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In the last decade, a large number of genome-wide association studies have uncovered

many single-nucleotide polymorphisms (SNPs) that are associated with complex traits

and confer susceptibility to diseases, such as cancer. However, so far only a few

heritable traits with medium-to-high penetrance have been identified. The vast majority

of the discovered variants only leads to disease in combination with other still unknown

factors. Furthermore, while many studies aimed to link the effect of SNPs to changes

in molecular phenotypes, the analysis has been often focused on testing associations

between a single SNP and a transcript, hence disregarding the dysregulation of gene

regulatory networks that has been shown to play an essential role in disease onset,

notably in cancer. Here we take a systems biology approach and develop GVITamIN

(Genetic VarIaTIoN functional analysis tool), a new statistical and computational approach

to characterize the effect of a SNP on both genes and transcriptional regulatory

programs. GVITamIN exploits a novel statistical approach to combine the usually

small effect of disease-susceptibility SNPs, and reveals important potential oncogenic

mechanisms, hence taking one step further in the direction of understanding the SNP

mechanism of action. We apply GVITamIN on a breast cancer cohort and identify

well-known cancer-related transcription factors, such as CTCF, LEF1, and FOXA1,

as TFs dysregulated by breast cancer-associated SNPs. Furthermore, our results

reveal that SNPs located on the RAD51B gene are significantly associated with an

abnormal regulatory activity, suggesting a pivotal role for homologous recombination

repair mechanisms in breast cancer.

Keywords: cancer-susceptibility SNP, SNPmechanism of action, transcription factor dysregulation, breast cancer,
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1. INTRODUCTION

Complex diseases, such as cancer, are caused by the interaction
of numerous genetic and environmental factors, most of them
having a relatively small effect. Single nucleotide polymorphisms
(SNPs) have been found to increase susceptibility to certain
diseases including cancer. Genome wide association studies
(GWAS) have sought to identify some of these associations
between categorical phenotypes, e.g., cancer vs. non-cancer, and
a limited number of common variants (Manolio, 2010). However
despite intense efforts, only a few medium-to-high penetrance
heritable traits have been identified, and the majority of heritable
genetic risk factors for most common complex diseases remain
elusive (Manolio et al., 2009). While SNPs might not be able
to explain single-handedly cancer susceptibility, it has been
suggested that GWAS data can yield additional insight when
combined with other data modalities (Califano et al., 2012).

In parallel, statistical reconstruction of gene regulatory
networks in healthy and diseased tissues has led to the
identification of key transcription factors (TFs), named
master regulators (Lefebvre et al., 2010), that are essential to
the establishment and maintenance of a phenotype. Master
regulators have been shown to be dysregulated in several human
malignancies, such as prostate cancer (Aytes et al., 2014) and
brain tumors (Carro et al., 2010). Similarly, prioritization
of genes that are upstream of functional disease drivers has
enabled the discovery of genetic alterations that are causal
determinants of disease (Chen et al., 2014). Following a similar
philosophy, we hypothesize here that a combined statistical
analysis of the association between cancer susceptibility SNPs
and dysregulated TFs might reveal important oncogenic
mechanisms. Furthermore, GWAS typically reveal association
signals, but rarely the causative events linking variants and
phenotypes (Nicolae et al., 2010). Only in a few cases a SNP
mechanism of action is known, as it is the case for instance,
where a SNP changes a TF binding site (Kumar et al., 2017).
However, recent studies suggest that only a minority of causal
SNPs alter TF binding motifs (Farh et al., 2015), and indeed, it
has been estimated that >90% of disease-associated SNPs lie
outside protein coding regions, most likely affecting regulatory
regions such enhancers (Hindorff et al., 2009; Ricaño-Ponce and
Wijmenga, 2013) or non-coding RNAs (Hrdlickova et al., 2014).
Therefore, an alternative promising approach to elucidate the
way in which a SNP could contribute to disease is to analyse
the dysregulatory molecular events induced by the SNP with
the goal of shedding light on the biology of complex traits and
etiological pathways.

In this work we seek to elucidate some of the potential
mechanisms by which SNPs contribute to gene dysregulation
in complex diseases. Specifically, we search whether a cancer-
associated SNP alters gene expression levels and/or disrupts
TF activity by testing the changes in transcriptional profiles
conditioned on the presence of the SNP. Unlike standard
expression quantitative trait loci (eQTL) analysis (Nica and
Dermitzakis, 2013), which tests for direct associations between
SNPs and gene expression changes, we perform a regulatory
analysis, where we investigate not only direct changes in gene
expression, but also changes in the regulatory activities of TFs.

To that end, we introduce a novel statistical pipeline, GVITamIN
(genetic VarIaTIoN functional analysis tool). GVITamIN
performs two different types of analyses. In a first step, it tests
whether a SNP is significantly associated with changes in gene
expression. In the second step, it analyzes the correlation of
TFs with their targets in order to uncover TFs whose regulatory
activity is affected by the presence of a SNP. As a proof of concept,
we focus on breast cancer, the most commonly occurring cancer
in women and the second most common cancer overall. Previous
GWAS have identified numerous SNPs that are associated
with an increased risk of breast cancer, however the impact of
these SNPs on molecular phenotypes has not been investigated
in depth.

2. MATERIALS AND METHODS

2.1. Overview of the Computational
Approach
GVITamIN implements two different search strategies, a first-
and a second-order analysis. In the first-order analysis, a
differential gene expression analysis conditioned on the presence
of the SNP is performed. Unlike eQTL analyses (Nica and
Dermitzakis, 2013), which typically look for direct associations
between a SNP and gene expression levels in a healthy
cohort (Nica and Dermitzakis, 2013), here we ask whether there
is an excess of cases who are either homozygotes or complex
heterozygotes for a particular SNP in a breast cancer cohort. In
doing so, we are distinguishing variants that confer a dominant
vs. recessive effect on the risk of a disease, either as homozygotes
or compound heterozygotes.

