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International Classification of Diseases (ICD) is an authoritative health care classification

system of different diseases. It is widely used for disease and health records, assisted

medical reimbursement decisions, and collecting morbidity and mortality statistics.

The most existing ICD coding models only translate the simple diagnosis descriptions

into ICD codes. And it obscures the reasons and details behind specific diagnoses.

Besides, the label (code) distribution is uneven. And there is a dependency between

labels. Based on the above considerations, the knowledge graph and attention

mechanism were expanded into medical code prediction to improve interpretability.

In this study, a new method called G_Coder was presented, which mainly consists

of Multi-CNN, graph presentation, attentional matching, and adversarial learning. The

medical knowledge graph was constructed by extracting entities related to ICD-9 from

freebase. Ontology contains 5 entity classes, which are disease, symptom, medicine,

surgery, and examination. The result of G_Coder on the MIMIC-III dataset showed that

the micro-F1 score is 69.2% surpassing the state of art. The following conclusions can

be obtained through the experiment: G_Coder integrates information across medical

records using Multi-CNN and embeds knowledge into ICD codes. Adversarial learning is

used to generate the adversarial samples to reconcile the writing styles of doctor. With the

knowledge graph and attention mechanism, most relevant segments of medical codes

can be explained. This suggests that the knowledge graph significantly improves the

precision of code prediction and reduces the working pressure of the human coders.

Keywords: automated ICD coding, knowledge graphs, explainable, medical records, natural language processing

INTRODUCTION

The International Classification of Diseases (ICD) is a standard classification system according to
the characteristics of diseases and the rules maintained by the World Health Organization. Each
code represents a specific disease, symptom, or surgery. And a set of codes in the medical record
represents uniquely diagnostic and procedural information during patient visits. As a significant
part of the hospital information system, it is widely used for medical insurance payments, health
reports, andmortality calculations. Therefore, the ICD coding task is an essential job in the medical
record information department. While ICD codes are important for making clinical and financial
decisions, ICD coding is time-consuming, error-prone, and expensive. In most cases, the human
coders assign ICD codes to medical records according to the clinical diagnosis record of physician.
It is difficult because the code assignment should consider overall the health condition in the long
text-free medical records, including symptoms, signs, surgery, medication, body, etc.
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Automatic coding uses medical records as input to predict the
final ICD codes based on text content. But the automatic ICD
coding task usually has the following difficulties: (1) The clinical
records of patients are not always structured in the same way.
And the vital information in the text is distributed in various
segments. For the above two reasons, it is very difficult to extract
important and relevant knowledge from various kinds of medical
records effectively. (2) Most importantly, the medical field has
a lot of terminologies, which is difficult for non-professionals
to understand the meaning of these terminologies. Even for the
same disease, there are many ways to describe it differently from
ICD description. (3) Datasets in the medical field are often small,
and doctors have different writing styles. Each physician usually
has his way to describe medical terminologies.

In this paper, we proposed a new end-to-end method
called G_Coder (Graph-based Coder) for automatic ICD code
assignment using clinical records. The contributions of this paper
are summarized as follows: (1) We utilize Multi-CNN (multiple
convolutional neural networks) to capture local correlation,
which extracts key features from the irregular text. (2) We
build a knowledge graph, which enriches the meaning of
terminologies through integrated related knowledge points. It
is combined with the attention mechanism to help understand
the meaning of related terminologies, making the coding results
interpretable. (3) The adversarial learning is used to generate
adversarial samples to increase samples and reconcile the
different writing styles.

Our model has outperformed other models in micro-
AUC and micro-F1 on MIMIC-III (Multi-parameter Intelligent
Monitoring in Intensive Care) datasets with 46K distinct hospital
admissions and top 50 common ICD-9 codes.

