las Rivas and Fontanillo, 2010).
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On one hand, PPIs based on functional classification have
multiple types, including signal transduction (Vinayagam et al.,
2011), trans-membrane transport (Fairweather et al., 2015),
cell metabolism (Gonzalez, 2012), and muscle contraction
(Beqollari et al., 2015); these PPIs cover every detailed functional
aspect in living cells. On the other hand, on the basis of
chemical structure and stability, PPIs can be described as
homo/hetero-oligomers, stable/transient interactions, and
covalent/non-covalent interactions, thereby revealing the
complicated chemical nature of common biochemical reactions
that support protein interactions in all living cells (De Las Rivas
and Fontanillo, 2010).

The complicated organization of PPIs can be clustered in
multiple ways. Given the complexity and core regulatory role of
protein interactions underlying biochemical processes in living
cells, for a long time, many scientists have aimed to analyze and
extract the key regulatory factors in the PPIs and describe their
functional relationships and biological significance. According
to previous studies, biochemical features of PPIs (e.g., protein
concentration, protein binding ligands, presence of adaptors,
and covalent modifications) have been recognized as candidate
factors that may affect PPIs (Pan et al., 2010; Raj et al., 2013;
Modell et al., 2016). However, most of such extracted features
are ambiguous qualitative characteristics. These features may
be directly or indirectly related to PPIs, but whether PPIs with
optimal biological features may be determined in certain cell
types is difficult. These features are not detailed differentiating
indicators for the occurrence possibility of PPIs, rather than
existence. Therefore, accurate and quantitative/semi-quantitative
characteristics of PPIs must be identified through continuous
studies and exploration.

In recent years, with the development of mass spectrometry
and related analysis techniques, various omics features have
been presented to describe the characteristics of PPIs and have
been applied to evaluate the possibility and certain biological
functions of cell-specific PPIs. In 2015, using high-throughput
affinity-purification mass spectrometry, Huttlin et al. (2015)
built a PPI network (BioPlex) and extracted various functional
characteristics describing PPIs, thus providing us with a blueprint
of quantitative human interactome in all living cells. In the same
year, another study presented by Wan et al. focused on the
macromolecular complexes’ contribution to PPIs; these authors
extracted the co-complex interactions using an integrative
approach (Wan et al., 2015), thereby revealing the fundamental
mechanistic significance of reconstructed interactomes. This
study also extracted a group of parameters/features that can
be used for a detailed quantitative description of PPI. In
2015, another study by Hein et al. (2015) further proposed
nine features, such as NWD, Z, and Plate Z scores, which
may quantitatively describe PPIs. Combining the datasets of
the three studies, a systemic analysis of all reported human
protein complexes based on mass spectrometry techniques
has been recently presented (Drew et al., 2017). Such study
summarized the identified features associated with PPIs (i.e., PPI
features) and built a global map of all reported human protein
complexes. It provided us with a database, namely hu.MAP

(http://proteincomplexes.org/), as a new resource of a follow-
up study on the core physical and pathological functions of
human PPIs in normal and disease cells. Such features captured
the specificity of real PPIs and were screened out by three
independent studies (Hein et al., 2015; Huttlin et al., 2015; Wan
et al., 2015). According to such studies (Hein et al., 2015; Huttlin
et al., 2015; Wan et al., 2015), all candidate features are validated
by large scale mass spectrometry and have been identified to
contribute to the regulation and description of certain PPIs.

However, the original and combination studies of three
datasets have not identified the key factors that may contribute
to and appropriately describe the occurrence possibility of
PPIs. Previous studies have merely identified and summarized
potential PPI features, but the significance comparison and
quantitative contribution of candidate PPI features remain to
be identified. Thus, in this study, the PPI data obtained from
multiple mass spectrometry experiments (Drew et al., 2017)
is summarized by our newly presented decision tree-centered
computational framework. Such PPI data contained one training
dataset and one testing dataset, each of which consisted of
proteins that can interact with each other, namely positive
PPIs, and proteins that cannot interact with each other, namely
negative PPIs. The core parameters of PPI features that may
describe and judge the possibility of potential PPIs are accurately
identified. The decision tree-based model with extracted core PPI
features yielded better performance than the models with other
classification algorithms, including nearest neighbor algorithm
(NNA) (Cover and Hart, 1967) and recurrent neural network
(RNN). Furthermore, a quantitative decision-rule system based
on PPI features is built to supply several new insights into
the detailed biological mechanisms of complicated PPIs. These
quantified outcomes not only reveal the core regulatory factors in
PPIs but also provide a new computational tool for investigating
and predicting the potential of PPIs under different physical and
pathological conditions.