In the second-order analysis, we focus on discoverying SNPs
that disrupt the regulatory activity of TFs, where disruption
is measured as a change in correlation between the TF and
its target genes. To uncover these events, we develop a novel
statistical approach that exploits non-parametric statistical tests.
To increase statistical power, the results of this analysis are
combined into a single p-value for each TF, which quantifies
the overall effect of the SNP on the TF and points toward
dysregulated oncogenic programs driven by the SNP. Figure 1
summarizes GVITamIN computational approach, and additional
details are given in subsections 2.2 and 2.3.

To perform both first- and second-order analyses, we separate
the cohort in two groups according to the SNP genotyped allele.
Namely, for each SNP, we split the cohort in three groups
according to the sample’s alleles, i.e., as homozygous major,
heterozygous and homozygous minor. If the two homozygous
groups have a sufficiently large number of samples determined
by an user-defined threshold, we compare the homozygous major
vs. the homozygous minor and discard the samples that are
heterozygous. Here the idea is to preserve the original signal
as pure as possible, e.g., not mixing samples which have both
the putative risk allele and the wild-type allele. If the number
of samples in the homozygous minor group is not sufficiently
large to enable a significant study, we merge the heterozygous
group with the lower count group. In this paper, we take
threshold_samples = 30, although this value can be adapted to
study cohorts of varying size. If, after merging, either of the two
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FIGURE 1 | gVITaMIN pipeline. For the analysis on each SNP, we split the patients in two cohorts according to their allele. In the first-order analysis, we compare the

distribution of gene expressions of the two cohorts using the non-parametric Mann-Whitney U-test. In the second-order analysis, given a list of Transcription Factors

and a (optional) list of TF-TGs pairs, we compute correlations between TFs and their targets. After Fisher’s z-transform, we test abnormal regulation activity for each

TF-TG pair via a z-test. We finally test the global dysregulation of each TF by combining the p-values over its targets.

groups is smaller than threshold_samples, the SNP is discarded
for subsequent analysis. We perform this analysis separately for
each SNP.

It is easy to notice that the workflow can be easily parallelized
on at least two levels. Firstly, it can be run in parallel on different
SNPs. Since the analyses on different SNPs are independent,
there is no need to aggregate the results in the end and,
hence, there is no communication overhead. Moreover, for each
SNP, the statistical tests can be performed in parallel for each
gene or transcription factor. We implemented GVITamIN in
C++, using the MPICH and OpenMP libraries to distribute the
workloads. Code and data is available at https://ibm.box.com/s/
e0u3gtp807ahikvilssg4717na24jpxt.

2.2. First-Order Analysis
2.2.1. Detecting Differential Gene Expression
In the first-order analysis, we use the Mann-Whitney U-test
(Mann and Whitney, 1947) to find SNPs that associate with the
differential expression of some genes. The test is performed by
computing a statistic U, which depends on the number and ranks
of the gene expressions of the samples in each group. Note that

the distribution of U under the null hypothesis is known. Further
details can be found in the Supplementary Material.

2.2.2. Multiple Hypotheses Correction
Sequencing technologies typically generate measurements of a
large number of genes, in the order of tens of thousands.
Simultaneously testing all these genes will lead to an inflated type
I error (Dickhaus, 2014), i.e., a large number of false positives.
This is commonly known as the multiple comparisons problem
and is usually solved by correcting the p-values of the tests.
Among the many ways to apply this correction, we implement
a False Discovery Rate (FDR) controlling procedure designed
by Benjamini and Yekutieli (2001) (BHY). Compared to other
strategies, such as the ones controlling the Family-Wise Type
I Error (FWER) (Dickhaus, 2014), FDR-based techniques have
been shown to be less stringent and to have higher statistical
power (Genovese, 2004).

2.3. Second-Order Analysis
This analysis is carried out in two levels. First, for each
SNP, we test if the correlation between a TF and its
targets genes (TGs) is perturbed. Second, to draw global
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conclusions, we combine the results obtained for the genes
targeted by the same TF. Details about both computational
analyses follow.

2.3.1. Testing TF-TG Correlations
Using the SNP-associated groups previously defined (section 2.1),
our aim is to test if the relationship of a TF-TG pair
changes conditioned on the presence of the SNP. This can
be done by comparing the correlations between TFs and TGs.
Namely, we first compute the correlations between TGs and
TFs ρi for each group i ∈ {1, 2}. We then transform the
correlations into normally distributed variables using the Fisher’s
z-transform (Fisher, 1915):

zi =
1

2
ln

(
1+ ρi

1− ρi

)
= arctanh(ρi) . (1)

If the samples used to compute the correlations are independent
and identically distributed, then z is approximately normally
distributed with mean given by Equation (1) and variance:

σ 2
i =

1

Ni − 3
, (2)

where Ni is the size of group i. Hence, correlations can be
compared using a z-test with null hypothesis:

H0 : z̃ =
z1 − z2√
1

N1−3 +
1

N2−3

∼ N (0, 1), (3)

where N (0, 1) is the standard normal distribution. The method
described above was derived for Pearson’s correlation, but it was
empirically shown to work with Spearman’s correlation as well. In
the latter case, Equation (2) becomes σ 2

i = 1.06/(Ni − 3) (Fieller
et al., 1957). Consequently, the z − score has to be corrected to

H0 : z̃ =
z1 − z2√

1.06
N1−3 +

1.06
N2−3

∼ N (0, 1), (4)

GVITamIN can be run using either Pearson or Spearmann
correlation. In addition, given the high number of tested TF-
TG pairs, we again apply the BHY procedure to correct for
multiple comparisons.

2.3.2. Joint Analysis of TF Dysregulation
Once the correlation of individual TF-TGs pairs has been
computed, we combine the correlations values obtained in each
group by means of the Fisher’s method (Fisher, 1992) to combine
independent p-values:

X2 = −2

T∑

k

ln
(
pk

)
, (5)

where T is the number of TGs of the analyzed TF. Under the
null hypothesis, i.e., assuming that the pk come from independent
observations, X2 follows a χ2 distribution with 2T degrees
of freedom.