RELATED WORKS

Automatic ICD Coding
It was 20 years ago that many researchers have explored how
to automatically assign ICD codes based on clinical records.
There are two major categories of approaches for automatically
assigning ICD-9 codes using medical records. One category is
rule-based and the other category is learning-based. Rule-based
systems are manually extracted statistical features by humans.
Chen et al. (2017) and Ning et al. (2016) presented an improved
approach based on the Longest Common Subsequence (LCS) and
semantic similarity for performing ICD-10 code assignment to
Chinese diagnoses. But such approaches only consider the simple
matching of strings, which is not a medical problem. Beyond
that, researchers applied automatic and semi-automatic (Medori
and Fairon, 2010) machine learning methods to automatically
assign ICD codes. Automatic ICD-9-CM encoding consisted
of support vector machines (SVM) (Yan et al., 2010; Adler
et al., 2011; Ferrão et al., 2013; Wang et al., 2017), k-nearest
neighbors (Ruch et al., 2008; Erraguntla et al., 2012), Naive Bayes
(Pakhomov et al., 2006; Medori and Fairon, 2010), and other
methods such as topic model (Ping et al., 2010; Perotte et al.,
2013). Semi-automatic methods generally require more manual
participation and may require manual data processing, feature
selection, data verification, etc. Automatic methods generally use

a series of operations in an end-to-end manner. Nevertheless, the
development of automatic coding technology is not yet mature,
and manual verification is inevitable. All the above methods
only utilize the statistical characteristics of words and ignore the
contextual meaning.

In recent years, many new methods are emerging with
the development of deep neural network. Li et al. (2018)
combined the convolutional neural network (CNN) and the
“Document to Vector” technique to extract textual features. It
solves the characteristics of CNN’s indistinguishable word order
while taking all the words into account. Baumel et al. (2017)
applied a hierarchical approach which is Hierarchical Attention
bidirectional Gated Recurrent Unit (HA-GRU) to tag a discharge
summary by identifying the relevant sentences. It utilizes the
Gated Recurrent Unit to encode text, which experimental effect
is similar to long short-term memory networks (LSTM), but
it is easier to calculate. Yu Y. et al. (2019) explored character
features and word features based on bidirectional LSTM with
attentionmechanism and Xie and Xing (2018) applied tree LSTM
with ICD hierarchy information for automatic ICD coding.
Compared with ordinary LSTM, bidirectional LSTMs tend to
have higher accuracy, and tree LSTM is more suitable for
data that is a tree-like hierarchical structure. Mullenbach et al.
(2018) proposed to extract per-code textual features across the
document using a convolutional neural network and used an
attention mechanism to select the most relevant segments for
each possible code. Based on that, Li and Yu (2019) combined
multi-filter convolutional layers and residual convolutional layers
to enlarge the receptive field.

Deep learning methods improved the ability to capture
semantic information but ignored the importance of medical
knowledge and experience. In practical work, the human coders
fully utilize the basic medical knowledge to provide decision
support for the work. However, all the methods just mentioned
are data-driven approaches or simple mapping, which lack
of the theoretical support and suffer from the complicated
preprocessing of the noisy text. To build a more explainable ICD
coding system, we utilize the knowledge graph as supplementary
knowledge to add to the model, which is equivalent to
combining a data-driven approach with medical knowledge.
What is more, we successively perform text preprocessing
and Multi-CNN algorithm to extract text features to reduce
text noise. Adversarial learning generates adversarial samples
for training to reconcile the different writing styles. The
attention mechanism selects the most relevant segments for each
possible code.

Graph Embedding
Graph embedding technology expresses nodes in the form of
low-dimensional dense vectors, which require similar nodes
in the original graph to be similar in the low-dimensional
expression space. The representative work of Graph Embedding
is DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015),
Node2Vec (Grover and Leskovec, 2016), SDNE (Wang et al.,
2016), and Struc2Vec (Ribeiro et al., 2017). The obtained
expression vectors can be used for downstream tasks, such as
node classification (Ye et al., 2018; Gong and Ai, 2019), link
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prediction (Li et al., 2019a), or visualization (Liu et al., 2020). In
the field of biomedicine, graphs are often used to predict drug
interactions and predict drug target proteins. The knowledge
graph embedding is used to calculate several similarity measures
between all drugs in the scalable and distributed framework to
obtain the interaction of drugs (Ibrahim et al., 2017). Mohamed
et al. (2020) used knowledge graph embeddings to learn the
vector representation of all drugs and targets to discover protein
drug targets.