MATERIALS AND METHODS

Datasets
The training and testing human PPI datasets were obtained
fromDrew et al. (2017) (http://proteincomplexes.org/download).
The training dataset has 68,651 PPIs, in which 9,318 are actual
positive PPIs (i.e., proteins that can interact with each other),
and 59,333 are negative PPIs (i.e., proteins that cannot interact
with each other). These PPIs cover 1,253 proteins. The testing
dataset has 77,884 PPIs, in which 4,579 are actual positive PPIs,
and 73,305 are negative PPIs. One thousand one hundred thirty-
two proteins occur in the testing dataset, where 606 are also used
in the training dataset. Each PPI was encoded with 258 features,
which were downloaded from Drew et al. (2017) too. They were
defined in three previous studies (Hein et al., 2015; Huttlin
et al., 2015; Wan et al., 2015) and represented various biological
characteristics of PPI. Only human proteins were included and
the PPIs were literature-curated.

To describe the PPIs, we summarized the features described
in three publications: Wan et al. (2015), BioPlex (Huttlin
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et al., 2015), and Hein et al. (2015). There were 241 features
from Wan et al. (2015), 11 features from BioPlex (Huttlin
et al., 2015) and 6 features from Hein et al. (2015). These
co-fractionation and physiochemical features described all the
properties that may affect the potential interactions between the
target protein either partially or as an entity. These features
had been refined with mass spectrum results (Hein et al., 2015).
The redundant and unimportant features had been removed to
establish an effective framework for PPIs description using co-
fractionation and physiochemical features. For instance, there
is a specific feature named as spatiotemporal overlap (Hein
et al., 2015), describing the temporal spatial interactions between
two participators of PPIs. Interactions with either too high
spatiotemporal overlap or too low overlap may indicate the
interaction will not actually happen (Hein et al., 2015). All the
features used in this study are summarized from existed datasets
and derived from experimental results.

Feature Selection
In this study, a three-stage feature selection scheme was designed
to identify important features for characterizing PPIs. In the first
stage, all features were analyzed by the Boruta feature selection
(BFS) (Kursa and Rudnicki, 2010) method, excluding irrelated
features; then, the rest features were analyzed by the Monte
Carlo feature selection (MCFS) (Draminski et al., 2008) method,
producing a feature list; finally, the feature list was adopted in
the incremental feature selection (IFS) (Liu and Setiono, 1998)
method, incorporating a supervised classifier, to extract optimal
features and build an optimal classifier.

Boruta Feature Selection Method
BFS method (Kursa and Rudnicki, 2010) is a wrapper method for
selecting relevant features, which is based on random forest (RF)
(Breiman, 2001). It evaluates feature importance by comparing
with randomized features. Such method is different from most
of the other wrapper feature selection methods that achieve a
minimal error for a supervised classifier on a small subset of
features, BFS selects all features either strongly or weakly relevant
to the outcome variable.

The core idea of BFS is that it creates a shuffled version
of original features, then uses a RF classifier to measure the
importance score of the combined shuffled and original features.
Only those features with importance score higher than that of
the randomized features are selected. These selected features
are considered significantly relevant to target variables. The
difference between RF importance score and BFS importance
score is that the statistical significance of the variable importance
is introduced. Random permutation procedure is repeated to get
statistically robust important features. BFS proceeds as follows by
repeating multiple iterations:

1. Add randomness to the given dataset by shuffling
original features.

2. Combine the shuffled dataset and original dataset.
3. Train a RF classifier on the combined dataset and evaluate the

importance of each feature.

4. Calculate Z-scores of both original and shuffled features.
The Z-scores of individual features are calculated as mean of
importance scores divided by the standard error. For each
real feature, evaluate whether it has a higher Z-score than the
maximum of its shuffled feature. If yes, this feature is tagged as
important, otherwise unimportant.

5. Finally, the algorithm stops until one of the two following
condition is satisfied: (I) All features are either tagged
“unimportant” or “important”; (II) Reach a predefined
number of iterations.

In this study, we used the python implementation of BFS
from https://github.com/scikit-learn-contrib/boruta_py, and the
defaulted parameters are used.