The reasons for combining individual pairs predictions are
2-fold. First, from a biological point of view, we are usually
interested in investigating the dysregulation of key TFs, which
we expect to be associated with important oncogenic pathways.
Second, from a statistical point of view, the signal associated
with an individual TF-TG can be expected to be small, as
SNPs typically only capture a small fraction of the genetic
variability (Manolio et al., 2009). Aggregating the predictions
associated with different TGs might therefore result in a stronger
signal that would have been otherwise undetected after correcting
for multiple testing.

2.3.3. Brown Correction for Non-independent Tests
As mentioned before, the Fisher’s method can only be applied to
independent tests, which is usually not the case when analyzing
large sets of correlated genes. The Brown correction (Brown,
1975) handles data dependencies by adjusting the combined test
statistics with two rescaling factors, c and f , such that the rescaled
distribution cχ2 follows a X2 distribution with f degrees of
freedom. The factors c and f are computed from the correlation
coefficients between the statistics of each test, i.e., the z̃ in
Equation (3).

GVITamIN provides two methods to compute these
coefficients. The first is based on an asymptotic closed formula
that computes the correlations from various moments and
cross-moments of the gene expression levels. We refer to
the Supplementary Material for details on the derivation.
Alternatively, it is possible to generate for each TF bootstrap
estimates of the z̃ statistics by sampling the patients with
replacement. The correlation coefficients to compute c and f are
then obtained by applying Pearson’s correlation formula on these
bootstrap estimates. This second method is recommended for a
relatively low number of genes and TFs. In this work, given the
computational burden incurred in applying the second method,
we applied only the asymptotic approximation.

Finally, after the Brown correction, we obtain a combined p-
value for each transcription factor. Since we are simultaneously
testing multiple TFs, we apply again the BHY procedure to
control the FDR.

2.4. Input Data and Pre-processing
The required inputs to GVITamIN are a genotype matrix,
a matrix of gene expression levels per sample and a list of
transcription factors of interest. Both the genotype and gene
expression levels are provided as matrices, where columns
represent a single patient in the cohort and rows correspond,
respectively to a SNP or a gene. Optionally, it is possible to
provide an additional file containing a list of target genes for
each transcription factor. If this file is not provided, the second-
order analysis is performed for all possible TF-target gene pairs.
Sample data is available for download at https://ibm.box.com/s/
e0u3gtp807ahikvilssg4717na24jpxt.

2.4.1. Gene Expression Matrix
We use level 3 RNAseq gene expression data from TCGA, which
is already quality-controlled and normalized. Genes are filtered
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according to two criteria: (i) We limit our analysis to protein-
coding genes to facilitate the interpretation of the results. (ii) To
limit computational cost and excessive statistical power decrease
due to testing too many hypotheses, we exclude uninformative
genes, i.e., those genes with almost constant expression levels
across our cohort. We note that if the first- and second-
order analyses are run using Spearman’s correlation, which is
invariant under monotonic transformations, further common
transformations, such as log or arcsinh, are unnecessary.

2.4.2. SNP Genotype Matrix
The goal of GVITamIN is to unveil possible molecular
mechanisms behind SNPs associated with complex diseases, such
as breast cancer, and hence, we focus on the analysis of 59 SNPs
already known to increase the risk of breast cancer. The list is
obtained by overlapping the SNPs mentioned on SNPedia1 with
the SNPs for which the data was available from TCGA. This list
can be found in the Supplementary Material Section 2.

For the selected SNPs, we obtain a genotype matrix using
TCGA low coverage DNA sequencing data and PLINK (Purcell
et al., 2007), http://zzz.bwh.harvard.edu/plink/index.shtml. The
entries of the matrix are integer numbers indicating for each
SNP to which genotype group a patient belongs: 0, 1, and 2
stands, respectively for homozygous major allele, heterozygous
and homozygous minor allele. A special value can be set by the
user, e.g., “−1,” to indicate missing values or low-confidence calls
that should be discarded for further analysis.

2.4.3. Definition of TF-TGs Interactions
To limit the amount of tested hypothesis and increase
GVITamIN statistical power, we limit our search to known TF-
TG interactions that are supported by experimental evidence,
excluding hence purely computational predictions. Specifically,
we compile a list of TF-TG interactions using the following
databases: ITFP (Zheng et al., 2008), which predicts TF
and regulatory interactions from protein sequences and gene
expression data using statistical models, and validates them based
on experimental evidence from orthologous genes from other
mammalian species; the ENCODE project (Consortium, 2012),
which identifies TF binding sites (TFBS) using ChIP-seq data and
infers the interacting target genes based on the distance of gene
transcription starting sites (TSS) from the TFBS; the TRANSFAC
project (Wingender, 2008), which follows a similar strategy, while
leveraging experimental evidence from different technologies,
such as DNase footprinting; TRRUST (Han et al., 2018), a
manually curated database of regulatory interactions discovered
by text-mining millions of publications. An additional resource
provided by Marbach et al. (2016), which uses the cap analysis
gene expression (CAGE) (Shiraki et al., 2003), produced a high
number of interactions leading us to suspect a high false positive
rate. Therefore, we discard this dataset from our lists. The final
list of transcription factors and targets interactions is obtained
by aggregating the four selected databases and further filtered as
explained in the previous section. The list can be downloaded at
https://ibm.box.com/s/e0u3gtp807ahikvilssg4717na24jpxt.

1https://www.snpedia.com/index.php/Breast_cancer

TABLE 1 | First order analysis: top 10 most significant first order results.

SNP Gene p-value FDR p-value

rs4455437 LCE1F 1.09224e-80 1.75194e-75

rs4455437 LCE2D 8.99746e-80 7.21591e-75

rs4455437 LCE2C 7.94305e-79 4.24685e-74

rs4455437 LCE1A 5.00239e-78 2.00594e-73

rs2842347 KRTAP9-4 1.20898e-77 1.93918e-72

rs2842347 GAGE12J 1.00726e-76 8.07816e-72

rs4455437 LCE1E 7.45837e-75 2.39262e-70

rs2842347 SPRR2B 2.71334e-74 1.45072e-69

rs2842347 KRTAP4-12 1.34211e-73 5.38182e-69

rs7107217 LCE6A 2.14795e-72 3.44529e-67

Most of the top results involve genes from the late cornified envelope (LCE) family and

SNP rs445543. This SNP is located close to the gene TNIP3, which has been linked to

breast cancer in African American women.