Attention Mechanism
The attention mechanism was first used for machine translation
(Dzmitry et al., 2014). It calculates the attention weight of each
word in the encoder sequence to each word in the decoder
sequence to focus more on the most relevant part of the current
word. The attention mechanism improves the effect and also
increases the interpretability of the neural network. After adding
attention, the weight of the data can be visualized to confirm
the correctness of the method. Besides, attention mechanism has
the ability to capture global features in long texts. The attention
mechanismmimics the internal process of biological observation
behavior, which is a mechanism that aligns internal experience
and external sensation to increase the observation precision of
some areas. It has been successfully used in medical tasks. Such
as medical imaging (Ozan et al., 2018), clinical text information
extraction (Li et al., 2019b; Xu et al., 2019), andDNA-related tasks
(Yu W. et al., 2019; Hong et al., 2020).

Adversarial Learning
Adversarial learning is tomake the two networks compete against
each other. The generator network continuously captures the
probability distribution of the real data in the training set and
transforms the input random perturbation into new samples.
The discriminator network observes both real and fake data
to determine the authenticity of this data. Through repeated
confrontation, the capabilities of the generator and discriminator
will continue to increase until a balance is reached. Goodfellow
et al. (2015) developed a method named FSGM that can
effectively calculate the perturbation. They set the perturbation
to the maximum value of the loss function along the direction
of the gradient. FSGM takes the same step in each direction,
and Goodfellow’s subsequent FGM (Miyato et al., 2017) is
scaled according to specific gradients to obtain better adversarial
samples. Adversarial learning improves the robustness of the
model through the idea of games. It randomly adds perturbation
factors to the input to simulate unknown data to ensure that the
model can work stably in any situation. Adversarial learning has
been used for privacy protection (Max et al., 2019) of medical
records and named entity recognition (Zhao et al., 2019) in
clinical texts.

MATERIALS AND METHODS

As can be seen from Figure 1, this section will detail
all the processes by combining data materials with the
proposed methods.

Dataset and Preprocessing
We utilize the transfer knowledge graph to improve the
interpretability and performance of automatic ICD coding. In
the study, we select Multi-parameter Intelligent Monitoring in
Intensive Care-III (MIMIC-III) dataset (Johnson et al., 2016) as
an experimental dataset and Freebase dataset as a source of the
knowledge graph. A brief introduction to these two data sets and
related preprocessing techniques are as follows.

MIMIC-III Dataset
MIMIC-III dataset is the only public database for learning
automated ICD-9 coding, which allows fair comparisons with
different methods. It contains reliable and comprehensive 58,976
hospital admissions collected between 2001 and 2012 in the
Beth Israel Deaconess Medical Center. Each medical record
usually includes discharge summaries, survival data, diagnostic
codes, vital signs, laboratory measurements, etc. Besides, the
discharge summary always contains multiple information,
such as “discharge diagnosis,” “past medical history,” physical
examination,” and “chief complaint,” etc. Table 1 shows a sample
of a medical record in the dataset. The “HADMID” uniquely
identifies each medical record. Each hospital admission has a
group of ICD-9 codes given by the medical coders. For each
medical record, codes distribute unevenly in numbers which
varies from one to 39. The number of codes is usually not equal
to the number of diagnosis descriptions. It invalidates the one-to-
one method of allocating codes. The entire dataset contains 6,984
distinct codes and 943 categories. Each code has a short phrase or
a sentence, articulating a disease, symptom, or condition.