Monte Carlo Feature Selection Method
As mentioned in section Boruta Feature Selection Method,
features selected by BFS method are highly related to target
variables. These features are further analyzed by the MCFS
method (Draminski et al., 2008). MCFS is a powerful and widely
used feature selection method (Chen L. et al., 2018a, 2019b;
Pan et al., 2018, 2019; Wang et al., 2018), which consists of
multiple decision trees, and constructs multiple bootstrap sets
and randomly selects feature subsets. For each feature subset, new
training samples are re-represented by using the features in this
subset, andM decision trees are grown by using the bootstrap sets
sampled from the new training samples. This process is repeated
T times, thereby resulting inM × T trees. A relative importance
(RI) score is calculated in accordance with the involvement of a
feature in constructingM × T trees. Its equation is as follow:

RIg =
MT∑

τ=1

(wAcc)uIG(ng(τ ))(
no.in ng(τ )

no.in τ
)
v

, (1)

where g stands for a feature, wAcc denotes the weighted accuracy
of the decision tree τ , ng(τ ) represents the node involving g in τ ,
IG(ng(τ )) represents the information gain of ng(τ ), no.in τ and
no.in ng(τ ) denotes the number of samples in decision tree τ and
node ng(τ ), respectively. u and v are weighting factors. Evidently,
a high RI score indicates that one feature will be more frequently
involved in learning these decision trees. Thus, this feature will
have ranked relevance in characterizing PPIs. Based on the RI
scores of features, a feature list, denoted as F = [f1, f2, . . . , fN],
can be built by the decreasing order of features’ RI scores.

The MCFS program was downloaded from http://www.
ipipan.eu/staff/m.draminski/files/dmLab_2.1.1.zip. We used the
default parameters to execute such program, where u and v were
set to 1,M and T were 2,000 and 5, respectively.

Incremental Feature Selection Method
A feature list can be generated according to the results of MCFS
method, based on which incremental feature selection (IFS) (Liu
and Setiono, 1998; Li et al., 2015, 2016, 2019; Chen et al., 2017b;
Chen L. et al., 2018b, 2019a;Wang and Huang, 2018; Zhang et al.,
2018), combining with a supervised classifier (i.e., RF), is adopted
to further detect discriminative features for indicating PPIs. A
series of feature subsets is generated from the ranked features
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F from the MCFS. The first feature subset has feature f 1, the
second feature subset has features [f1, f2], and so on. RF is run
to test these feature subsets with 10-fold cross validation. Finally,
an RF classifier with the optimal classification performance is
generated, such classifier was termed as the optimal classifier.
And the features in the corresponding feature subset are called
optimal features (i.e., PPI features).

SMOTE

It is easy to see that the negative PPIs were much more than
positive PPIs in both training and testing datasets. In detail, in the
training dataset, negative PPIs were about 6.37 times as many as
positive PPIs, while such proportion was about 16 for the testing
dataset. Thus, the investigated datasets were greatly imbalanced.
For such type of dataset, it is not easy to build a perfect classifier.
In this study, we employed Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla et al., 2002) to tackle such datasets.

SMOTE is a classic and widely used oversampling method. It
generates predefined numbers of samples and pours them into
the minority class. In detail, it first randomly selects a sample
in one minority class, say x. Then, find k samples in such class,
which have smallest distances to x. Randomly select a sample
from these k samples, say y, and generate a new sample z,
which is the linear combination of x and y. The generated new
sample z is put into the minority class. Above procedures execute
multiple times until predefined number of new samples have
been produced.

In this study, we directly adopted the tool “SMOTE” in Weka
(Version 3.6) (Witten and Frank, 2005), which implement above-
mentioned SMOTE. For the training dataset, we used “SMOTE”
generated lots of new samples and termed them as positive PPIs.
Finally, the numbers of positive and negative PPIs were almost
equal. We used the default value of parameter k, which was 3. As
suggested in Blagus and Lusa (2013), feature selection should be
performed before using SMOTE. Thus, in this study, the SMOTE
was only adopted in IFS method. Samples yielded by SMOTE
were not used in the BFS and MCFS methods.

Classifier
In IFS method, supervised classifiers are indispensable. Here,
two classic classifiers were adopted. They were RF (Breiman,
2001) and RIPPER algorithm (Cohen, 1995). The first one was
to build an efficient classifier. However, it cannot bring lots
of information to uncover the essential differences between
positive and negative PPIs. Thus, we further employed the
second classifier, RIPPER algorithm, which is a rule learning
algorithm. It can provide several rules to clearly display the
classification procedures and differences between positive and
negative PPIs.

Random Forest
As a supervised classifier, RF consists of multiple decision trees,
and each decision tree is grown from a bootstrap set and a
randomly selected feature subset. We assume a training set with
N samples and M features. For each decision tree, the same
number of samples is first randomly selected from the original
training set with replacement and a feature subset withm features

(m << M) is also randomly constructed. Each tree is grown
from these selected samples with the selected feature subset. This
process is repeated T times, and T decision trees comprising the
RF are yielded. RF has much fewer parameters to tune; thus, this
technique is extensively used in many biological problems with
favorable performance (Pan et al., 2010, 2014; Zhao et al., 2018,
2019; Zhang et al., 2019). The RF classifier implemented by a
tool “RandomForest” inWeka (Witten and Frank, 2005) software
is used. Clearly, the number of decision trees is an important
parameter of RF. Here, we tried four values: 10, 20, 50, and 100.