2.4.4. Subsampling
To increase the robustness of our results, we re-run GVITamIN
on a partition of the original data containing 85% of the samples
(without repetition).Wemanaged to runGVITamIN on 272 such
partitions in 2 days of running time. To filter out low confidence
results, we only keep those results predicted in the main run, i.e.
the run using all the samples, as well as in all the 272 subsampling
runs. The goal of this procedure is to identify effects which are
strong enough to be detected using only subsets of the samples.
With this approach, we are reducing the false positive rate at the
cost of a slight increased of the false negative rate.

2.4.5. Computing Infrastructure
We run our pipeline using 15 MPI processes and 16 OpenMP
threads per MPI process on a cluster equipped with POWER8
processors. In such a setting our code run in about 34 min.

3. RESULTS

We test GVITamIN on a cohort of breast cancer patients collected
by the TCGA Research Network2. After the pre-processing
described in section 2.4, we obtain expression levels for 15,669
genes and 1,060 patients, which we use to investigate the
molecular dysregulation caused by 59 breast cancer-related SNPs.
For the second-order analysis, we focus on 766 TF and 114,637
TF-targets interactions as described in 2.4.

3.1. First Order Results
In the first order analysis, we test the association of 59 SNPs
with the changes in expression levels of 15669 genes. GVITamIN
rejected 17925 out of the 924471 tests at the 0.05 significance level
(after FDR correction). After running GVITamIN on various
subsamples of the data (section 2.4), we select 3231 rejected tests
out of 17925 initial results for further analysis.

2http://cancergenome.nih.gov/
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3.1.1. Top Results
We report in Table 1 the top 10 results ranked in terms of the
FDR-corrected p-value. Most of these top results are related to 2
SNPs, rs4455437 and rs2842347.

rs4455437 is a SNP located ∼30 kb downstream of the
TNIP3 gene and was recently associated with breast cancer in
African American women (Song et al., 2013). From our analysis,
rs4455437 seems mostly associated with the genes of the late
cornified envelope (LCE) family. Indeed, 11 genes of the 52
genes significantly associated with rs4455437 belong to the LCE
gene family—LCE1A, LCE1B, LCE1C, LCE1D, LCE1E, LCE1F,
LCE2A, LCE2B, LCE2C, LCE2D, LCE3E, LCE6A.We do not find
any evidence of a differential expression of TNIP3 or of other
cancer-related genes in the presence of rs4455437. Regarding
rs2842347, it has also been recently associated with breast cancer
in African American women in the same study cited above (Song
et al., 2013). This SNP is located on chromosome 14 on the
RAD51B gene, a known cancer gene involved in homologous
recombination repair (HRR). Among the genes differentially
expressed in the presence of rs2842347, we find genes involved
in keratinization, including members of the LCE family.

3.1.2. Gene Set Enrichment Analysis
We further analyze the first order results by performing an
enrichment analysis (in the form of a chi-square test) against the
following collections of gene sets from the Molecular Signatures
Database (MSigDB) (Subramanian et al., 2005; Liberzon et al.,
2011): (i) Canonical pathways describing biological processes
and manually curated by domain experts. These pathways
are derived from the BioCarta (Nishimura, 2001), KEGG
(Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017), and
the REACTOME (Fabregat et al., 2018) databases; (ii) Cancer
modules (Segal et al., 2004), which includes additional gene sets
compiled from other databases, such as KEGG and GO; (iii)
Oncogenic signatures, includes additional pathways identified
as often disregulated in cancer by analyzing microarray data;
(iv) Hallmark, gene sets summarizing all the other databases
provided in the MSigDB in 50 specific biological processes with
minimal gene overlap.

Most of the SNPs studied in the first order analysis were
associated with a relatively low number of differentially expressed
genes. We therefore focus our analysis on 3 SNPs associated
with more than 100 genes: rs421379, rs3784099, and rs2048672
(associated respectively with 1,329, 1,009, and 117 genes). Results
for rs421379 and rs2048672 are reported in Table 2. We do not
observe any significant result for rs3784099 after FDR correction.

For rs421379, we obtain two significantly enriched gene sets.
TBK1.DF_DN (Barbie et al., 2009) is a gene set composed of
genes down-regulated as a combination of an over-expressed
oncogenic form of KRAS and the suppression of TBK1, a kinase
that regulates cell proliferation, apoptosis, autophagy, and anti-
tumor immunity (Helgason et al., 2013; Durand et al., 2018).
GCM_RAB10 includes genes located in the neighborhood of the
RAB10 gene, amember of the RAS oncogene family.While KRAS
and RAB10 belong to functionally different gene families, they
are both part of the Ras protein superfamily, whose members
function as monomeric G proteins that act as binary molecular
switches that can regulate cell proliferation. Overactivation of

TABLE 2 | Gene enrichment analysis for the 2 of the SNPs associated with the

highest number of genes: rs421379 and rs2048672.

SNP (# DE genes) Pathway p-value FDR p-value

rs421379 (1329) TBK1.DF_DN 2.341e-07 0.005

GCM_RAB10 2.489e-06 0.025

rs2048672 (117) MODULE_54 (Cell cycle) 2.684e-18 0.005

HALLMARK_G2M_CHECKPOINT 1.900e-06 0.013

HALLMARK_E2F_TARGETS 1.990e-06 0.013

REACTOME_CELL_CYCLE 4.897e-06 0.024

rs421379 might be related to dysregulation of cell proliferation and apoptosis via TBK1.

rs2048672 seems to play a role in the G2-M cell cycle checkpoint.

Ras signaling can lead to cancer (Wennerberg et al., 2005).
Interestingly, rs421379 is located on the Chromosome 5 relatively
close (556 kb upstream of) to the ARRDC3 gene, which could
play a role in the regulation of G protein-coupled receptors
(Nabhan et al., 2010; Han et al., 2013).