We adopt a series of standard text pre-processing techniques,
which contain regular expression matching and tokenization to
reduce the noise in raw note texts. Firstly, we extract relevant
data from MIMIC-III as input text, which contains “physical
examination,” “chief complaint,” “final diagnosis,” “history,”
“medication,” “course,” and “procedure.” Secondly, we remove
stop words from the input text and transform each token
into its lowercase. Simultaneously removing words <3 and
replacing unknown words with “UNK.” Thirdly, medical records
with associated labels that do not contain the top 50 code
are discarded.

Freebase
With the rapid development of the knowledge graph in
recent years, research-based on knowledge graphs has attracted
widespread attention in the medical field. Freebase mainly
extracts structured data from wikis and publishes them as RDF.
It is fully structured, but the data source is not limited to wikis. It
also imports a large number of professional data sets and provides
data query and entry mechanisms.

We fuse ICD-9 description information with medical
knowledge extracted from freebase to build the final knowledge
graph. Freebase Medicine originate from Wikipedia and other
datasets such as U.S. National Medical Data. One study has
reported that 70% of junior doctors used Wikipedia for health
knowledge every week (Trevena, 2011). Because the freebase
is reliable, the information provided in Freebase is generally
considered to be reliable. The matching method is used for
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FIGURE 1 | The overall process of this method.

TABLE 1 | An example of a medical record.

Medical record (partially shown)

HADMID:105501

Admission Date: [**2172-7-6**] Discharge Date: [**2172-7-10**]

Date of Birth: [**2096-4-25**] Sex: M

Service: Cardiothoracic Surgery Service

HISTORY OF PRESENT ILLNESS: The patient is a 75-year-old gentleman who is

a patient of Dr. [**First Name4 (NamePattern1) **] [**Last Name (NamePattern1)

47696**] whowas transferred in from [**Hospital3 3583**] status post amyocardial

infarction for cardiac catheterization……

PAST MEDICAL HISTORY:

1. Hypertension.

2. Myocardial infarction.

3. Hypercholesterolemia.

4. Myocardial infarction in [**2158**].

……

ICD-9 codes and description

88.56 Coronary arteriography using two catheters

39.61 Extracorporeal circulation auxiliary to open heart surgery

88.72 Diagnostic ultrasound of heart

36.15 Single internal mammary-coronary artery bypass

584.9 Acute renal failure, unspecified

37.22 Left heart cardiac catheterization

410.71 Acute myocardial infarction, subendocardial infarction, initial episode of

care

414.01 Coronary atherosclerosis of native coronary artery

428.0 Congestive heart failure, unspecified

39.95 Hemodialysis

knowledge fusion. Since some diagnosis terms from ICD-9
description imperfectly match Freebase content, we use the ICD
description text as the search terms to find the most relevant

Freebase content by the Freebase API (http://freebase.gstore-
pku.com/). The ontology that was constructed contains 5 entity
classes, which are disease, symptom, medicine, surgery, and
examination. The constructed ontology is shown in Figure 2,
which contains the relationships (disease manifests as symptoms,
medicine treats disease, surgery treats disease, and commonly
used disease test data, etc.) and attribute types, such as id, name,
ICD, etc. In the final knowledge graph, there are 1,560 nodes and
more than 20,000 sets of relationships.

Methods
Overview
The modular method adopted in this study differs from
the researchers used earlier. Figure 3 shows an overview
of our approach named G_Coder. The proposed approach
mainly consists of four modules, which mainly contain
Multi-CNN, Graph Presentation, Attentional Matching, and
Adversarial Learning.

Input Layer
Considering that the pre-trained word vectors in the medical
field are not yet perfect and the experimental data in this
study are very long texts, the word embeddings were initialized
randomly. Leveraging a token sequence x = {x1, x2, x3 . . . , xn}
as input, where n denotes the sequence length. Assuming that
the matrix W denotes the word embedding matrix, and W =

{w1, w2, w3, . . . ,wv}∈ R
v×d, where v represents the size of

total vocabulary and d represents the token dimension. The
vocabulary is obtained by pre-processing the MIMIC-III clinical
text. A token xi will correspond to a vector wj by looking up W.