Repeated Incremental Pruning to Produce Error

Reduction Algorithm
RIPPER algorithm (Cohen, 1995) is a classic rough set based
rule learning algorithm. In fact, it is a generalized version
of the Incremental Reduced Error Pruning (IREP) algorithm
(Johannes and Widmer, 1994). The procedures of rule learning
with RIPPER can be found in our previous study (Figure 1;
Wang et al., 2018). Rules generated by RIPPER algorithm are
represented by IF-THEN clauses. For example, IF (Feature 1
≥2.333 and Feature 2 ≤1.234) THEN Positive PPI. Likewise,
RIPPER algorithm is also implemented by a tool “JRip” in Weka
(Witten and Frank, 2005). We directly used it and executed it
with its default parameters.

Performance Measurement
The performance of the classifiers is evaluated using 10-fold
cross validation. Several evaluation metrics, such as sensitivity
(SN), specificity (SP), two types of accuracy (ACC1 and ACC2),
Matthew correlation coefficient (MCC) (Matthews, 1975; Chen
et al., 2017a; Chen Z. et al., 2018, 2019; Li et al., 2018; Song et al.,
2018; Cui and Chen, 2019), recall, precision, and F-measure are
calculated and formulated as follows:

SN =
TP

TP + FN
, (2)

SP =
TN

TN + FP
, (3)

ACC1 =
TP + TN

TP + TN + FP + FN
, (4)

ACC2 = (SN + SP)/2 (5)

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (6)

Recall =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

F −measure =
2× Precision× Recall

Precision+ Recall
, (9)

where TP/TN are the numbers of true positives/negatives, and
FP/FN are the numbers of false positives/negatives. Clearly,
ACC1, ACC2, MCC, and F-measure can fully evaluate the
performance of a classifier. This study selected F-measure as the
key measurement.

In addition to above-mentioned measurements, we also
employed ROC and PR curves to fully evaluate the performance
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FIGURE 1 | The entire procedures to analyze PPI features with a three-stage feature selection scheme. The PPI samples comprise one training dataset and one

testing dataset. For the training samples, they were represented by 258 features, which are processed by Boruta feature selection method. One hundred sixty-seven

relevant features remain, which are further analyzed by the Monte Carlo feature selection method. A feature list is produced. The incremental feature selection uses

such feature list to construct several feature subsets. On each subset, one random forest (RF) classifier and one RIPPER classifier are constructed, which are

assessed by 10-fold cross-validation. With RF, the best RF classifier and top features are obtained; whereas with RIPPER, the best RIPPER classifier together with its

rules is generated. The best RF and RIPPER classifiers are further evaluated on the testing dataset.

of different classifiers. The areas under these two curves are also
important measurements to assess classifiers. They were called
AUROC and AUPR, respectively, in this study.

RESULTS

In this study, the prior extracted 258 features were analyzed by
a three-stage feature selection scheme. The entire procedures are
illustrated in Figure 1.

Analysis of the Identity Between PPIs in
the Training and Testing Datasets
Before performing the feature selection scheme, it is necessary
to count the identity between PPIs in the training and testing
datasets because PPIs with high identities will make the
classification easily. Here, the identity between two PPIs was
defined as the direction cosine of their 258-D feature vectors.
We used 0.1 as the step to count the distribution of the obtained
identities on the training and testing datasets, which is shown
in Figure 2. It can be observed that the training and testing
datasets gave the similar distribution on identities. The interval
[−0.1,0] contained the most identities and between −1 and 0.6,
the distribution was quite similar to the normal distribution. It

is also surprised that several identities were with high values
(interval [0.9, 1]). However, more than 80% identities were
<0.5, indicating that most PPIs were with low identities. The
investigation on such datasets was quite reliable.

Results of Boruta Feature Selection (BFS)
Method
In the training dataset, all PPIs were represented by 258 features.
These features were analyzed by BFS method. As a result, 167
features were selected, as listed in Table S1.

Results of Monte Carlo Feature Selection
(MCFS) Method
According to the three-stage feature selection scheme, remaining
167 features were analyzed by the powerful MCFS method.
Each feature was assigned a RI score, which is also provided in
Table S1. Accordingly, a feature list F was built, in which features
were sorted by the decreasing order of their RI scores. This list is
available in Table S1.
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FIGURE 2 | Distribution of identities between PPIs in two datasets. The identify of two PPIs is defined as the direction cosine of their feature vectors. (A) Distribution

on the training dataset; (B) Distribution on the testing dataset.