In the presence of rs2048672, differentially expressed genes
show an enrichment in gene sets related to cell cycle.
Namely, pathways HALLMARK _ E2F _ TARGETS and
HALLMARK _ G2M _CHECKPOINT suggest an association
of rs2048672 with specific phases of cell cycle. During the
G2-M checkpoint, cells are checked for defective DNA, and
damage are repaired if necessary, before initiating mitosis. E2F
transcription factors have been shown to play an important
role in the regulation of genes involved in the G1-S phase
of the cell cycle (Dyson, 1998; Nevins, 1998). However, more
recent studies have shown evidence of some involvement
of E2F proteins in the G2-M stage as well (Polager et al.,
2002; Ren et al., 2002). In particular, Zhu et al. (2004)
suggested that E2F are directly regulating the expression of
mitotic genes.

3.2. Results of the Second Order Analysis
In the second order analysis we study the dysregulation of
the interactions between 766 transcription factors and their
target genes, for a total of 114,637 TF-targets interactions,
conditioned on the presence of the 59 SNPs. We obtain 36
significant results at the 0.05 significance level after FDR
correction. Given the low number of significant results we
do not prioritize them by subsampling and we do not
perform an enrichment analysis. We show the top 15 results
in Table 3.

3.2.1. Top Results
Themost significant result involves the association of rs16882214
with the PDX1-INS pair. PDX1 is a TF of homeobox genes
family important in differentiation and development of the
pancreas, duodenum and antrum, which functions as a putative
tumor suppressor in gastric cancer (Ma et al., 2008; Roy
et al., 2016). In addition, polymorphisms in the INS have been
reported to be associated with increased prostate cancer risk
(Ho et al., 2003).

The second most significant result involves rs1876206, a
SNP located on the FBN1 gene that is associated with the
dysregulation of the TF MYOD1 and 4 of its targets (CRCT1,
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TABLE 3 | Second order analysis: top 15 most significant results.

SNP TF Target p-value FDR p-value

rs16882214 PDX1 INS 1.68881e-12 2.36652e-06

rs1876206 MYOD1 CRCT1 1.53497e-11 2.15094e-05

rs1876206 MYOD1 HTN1 9.40789e-11 6.59161e-05

rs10509373 HEY1 CDH23 3.46953e-10 0.000486182

rs1876206 MYOD1 CELA3A 2.07202e-08 0.00967838

rs1801270 SMARCA4 DGCR8 8.87854e-09 0.0124414

rs3784099 CDC5L PCDHGC3 3.96714e-08 0.0185304

rs3784099 ATF1 CD2AP 2.97751e-08 0.0208618

rs1876206 MYOD1 NKX2-1 6.05328e-08 0.0212061

rs3784099 FOXA1 TM4SF1 2.0034e-08 0.0280735

rs10510102 CEBPB MBNL3 2.283e-08 0.0319916

rs3784099 CTCF SCAF8 5.86418e-07 0.035728

rs3784099 LMO2 LYL1 5.69159e-07 0.0362527

rs3784099 CTCF TLK1 2.84675e-07 0.0362648

rs3784099 CTCF C8G 3.36879e-07 0.0363128

rs3784099 CTCF SFN 5.21694e-07 0.0365523

Several of these TFs and targets have been implicated in cancer, such as PDX1, MYOD1,

CTCF, LMO2, and INS.

HTN1, CELA3A, and NKX2-1). Interestingly, recent studies
suggest both a role for FBN1 (Wang et al., 2015) and
MYOD1 (Cai et al., 2016) in breast cancer. Several of the TGs
have been also implicated in cancer (Wu et al., 2016; Matsubara
et al., 2017; Li et al., 2019).

Like rs2842347, identified in the first order analysis (Table 1),
rs3784099 is located on the RAD51B gene. This SNP is involved
in most of the significant second order results (27 out of 36).
From Table 4 we note four transcription factors (CTCF, EP300,
YY1, LMO2) whose correlation with more than one target is
significantly perturbed in the presence of rs3784099. CTCF,
EP300 and LMO2 are listed in the Catalog Of Somatic Mutations
In Cancer (COSMIC) (Tate et al., 2018) as genes that are causally
implicated in cancer if mutated. Also the multifunctional TF
YY1 has been reported to have an oncogenic role (Zhang et al.,
2011). In particular, in breast cancer, it seems to have a negative
regulatory effect on p27, a cell cycle inhibitor protein (Wan et al.,
2012). The target genes involved in these results are reported
in Table 5. Among these genes, PICALM (targeted by EP300),
DDX6 (targeted by YY1) and LYL1 (targeted by LMO2) are
reported on the COSMIC cancer gene list.

3.3. Results of TF-Combined Second Order
Analysis
Next, we combine the p-values obtained from the second order
analysis, obtaining a single p-value for each TF and for each
of the 59 SNPs. We reject 3,860 tests at the 0.05-significance
level after FDR correction. It can be noted that this number
is much higher compared to the second-order analysis on TF-
target-SNPs triplets (section 3.2). This may be due to the fact that
by combining p-values, we are effectively combining multiple
evidences from different targets. Given the higher number of
targets for each TF, the combined p-values may have higher

TABLE 4 | List of SNP-TF pairs ranked by number of significant targets.

SNP TF # significant targets

rs3784099 CTCF 5

rs1876206 MYOD1 4

rs3784099 EP300 4

rs3784099 YY1 4

rs3784099 LMO2 2

rs10509373 HEY1 1

rs10510102 CEBPB 1

rs16882214 PDX1 1

rs1801270 SMARCA4 1

rs3784099 ATF1 1

rs3784099 BDP1 1

rs3784099 CDC5L 1

rs3784099 ELF1 1

rs3784099 FOXA1 1

rs3784099 IRF2 1

rs3784099 JUND 1

rs3784099 MYOD1 1

rs3784099 SIN3A 1

rs3784099 SMC3 1

rs3784099 SOX9 1

rs3784099 SP3 1

rs4987047 RAD21 1

Among the top pairs, CTCF, EP300, and LMO2 are reported on the COSMIC cancer gene

list.