The final input of the model is a matrix X ∈ R
n× d.
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FIGURE 2 | The ontology of medical knowledge graph.

Multi-CNN
As can be seen from Figure 3, the structure of Multi-CNN is
used to encode the input matrix X. Multi-CNN is a combination
of multiple CNNs and MaxPooling. CNN is a kind of neural
network algorithm that has successfully been applied to computer
vision. MaxPooling reduces the dimension of the feature map,
and effectively reduces the parameters required for subsequent
layers. Besides, it magnifies the receptive field.

Multiple kernels of different sizes are used to extract key
information in the sentence, which inspired by Kim (2014) who
applied Text-CNN to the text classification task. Multi-CNN is
used to better capture the local correlations. Assuming we have
filters f1, f2, . . . , fm where m denotes the filter number. Each
kernel size of filters denotes as k1, k2, ..., km. The convolutional
procedure can be formalized as formula (1),

H1= g(Wc1
∗xi:i+k−1+bc1)

Hm= g(Wcm
∗xi:i+k−1+bcm) (1)

where ∗ denotes the convolution operator, g is an element-wise
non-linear transformation, Wcm is weight parameter and bcm is
the bias. Assuming that Hm = {h1, h2, h3, . . . , hn−k+1} is the
output of m-th CNN andHm′ is the output of m-th MaxPooling.
The result of Multi-CNN is H′ = [H1′ ⊕ H2′ ⊕ . . . ⊕ Hm′] ∈

R

∑m
1 dt , where⊕ denotes concatenation operator and dt denotes

the dimension of Ht′.

Graph Presentation
In this study, we mainly adopt SDNE (Structural Deep Network
Embedding) for medical knowledge graph node embedding.
First-order proximity and second-order proximity are two crucial

definitions in SDNE. The first-order proximity is used to describe
the local similarity between paired nodes in the graph. If there are
no directly connected edges, the first-order proximity is 0. The
second-order proximity measures the similarity of their neighbor
sets between two nodes. The optimization goal of SDNE is shown
in formulas (2–4):

L1st=

nd
∑

i,j=1

si,j||ri−rj||
2
2

(2)

Each si contains the neighbor structure information of the i-th
node. The letter r denotes the vector representation of each node.
Where nd denotes the number of neighbors at nodes i.

L2st=

nd
∑

i=1

||ŝi−si||
2
2 (3)

L=L1st+αL2st+βLreg (4)

L1st makes the embedding vectors corresponding to the two
adjacent nodes in the graph close in the hidden space. Lreg is
a regularization constraint, α is a parameter that controls the
first- proximity loss, and β is a parameter that controls the
regularization constraint. After SDNE, each node gets its own
vector representation in the hidden space. Assuming that the
matrix yg is the result linked to ICD-9 of SDNE, which ∈ R

lg×dg .
Where lg denotes the number of ICD-9 and dg denotes the
dimensions of each node.
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FIGURE 3 | The overview of G_Coder.

Attentional Matching
Human coders usually look for the most critical part of the
medical record (Such as symptoms, complications, etc.) to
determine the final coding result. In this task, we need to
refine the text that most relevant to the ICD information
and give higher weight. For the above reasons, we apply
the attention mechanism. A benefit is that it selects the
segments from the text that are most relevant to each
predicted label. The specific algorithm details are shown in
Table 2. It obtained the clinical text representation vector
H′ through preprocessing and Multi-CNN, and at the same
time obtained the ICD coded representation yg using the
knowledge graph embedding results. A linear transformation
was performed on the code representation to obtain the final
code representation D, which has the same dimensions as
the number of codes. The text representation H′ and label
representation D are used to calculate the weight ai of the
relationship between each label and each segment of the text.
Finally, the text H′ and weight ai are used to weight the

TABLE 2 | The algorithm details of attentional matching.