FIGURE 3 | IFS curves based on the IFS method with RF and RIPPER. The X-axis shows the number of features, and Y-axis shows the F-measure values. The

numbers following RF indicate the number of decision trees of RF.

Results of Incremental Feature Selection
(IFS) With Random Forest (RF)
The feature list only told us the importance of each feature.
To extract optimal features for RF, IFS method was employed.
For each feature subset constructed from F, RF classifiers with
different number of decision trees (10, 20, 50, and 100) were
built on the training dataset and evaluated through 10-fold cross
validation. The results are provided in Tables S2–S5. To clearly
display these RF classifiers on different feature subsets, four IFS-
curves are plotted in Figure 3. It can be seen that the optimal F-
measure value was 0.691 when the top 166 features in F were used
and the number of decision trees was 100. Accordingly, the RF
classifier containing 100 decision trees was built on the training
dataset, in which PPIs were represented by top 166 features

in F. Such classifier was called the optimal RF classifier. Other
measurements yielded by such RF classifier are listed in Table 1.
The SN, SP, ACC1, ACC2, MCC, and Precision were 0.794, 0.921,
0.903, 0.858, 0.642, and 0.611, respectively, suggesting the good
performance of such classifier. Besides, we also used ROC curve
and PR curve to evaluate the performance of such RF classifier,
which are shown in Figures 4A,B. The AUROC and AUPR was
0.920 and 0.745, respectively.

To indicate the improvement of the RF with top 166 features,
we conducted 10-fold cross-validation on this classifier 50 times.
Also, the RF classifier with all 258 features were evaluated by 10-
fold cross-validation 50 times. Obtained F-measures are shown
in Figure 5, from which we can see that F-measures yielded by
the RF classifier with top 166 features were evidently higher than
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TABLE 1 | Performance of the RF and RIPPER classifiers on the training dataset evaluated by 10-fold cross-validation.

Classifier Number of

features

SN SP ACC1 ACC2 MCC Precision F-measure

RF 166 0.794 0.921 0.903 0.858 0.642 0.611 0.691

90 0.786 0.918 0.900 0.852 0.630 0.600 0.680

RIPPER 135 0.701 0.818 0.802 0.760 0.409 0.377 0.490

92 0.689 0.815 0.798 0.752 0.397 0.370 0.481

NNA 101 0.851 0.881 0.877 0.866 0.607 0.529 0.652

RNN 133 0.824 0.890 0.881 0.857 0.605 0.542 0.654

FIGURE 4 | ROC and PR curves of the RF classifiers with top 166 and 90 features on the training and testing datasets. (A) ROC curves of two RF classifiers on the

training dataset; (B) PR curves of two RF classifiers on the training dataset; (C) ROC curves of two RF classifiers on the testing dataset; (D) PR curves of two RF

classifiers on the testing dataset.

those produced by the RF classifier with all features. To confirm
this result, a paired sample t-test was conducted, yielding the p-
value of 1.309E-15, suggesting that the performance of the RF
classifier was improved with statistical significance.

Above-constructed RF classifier was also applied to the testing
dataset. The predicted results are listed in Table 2, from which we
can see that the F-measure was 0.371. Its SN, SP, ACC1, ACC2,
MCC and Precision were 0.674, 0.877, 0.865, 0.776, 0.358, and
0.256, respectively. The ROC and PR curves of the constructed RF
classifier on the testing dataset are shown in Figures 4C,D. The
AUROC and AUPR was 0.822 and 0.287, respectively. Although
they were lower than those on training dataset, the ACC1 was still
over 0.850.

As mentioned above, for RF with 100 decision trees, when
top 166 features in F was used, it provided the best F-measure.
However, after carefully checking the IFS results (Table S2), when
top 90 features were used, RF can yield the F-measure of 0.680,
which was a little lower than that yielded by the optimal RF
classifier. Considering the efficiency of classifiers, we suggested

the RF constructed on top 90 features as the proposed classifier.
The detailed performance of this classifier, evaluated by 10-fold
cross-validation, is provided in Table 1 and the ROC and PR
curves are shown in Figures 4A,B. Clearly, the performance of
this classifier was almost equal to that of the optimal RF classifier.
Besides, the proposed classifier was also performed on the testing
dataset, obtained measurements are listed in Table 2 and ROC
and PR curves are shown in Figures 4C,D. Clearly, they all
approximated to those of the optimal RF classifier. All of these
indicated that the proposed RF classifier can provide similar
results, however, it had high efficiency because much less features
were involved.