TABLE 5 | Significant targets for the top significant transcription factors with at

least one significant target.

SNP TF Significant targets

rs3784099 CTCF SCAF8, TLK1, C8G, SFN, RRP9

rs3784099 EP300 PICALM, RFXANK, MAD2L2, PMVK

rs1876206 MYOD1 CRCT1, HTN1, CELA3A, NKX-2

rs3784099 YY1 LYPLA2, ABCE1, WDR13, DDX6

rs3784099 LMO2 LYL1, CDH5

Most TFs in this table have been associated with cancer. Interestingly, also several of the

target genes are reported on the COSMIC cancer gene list, for example, PICALM (targeted

by EP300), DDX6 (targeted by YY1), and LYL1 (targeted by LMO2).

chance to be significant. As for the first order analysis, we filter
out minor results by running GVITamIN on subsamples of the
data, finally retaining only 356 rejected tests. These tests involve
148 TFs, 48 of which can be found in the COSMIC cancer genes
list. In Table 6 we report the top results of the TF-combined
analysis, while in Table 7 we report the top 10 SNPs associated
with the highest number of significant results.

3.3.1. Top Results
In Table 6, we observe that 7 out of the 15 top results involve the
LEF1 transcription factor. A recent review article (Santiago et al.,
2017) has highlighted the central role of LEF1 in cancer invasion,
migration and proliferation, suggesting its use as a biomarker
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TABLE 6 | Results of the global second order analysis.

SNP TF

rs2380205 LEF1

rs10822013 LEF1

rs421379 LEF1

rs3784099 EP300

rs3784099 LEF1

rs2842347 LEF1

rs11613298 FOXO4

rs12762549 LEF1

rs2842347 TCF3

rs2048672 LEF1

rs3784099 CTCF

rs10822013 TCF3

rs737387 MAZ

rs2842347 CTCF

rs3784099 YY1

The table shows the top 15 most significant results. GVITamIN reported a zero p-value

for all the association of the SNP-TF pairs. We therefore used a Chi-score to rank them.

LEF1, which may play an important role in cancer invasion, migration and proliferation, is

correlated with many SNPs.

and potential target for treatments. While LEF1 is commonly
seen as an important transcription factor in the Wnt/β-catenin
signaling pathway, it can also function independently from it,
with several possible downstream consequences. The fact that
LEF1 was significantly associated with a relatively high number of
SNPs, which are not in linkage disequilibrium, nor inducing the
same cohort splitting (see Figure S1), in our analyses might be
additional evidence in support of its pivotal role in breast cancer.

Almost all the results involve known cancer-related
transcription factors reported in the COSMIC gene list.
The only top results TFs not included in the list are MAZ and
YY1. The connection of YY1 with cancer was already discussed
in section 3.2. Regarding MAZ, a TF highly upregulated in
chronic inflammatory disease and several human cancers, several
studies have pointed its connection with breast cancer (Yu et al.,
2017) and colon cancer (Triner et al., 2018).

3.3.2. Top Transcription Factors
Motivated by the results involving LEF1, we study which TFs
are significantly associated with the highest number of SNPs.
Such analysis could reveal TFs frequently dysregulated by cancer-
related SNPs and that are suspected hence of having an oncogenic
role.We report inTable 8 14 TFs associated with 5 or more SNPs.
Similarly to LEF1, these TFs are also associated with SNPs that are
not in linkage disequilibrium nor inducing the same cohort splits.

Among these TFs, 9 (FOXA1, CTCF, ESR1, AR, LEF1, ZEB1,
BCL11A, GATA2, MYB) are well-known cancer-related genes.
For instance, FOXA1 and ESR1 (also known as ERα) are
part of a transcriptional network responsible of the control of
gene expression patterns of luminal A breast cancer (Nakshatri
and Badve, 2009). This is the most common breast cancer
subtype (Fallahpour et al., 2017) and is characterized by

TABLE 7 | Global second order analysis.

SNP (#

significant

TFs)

Significant TFs

rs3784099

(61)

AHR, ATF1, ATF2, BCL11A, BCLAF1, BDP1, BPTF

(1.11e-16, 7.67e-15), CDC5L, CEBPB, CHD2, CREB1,

CTCF, ELF1, ELF2, EN1, EP300, ETS1, FOXA1, FOXO3,

GABPA, HIF1A, IRF2, JUND, LEF1, LMO2, MAFG,

MECOM, MTF1, MYB, NF1, NFE2L2, NFYB, PCBP1, PGR,

POU2F1, PRRX2, RAD21, REL, RFX5, RREB1, SETDB1,

SIN3A, SIRT1 (5.93e-10, 2.90e-08), SIRT6 (8.22e-15,

5.10e-13), SMAD1, SMC3, SOX9, SP1, SP2, SP3, SPI1,

STAT1, SUZ12, TAF1, TCF12, TCF4, TEAD1, TFDP1, USF2,

YY1, ZNF143

rs10509373

(37)

AR, ATF2, BCL11A, CREB1, CTCF, EGR4, ELF1, ELF2,

EN1, EP300, ERG (3.86e-10, 2.67e-08), ESR1, ETS1, ETS,

FOXA1, FOXF2, FOXJ1, FOXL1 (1.44e-14, 1.21e-12),

FOXM1, FOXO1, HEY1, IRF2, MAF (3.25e-13, 2.50e-11),

MAX, MIF, NR3C1, PBX1, POU2F1, PRRX2, REST, RXRB,

SP1, SP3, SREBF1, TCF4, YY1, ZEB1

rs2048672

(25)