Algorithm1: Attentional matching

For each H′ from Multi-CNN:

1. Calculate label representation vector D;

D= (Wgyg+b)

2.The ai Measures how informative each n-gram is for the i-th label.;

ai=SoftMax
(

H′TDi

)

,i=1,2,3 . . .,lg

3. Calculate the weighted average vi of the rows in H′ forming a vector

representation of the clinic text for the i-th label;

vi= aiH
′

average of each part of the text to obtain the final clinical text
representation vi.

The results in Table 2 can be summarized as follows:

A=SoftMax
(

H
′T
Wgyg

)

,A = [a1,a2,. . .,alg] (5)

V=AH
′

,A= [v1,v2,. . .,vlg] (6)
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TABLE 3 | The algorithm details of Adversarial Learning.

Algorithm 2: Adversarial learning

For each X in training samples:

1. Calculate the forward loss of X and get the gradient g by back propagation;

g=∇XL(θ ,X,Y )

2. Calculate radv according to the gradient of the embedding matrix X and add it

to the current embedding, which is equivalent to X+radv ;

radv=ǫ•g/| |g| |2

Xadv=X+radv

3. Calculate the forward loss of Xadv , backpropagate to obtain the gradient of the

confrontation, and add to the gradient of step 1;

4. Restore embedding to the value at step 1;

5. Update the parameters according to the gradient of step 3.

Where SoftMax (x) =
exp(xi)

∑

i exp(xi)
, and exp is an exponential

function with natural constant e as a base. The matrix Wg ∈

R
dg×lg is the weight parameter. And A denotes attention weights

for each pair of an ICD code and the text. The letter V ∈ R
lg×lg

denotes the output of the attention. The concrete example can be
found in Table 7.

Adversarial Learning
We apply FGM (fast gradient method) to reconcile the different
writing styles of doctors and increase training samples (Miyato
et al., 2017). The basic idea is: The writing of medical records
follows the writing standards, but also contains different writing
styles. Adversarial learning weakens the influence of writing style.
The purpose of adversarial training is that the model will work
steadily even if there are large differences in doctor writing
styles. FGM uses a first-order Taylor expansion on the adversarial
objective function to approximate to maximize the error output
by the model, which is equivalent to using a single-step gradient
descent method with a step size of ǫ to find the adversarial
samples. The specific algorithm details are shown in Table 3. It
calculates the gradient g of the clinic text embedding X after
forward propagation and then back propagation. The gradient is
used to calculate the perturbation radv added to X. After such a
process, Xadv is an automatically generated adversarial sample. It
uses the adversarial samples to calculate together with the original
samples, increasing the number of samples, while mimicking the
writing style of different doctors.

The goals of adversarial learning are as follows:

min
θ

E (X,Y)∼D[ max
radvεR

(L(θ ,Xadv,Y))] (7)

The formula (7) is divided into two parts, one is the
maximization of the internal loss function, and the other is the
minimization of the external risk. In the internal max, L is the
defined loss function, D is the perturbation of input samples,
and R is the space for a perturbation. The goal of adversarial
learning is to find the amount of perturbation that makes the
most judgment errors. For the above attacks, the most robust
model parameters are found. After further optimizing the model
parameters, the expected value of the entire data distribution is
still minimal.

TABLE 4 | The hyperparameter settings of the experiment.

Hyperparameter Value

d 100

dg 128

df 50

lr 0.001

dp 0.4

λ 0.00001

Filters size {4,5,6}

Output Layer
We compute a probability for label vector Ŷ ∈ R

lg using full
connection layer and a sigmoid transformation by the output of
attention representation V :

Ŷ=σ (WoV) (8)

Where Wo ∈ R
lg×lg is learnable weights of output layer and

σ (x) = 1
1+exp(−x)

. The whole learning process minimizes the

binary cross-entropy loss (9) of prediction probability Ŷi and the
target Yi ∈ (0, 1). The label i is selected when Ŷi is >0.5.