Comparison of IFS With NNA and RNN
As mentioned above, the optimal RF classifier gave good
performance. However, is the RF a proper choice? In fact, we
also tried other two classification algorithms: NNA and RNN.
NNA is a classic and simple classification algorithm, which
makes prediction for a given sample according to its nearest
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neighbor, while RNN is a kind of neural network with loop inside
for sequential data. For each of these two algorithms, an IFS
procedure was performed on the training dataset. Two IFS curves
were obtained, as shown in Figure 6. The highest F-measure
for NNA was 0.652 when top 101 features in F were used. For
RNN, the highest F-measure was 0.654 when top 133 features
were adopted. These F-measure values were all lower than that
of the optimal RF classifier. The detailed performance of the best
NNA and RNN classifiers is listed in Table 1. It can be observed
that the optimal RF classifier produced higher values on most
measurements, suggesting that RF is a more proper choice than
NNA and RNN.

Results of IFS With RIPPER
In section Results of incremental feature selection (IFS) with
random forest (RF), a RF classifier was built to identify PPIs.
However, it is a black box. It is difficult to capture the
classification principle. Thus, it provided limited biology insights
for understanding PPIs. In view of this, we further employed
a rule learning method, RIPPER algorithm, trying to partly
uncover the differences between positive and negative PPIs.

Like RF, the RIPPER algorithm was also employed in the
IFS method. The performance of the RIPPER algorithm on
different feature subsets is available in Table S6. Also, an IFS-
curve was plotted, as shown in Figure 3. The highest F-measure
was 0.490 when top 135 features were used. Thus, the RIPPER

FIGURE 5 | Box plot to show F-measures yielded by RF classifiers with top

166 features and all features using 50 10-fold cross-validation. The

F-measures obtained by RF classifier with top 166 features are evidently

higher than those of the RF classifier with all features.

classifier based on top 135 features was called the optimal RIPPER
classifier. The detailed performance of such classifier, evaluated
by 10-fold cross-validation, was provided in Table 1. Clearly,
it was much inferior to the optimal RF classifier. In addition,
the optimal RIPPER classifier was also executed on the testing
dataset. The predicted results were listed in Table 2. The F-
measure was 0.348, which was also much lower than that on
the training dataset. Compared with the performance of the
optimal RF classifier on the testing dataset, the performance of
the optimal RIPPER classifier was only a little lower.

Likewise, the RIPPER classifier can yield the F-measure 0.481
on the training dataset when top 92 features were used after
checking the predicted results listed in Table S6. It is a little
lower than that generated by the optimal RIPPER classifier.
Considering the efficiency of classifiers, we termed the RIPPER
classifier with top 92 features as the proposed RIPPER classifier.
The detailed performance of such classifier on the training dataset
is listed in Table 1. All measurements were almost equal to
those yielded by the optimal RIPPER classifier. Furthermore,
the proposed RIPPER classifier was executed on the testing
dataset. Predicted results are listed in Table 2. Obviously, the
performances of the optimal and proposed classifiers were at the
same level.

As mentioned above, the proposed RIPPER classifier adopted
top 92 features to represent PPIs. Six rules were produced by the
RIPPER algorithm when such algorithm was applied on all PPIs
in the training dataset, which are listed in Table 3. These rules
would be discussed in section Analysis of Optimal PPI Rules.

DISCUSSION

All PPI-associated features have been summarized in the three
previously described datasets (Hein et al., 2015; Huttlin et al.,
2015; Wan et al., 2015). In this study, we deeply analyzed
these features. Based on some key features, a RF classifier was
constructed and some classification rules were built. This section
gave detailed analysis on some top features and classification
rules. Several top features and all rules were supported by recent
publications (Mitterhuber, 2008; Swiatkowska et al., 2008; Levin
et al., 2013; Pinton et al., 2015).

Analysis of Optimal PPI Features
In the proposed RF classifier, top 90 features were used to
represent PPIs. However, it is impossible to analyze them one by
one due to our limited human resources. In fact, among these
90 features, some were more important than others. We did the

TABLE 2 | Performance of the RF and RIPPER classifiers on the testing dataset.

Classifier Number of

features

SN SP ACC1 ACC2 MCC Precision F-measure

RF 166 0.674 0.877 0.865 0.776 0.358 0.256 0.371

90 0.677 0.874 0.863 0.776 0.356 0.252 0.367

RIPPER 135 0.797 0.826 0.825 0.812 0.360 0.223 0.348

92 0.800 0.822 0.821 0.811 0.357 0.219 0.344
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FIGURE 6 | IFS curves based on the IFS method with NNA and RNN. The X-axis shows the number of features, and Y-axis shows the F-measure values. The orange

curve and blue curve were NNA and RNN, respectively.

TABLE 3 | Classification rules for predicting protein-protein interactions.