AR, BCL11A, CREB1, E2F1, E2F6, EBF2, ELF2, ETS1, FLI1

(9.85e-10, 7.67e-08), FOXM1, GATA2, HMGA1, KLF12

(6.77e-15, 7.34e-13), LEF1, LMO2, MIF, MSX1, NFYB,

PAX5, RAD21, REPIN1, TEAD1, TFDP1, TGIF1, ZHX2

rs421379 (23) AR, BCL11A (6.56e-06, 3.36e-04), CEBPB, CTCF, DDIT3,

E2F1, ESR1, FOXA1, FOXC1, GATA2, GATA3, HLF

(3.00e-15, 3.45e-13), HMGA1, LEF1, LMO2, MEF2C, MYB,

PPARG, RUNX2 (1.11e-16, 1.36e-14), RXRB, STAT5A, VHL

(1.16e-05, 5.72e-04), ZEB1

rs2842347

(21)

AR, BCL11A, BCLAF1, CEBPB, CHD2, CTCF, ELF2,

ESR1, ESRRA, FOXC1 (2.22e-16, 3.07e-14), LEF1, PBX3,

RFX5, SIN3A, TBP, TCF3, TEAD1, TRAF4, UBP1 (7.12e-14,

7.87e-12), USF2, ZEB1

rs4784227

(20)

AR, E2F1, EGR3, ELF1, ESR1, FOXA1, FOXC1, FOXO1,

GATA2, HDAC2, IRF2, MAFG, NF1, NFKB1, RBL2

(2.57e-06, 1.78e-04), SOX5, TCF4, USF1, ZBTB7A, ZEB1

rs2380205

(18)

AR, CEBPD, CTCF, DDIT3, EBF1, FOXO1, LEF1, NR3C1,

PBX3, POU2F1, REPIN1 (2.71e-04, 0.017), SMC3, SP1

(1.01e-05, 7.35e-04), TAF1, TCF12, TCF4, USF2, ZEB1

rs10822013

(18)

CTCF, E2F1, ELK1, ESR1, ESRRA, ETS2, FOXA1, LEF1,

MAX, MYB, NR2F2, NR3C1, PBX1 (2.38e-14, 3.28e-12),

PGR, REST, RORA, TCF3, TGIF1

rs704010 (13) BPTF, CDC5L (1.89e-15, 3.48e-13), CTCF, MAFF (1.15e-13,

1.82e-11), MAFK, NF1, POU2F1, POU3F2, PPARG

(2.84e-12, 3.93e-10), SMARCC1 (1.03e-11, 1.26e-09),

SMC3, SP2, UBP1

rs1314913

(10)

BCL11A, CEBPB, EBF1 (2.40e-07, 2.37e-05), FOXA1,

GATA2 (1.21e-11, 1.59e-09), GATA3 (1.89e-05, 1.51e-03),

PAX2 (4.00e-4, 0.027), RAD21, RB1 (1.11e-16, 1.71e-14),

ZEB1 (5.41e-05, 0.0042)

We report the top 10 SNPs that are significantly associated with the highest number of

TFs. The p-value and the FDR-corrected p-values are given in brackets for each TF. If no

values are reported, it means that GVITamIN reported p-values of zero. We denote in bold

characters cancer-related genes as reported in the COSMIC gene list.

responsiveness to hormonal therapies and, consequently, good
prognosis (Nakshatri and Badve, 2009). Indeed, FOXA1 has
been hypothesized to be a mediator of hormonal response in
breast and prostate cancer (Robinson and Carroll, 2012), and
a hormonal regulatory complex involving FOXA1, GATA2 and
AR has been shown to control gene expression in prostate
cancer (Zhao et al., 2016). Other important associations are
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TABLE 8 | TFs significantly associated with the highest number of SNPs.

TF # associated SNPs

FOXA1 10

CTCF 9

ESR1 8

AR 7

LEF1 7

ZEB1 7

BCL11A 6

E2F1 6

ELF2 6

POU2F1 6

CEBPB 5

GATA2 5

MYB 5

SP1 5

Among these transcription factors, FOXA1, CTCF, ESR1, AR, LEF1, ZEB1, BCL11A,

GATA2, MYB are established cancer-related genes.

readily found in the literature: MYB has been connected with
anomalies in the regulatory mechanisms involving ERα (Ramsay
and Gonda, 2008). BCL11A is over-expressed and its genomic
locus frequently amplified in triple-negative breast cancer gene,
suggesting a tumorigenic role in these tumors (Khaled et al.,
2015). ZEB1 has a pivotal role in tumor progression and
metastasis and can underlie chemotherapeutic resistance in
breast cancer (Zhang et al., 2015, 2018).

CTCF deserves a special mention. A multifunctional
transcription factor, CTCF plays a role in many types of
cancer, including breast cancer, via different mechanisms (Oh
et al., 2017). For example, the CTCF-cohesin complex is
involved in the formation of topologically associated domains
(TADs) and chromatin loops (Ghirlando and Felsenfeld,
2016). Dysregulation of CTCF might lead to abnormal 3D
DNA structure impacting the normal functioning of the cell
(Pinoli et al., 2020).

3.3.3. Top SNPs
Finally, we focus on the SNPs that dysregulate a higher number
of TFs. Table 7 reports 10 SNPs that are significantly associated
with the dysregulation of at least 10 TFs. The TFs are reported on
the right column.

rs3784099 is the SNP associated by a large margin with
the highest number of TFs. This SNP, already identified
in the first order analysis (section 3.1), is located on the
RAD51B gene, an important paralog of RAD51 involved in
homologous recombination repair (HRR) after double strand
breaks. Most of double strand breaks occurring during the
G2 phase of the cell cycle are repaired by HRR, which
although less error-prone than the alternative non-homologous
end-joining, it is far from error-free (Malkova and Haber,
2012; Cannan and Pederson, 2016). Mutations on HRR genes
can rapidly result in further damages that impair many
downstream processes.

Interestingly, two other SNPs in Table 7, rs2842347 and
rs1314913, are also located on RAD51B, which could mean that
they play a role similar to rs3784099. rs10822013 is located on
ZNF365 which also plays a role in HRR (Zhang et al., 2013).
rs704010 is a mutation of the gene ZMIZ1, which has been shown
to regulate the activity of various cancer-related transcription
factors, including AR (Sharma et al., 2003) and P53 (Lee et al.,
2007).