Rules Criteria Positive/Negative

Rule1 (neg_ln_pval ≤3.622) and

(hein_neg_ln_pval ≤3.328)

Negative

(non-interaction) PPI

Rule2 (hein_neg_ln_pval ≤6.955) and

(Hs_G166_1104_pq_euc ≤0)

and (neg_ln_pval ≤3.994)

Negative

(non-interaction) PPI

Rule3 (hein_neg_ln_pval ≤6.960) and

(neg_ln_pval ≤5.780) and

(Hs_G166_1104_pq_euc ≤0)

and (pair_count ≥2)

Negative

(non-interaction) PPI

Rule4 (hein_neg_ln_pval ≤3.033) and

(Hs_G166_1104_pq_euc ≤0)

and (pair_count ≤3) and

(neg_ln_pval ≤7.272)

Negative

(non-interaction) PPI

Rule5 (hein_neg_ln_pval ≤0) and

(Hs_G166_1104_pq_euc ≤0)

and (pair_count ≤3) and

(neg_ln_pval ≤8.611)

Negative

(non-interaction) PPI

Rule6 Other conditions Positive (interaction)

PPI

following test to extract most important features. Firstly, 100
feature lists were randomly built, in which 167 features were
randomly sorted. According to each feature list, we did the IFS
method with RF (consisting of 100 decision trees) procedures.
As a result, 100 IFS-curves were plotted, as shown in Figure 7A,
in which the IFS-curve produced on the actual feature list F is
also listed. It can be observed that when the number of used
features was small, the F-measure on the actual feature list F was
much higher than those on the randomly generated feature lists,
indicating that some top features in F were related to identify
PPIs with high statistical significance. Thus, given a feature
number, we counted the mean values of 100 F-measures that

were produced on 100 randomly generated feature lists. Then,
an IFS-curve was plotted, as shown in Figure 7B. Furthermore,
we also counted the critical values on 95% confidence interval
for each feature number and plotted two IFS-curves on them,
as shown in Figure 7B. It can be observed that top 14 features
in F can produce the F-measure that was higher than the upper
critical value on 95% confidence interval, indicating that these 14
features were highly related to identify PPIs. Furthermore, top 11
features in F can yield the F-measure that was higher than the
upper critical value on 99% confidence interval. In the following
text, we extensively analyzed top 14 features in F.

The first four features are “hein_neg_In_pval,” “neg_In_pval,”
“hein_pair_count,” and “pair count,” reflecting the regulatory
contribution of protein stoichiometric and abundant features.
In accordance with a reference dataset presented by Hein et al.
(2015), these features were confirmed to participate in and may
affect the content of interactome. According to the stoichiometric
and abundant levels, a stable protein complex denotes a probable
involvement of such protein complex in functional PPIs. Two
detailed features, namely, stoichiometric balance and protein
abundance, might generally evaluate the stability of a protein
complex and participate in describing PPIs. The stable PPIs
formed by stoichiometric balance might be further shaped by the
abundance of each protein that participates in such interactions.

To clearly describe what are stoichiometric and abundant
features, here, we took two typical PPIs as effective examples
to confirm the potential contribution of such two features on
the PPIs.

Firstly, we took the effective PPIs during cell adhesion
regulation and functioning as an example. The adhesive
properties of endothelial cells have been confirmed to be
regulated by various proteins and their potential interactions
(Swiatkowska et al., 2008). According to recent publications
(Swiatkowska et al., 2008; Levin et al., 2013), actually among
such interactions, the abundance and stoichiometric balance
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FIGURE 7 | The results of the IFS method with RF based on 100 randomly produced feature lists. (A) IFS curves on the actual feature list and 100 randomly produced

feature lists; (B) the statistical analysis based on the results of randomly produced feature lists. The black curve indicates the average performance of RF on randomly

produced feature lists. The red curve is the IFS curve of the actual feature list. Two dotted curves indicate the upper and low critical value on 95% confidence interval.

of disulfide isomerases and integrin may directly affect
their PPIs and further interfere endothelial cell adhesion.
Different abundance of disulfide isomerases caused different
stoichiometric balance patterns between disulfide isomerases
-integration interactions and therefore, induced different
binding affinity, resulting in differential biological functions
and regulatory effects (Swiatkowska et al., 2008). Therefore,
stoichiometric balance is quite significant for PPIs.

Secondly, in addition to such PPI participants, the interactions
between LamB and Odpq as another two effective proteins have
also been influenced by the abundance of each protein and
such abundance induced influences may further affect their
potential biological functions, the antibiotic resistance in
chlortetracycline-resistant Escherichia coli strain (Lin et al.,
2014). Different abundance of such two participants may have
totally opposite biological effects on such interactions: the
interactions of lower concentration may improve the antibiotic
sensitivity of E. coli, while the interactions at high concentration
on the contrary directly induce the chlortetracycline-resistance.
Therefore, the abundance of participants may be quite essential
for PPIs. Similarly, another two features in the optimal
feature list named as “Ce_CRF_wan_60_1209_poisson”
and “Hs_helaC_mar_SGF_poisson” also contribute to the
description of stoichiometric balance and protein abundance,

validating their effective roles in the identification of
actual PPIs.

Apart from such stoichiometric balance and protein
abundance associated features, the following ten features can be
further divided into two groups describing the molecular weight
(“Ce_CRF_wan_60_1209_wcc,” “Ce_BNF_wan_60_1209_wcc”)
and charge distribution (“Ce_CRF_wan_60_1209_pq_euc,”
“Ce_BNF_wan_60_1209_pq_euc,” “Ce_beadsflow_1206
_pq_euc,” “Ce_1111_pq_euc,” “Ce_beadsL_1206_pq_euc,”
“Ce_6mg_1203_pq_euc”) of related proteins, respectively. The
features that possibly affect the PPIs might be the molecular
weight and the charge distribution of each PPI participant. These
features have been validated by recent publications.

For instance, a study on SG2NA protein variants confirmed
that the molecular weight and structure of such protein may
directly affect its binding affinity against its ligands (Mitterhuber,
2008; Soni et al., 2014; Pinton et al., 2015). Therefore, molecular
weight induced by different amino acid substitution may affect
PPIs. The associations among different proteins were reported
to be possibly strongly affected by long-range electrostatic
interactions, and similar proteins with different surface charges
may have different interaction patterns (Twomey et al., 2013;
Raut and Kalonia, 2015). Therefore, the charge distribution of
PPI participants affected the interactions between proteins.
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Analysis of Optimal PPI Rules
Based on the detailed parameter that corresponds to each
optimal PPI feature extracted from the three datasets, the
relatively quantitative rules to recognize potential PPIs were
inferred (Table 3). The features that describe sensitivity gain
factor confirmed that the PPI features and their parameters
extracted from different datasets should be comparable, and the
detailed analysis of each optimal PPI rule could be derived in the
following discussions.

The literature confirmed rules with proper parameters may
contribute to identifying potential PPIs and such predicted rules
may act as reference for the prediction and screening of novel
PPIs. In terms of the detailed quantitative features, two specific
parameters, namely, “neg_ln_pval” and “hein_neg_ln_pval,”
were identified in Rule1-Rule5. High relative (parameter) value
of such two features indicate the interactionmay actually happen.
Although the detailed parameter (threshold) cannot be validated
through wet-experiments at present, proper stoichiometric
balance and protein abundance indicated by the parameters
were discussed previously and already confirmed to promote
the PPIs according to recent publications (Vinayagam et al.,
2011; Fairweather et al., 2015). These rules could also be
grouped in accordance with their new insights into the detailed
biological mechanisms:

Apart from such two features, another two features have also
been screened out to contribute to the quantitative identification
of actual PPIs: “Hs_G166_1104_pq_euc” (used in Rule2-Rule5)
and “pair_count” (used in Rule3-Rule5). In all the top rules
apart from the first one which only involves “neg_ln_pval”
and “hein_neg_ln_pval” as we have mentioned above, the value
of “Hs_G166_1104_pq_euc” turns out to be lower than zero
according to our quantitative rules.

According to the analyses above, such parameter contributes
to the description of the charge distribution of certain
PPI participants. Although no accurate description of such
parameter, it has been confirmed that the higher the value is, the
lower surface charging the participants of potential PPIs carries.
Considering that it has been reported that charge interactions
play an irreplaceable role for actual PPIs, therefore, potential
interactions with such parameter lower than zero may not be
actual PPIs. As for another parameter named as “pair_count,”
in Rule3-Rule5, such parameter has a value >2, 3, and 3. It has
been reported that the higher the value of such parameter may be,
the less possible such interaction may actual happens (Hein et al.,
2015). Therefore, interactions breaking such top five rules turns
out to be actual PPIs, corresponding with our analyses above.

CONCLUSION

Protein is the basic molecule of life. Through protein-protein
interactions, complex biological processes are carried out. Predict
PPI is a fundamental problem in bioinformatics. In this study,
we encoded protein with various physical and chemical features,
such as stoichiometric balance, protein abundance, molecular
weight, and charge distribution. Then with advanced feature
selection methods, we identified the key factors affecting PPIs
and built a quantitative decision-rule system to evaluate the
potential of PPIs under real conditions. Our results provided
novel insights of the molecular mechanisms of PPIs. The model
can be extended to explore other molecular interaction questions.
The main datasets and codes can be downloaded at https://
github.com/xypan1232/Mass-PPI.
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