Unfortunately, the other SNPs in Table 7 are located
on non-coding RNA genes or intergenic regions whose
functions are still unknown/unclear, rendering difficult their
functional interpretation.

4. DISCUSSION

We present here GVITamIN, a novel statistical tool to extract
insights about the potential mechanism of action of disease-
susceptibility SNPs associated with complex diseases, such
as cancer. GVITamIN searches for direct perturbations
in genes as well as dysregulation of transcription factor
programs conditioned on the presence of cancer-associated
SNPs. From a methodological point of view, we provide a
theoretically well-grounded approach to summarize multiple
weak evidences of SNP-induced molecular perturbations
into statistically robust predictions about the oncogenic
function of the SNP. Some of our main findings are
discussed below.

4.1. The Central Role of RAD51B and the
Homologous Recombination Repair
Mechanism
Our results show that multiple cancer-susceptibility SNPs,
namely rs3784099, rs2842347, and rs1314913, are located on
RAD51B, a gene whose protein is essential for DNA repair
by homologous recombination. The specific mechanism
of action of each SNP differs, varying from inducing
the differential expression of several genes of the LCE
family, associated with breast cancer in African American
women (section 2.2), to inducing the malfunctioning of
several transcription factors implicated in cancer, e.g.,
CTCF, EP300, YY1, LMO2 (section 3.2). This result is
not surprising, as disruptions in DNA repair pathways
predispose cells to accumulating DNA damage (Kelley et al.,
2014). An interesting question is whether these SNPs are
functionally similar, i.e., whether they elicit the molecular
dysregulation of the same pathways. Table 7 shows that the
TFs dysregulated by rs3784099, rs2842347, and rs1314913
are different. In addition, the 3 SNPs induce different cohort
splits (see Figure S1), which seems to indicate that each
SNP affects RAD51B by means of a different molecular
mechanism.

4.2. First Order Analysis Identifies Critical
Carcinogenic Pathways
We tested the association of 59 cancer-susceptibility SNPs
with changes in expression levels in a breast cancer cohort.
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While most SNPs were associated with a low number of
dysregulated genes, rs421379, rs3784099, and rs2048672 were
significantly associated with more than 100 genes. A gene
set enrichment analysis performed on the identified genes
revealed associated with key oncogenic pathways, such as
TBK1.DF_DN (Barbie et al., 2009), a gene set that signals
the over-expression of an oncogenic form of KRAS and the
suppression of TBK1, a kinase that regulates cell proliferation,
apoptosis, autophagy, and anti-tumor immunity (Helgason
et al., 2013; Durand et al., 2018). Similarly, members of the
GCM_RAB10 pathway, which includes genes located in the
neighborhood of the RAB10 gene, a member of the RAS
oncogene family (Wennerberg et al., 2005), are targeted by
several of the studied SNPs. Also intriguing is the identification
of pathways associated with cell cycle and check points,
such as HALLMARK_E2F_TARGETS and HALLMARK_G2M
_CHECKPOINT, whose dysregulation has a critical and well-
known role in carcinogenesis.

4.3. Cancer-Susceptibility SNPs Tend to
Dysregulate Cancer-Associated
Transcription Factors
Ranking TFs according to the number of significantly associated
cancer-susceptibility SNPs reveals many well-known cancer-
related transcription factors (see Table 8). Among them, FOXA1
and ESR1 form part of a transcriptional network responsible
of the control of gene expression patterns in luminal A
breast cancer (Nakshatri and Badve, 2009), the most common
breast cancer subtype. Our results suggest that the number
of genetic variants affecting the activity of a transcription
factor could be used as a proxy of the susceptibility to a
related trait (in our case, breast cancer) and its severity.
This conclusion aligns with the common variant-common
disease hypothesis (Reich and Lander, 2001), which states
that common disease-causing variants can be found in all
human populations which manifest a given disease. Since highly
penetrant mutations are relatively rare (Greaves, 2015), it is
expected that a higher number of lower penetrance variants
are needed for a deleterious effect to manifest, e.g., developing
breast cancer.

4.4. Future Work
Our analyses demonstrate the validity of a combined statistical
approach that exploits knowledge about transcriptional
regulation within the cell. Further work is however necessary
to investigate whether a combination of both types of analyses
(first and second order analysis) can provide deeper insights
on transcriptional mechanisms. Another possible improvement
is the extension of our pipeline to other types of regulatory
mechanisms, or to higher-order interactions. For example, the
second-order analysis does not consider TF-TG interactions
which are mediated by a co-factor. We observe, however, that
such higher-order analyses would require more samples to
achieve statistical significance.

5. CONCLUSION

We have presented here GVITamIN, a new statistical and
computational approach to characterize the potential effect
of a SNP on both genes and transcriptional regulatory
programs. As demonstrated in this work, our novel statistical
approach is able to combine the usually small effect of
disease-susceptibility SNPs to reveal important oncogenic
mechanisms, which were corroborated with published previous
studies. An inherent problem to many statistical approaches
to analyse high-throughput data is the high number of false
positive results, even after FDR correction. While the only
robust approach to reduce the number of false positives is
to limit the number of tests and/or increase the sample
size, workarounds can be designed to prioritize the results.
In GVITamIN we implement a p-value cutoff based on
subsampling/bootstrapping. Other approaches, such as ranking
the results according to the FDR p-values and setting a
very stringent p-value might unfairly penalize SNPs with
very unbalanced sample sizes (as a result of an unbalanced
cohort split), i.e., where one group size is close to the
acceptance threshold (threshold_samples) resulting in predictions
characterized by larger p-values.

We emphasize that GVITamIN is not limited to SNPs only,
but could be used to characterize any categorical mutation
or structural alteration with the potential of affecting gene
expressions levels, such as short tandem repeats mutations,
epigenetic changes, mutations altering topologically associated
domains (TADs), etc.

As a final remark, we note that gVITaMIN can not infer
the causal structure of such mechanisms, which require either
longitudinal studies that follow a cohort through time or
functional studies. In the absence of those, our rigorous
statistical analysis might help identify candidate explanations
for further experimental validation from one single time point
observational data.
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