L(θ ,X,Y) =−

lg
∑

i=1

Yi log
(

Ŷi

)

+ (1−Yi) log
(

1−Ŷi

)

+λ||γ ||22 (9)

Where X denotes the input word sequence, λ is the L2
regularization hyperparameter. And θ denotes all the parameters.
We utilize the back-propagation algorithm and Adam optimizer
(Kingma and Ba, 2014) to train the model.

EXPERIMENTS

Experimental Settings
Amajority of codes are only assigned to too few medical records.
Since the top 50 common ICD-9 codes covered 93.6% of the
all dataset, we pick 50 most frequent codes to carry out the
experiment while considering that our method can readily be
extended to more codes as long as sufficient training data is
available. The experimental dataset using top-50 codes has a
total of 46,552 discharge summaries, which has 43,000 discharge
summaries for training, 1,800 for validation, and 1,752 for the
test. In this experiment, the settings are shown in Table 4. The
token dimension d is 100; the knowledge graph embedding size
dg is 128; the out-channel size df of a filter in the Multi-CNN
layer is 50; the learning rate lr is 0.001; the L2 regularization
hyperparameter λ is 0.00001; the max length of each medical
record is 1,800; the mini-batch size is 16 and the dropout rate dp
is 0.4. We used three filters and the kernel size of filters is 4,5,6.

Evaluation Metrics
This task can be regarded as a multi-label classification problem.
Therefore, we evaluate the method by micro − F1 and AUC
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TABLE 5 | The experimental results of the top-50 codes.

Method micro-F1 micro-AUC P@5

CNN-Att 0.625 0.907 0.620

C-LSTM-Att Shi et al. (2017) 0.532 0.900 -

CAML Mullenbach et al. (2018) 0.614 0.909 0.609

DR-CAML Mullenbach et al. (2018) 0.633 0.916 0.618

MultiResCNN Li and Yu (2019) 0.673 0.928 0.641

No-knowledge-graph 0.670 0.923 0.637

No-adversarial-learning 0.681 0.929 0.647

G_Coder 0.692 0.933 0.653

Bold represent the current model result.

(Area under the curve). The micro − F1 is harmonic mean that
calculated from Precision and Recall. All evaluation matrixes are
calculated as follows:

Precision=

∑n
i=1 TPi

∑n
i=1 TPi+

∑n
i=1 FPi

(10)

Recall=

∑n
i=1 TPi

∑n
i=1 TPi+

∑n
i=1 FNi

(11)

micro−F1=
2× Recall× Precision

Precision+Recall
(12)

In these formulas, TPi is the set of ground truth labels of each
class, n is the number of samples, FNi is the number of positive
classes predicted as negative classes and FPi is the number of
negative classes predicted as positive classes. AUC is mainly used
to evaluate the ranking ability of the current model. The higher
the AUC, the better the ranking ability of the model. When the
prediction probability values of all positive samples are higher
than the negative samples, the AUC of the model is 1.

Results
Model Comparison
This section illustrates the performance of our approach. The
experimental results of the top-50 codes show in Table 5, which
show that our work has improved on previous work. CNN-
Att is the baseline model for this experiment, which uses
CNN to encode text. MultiResCNN has achieved the state-of-
the-art results on the MIMIC-III datasets using unstructured
text. Besides, their work is based on CAML and the model is
improved. It mainly consists of a multi-filter convolutional layer
and residual convolutional layer for multi-label classification.
C-LSTM-Att applied LSTM-based language models to encode
clinical notes and ICD codes and applied an attention method
to solve the mismatch between clinical notes and codes.
They focused on predicting the 50 codes that have the top
frequencies for the medical records in the MIMIC-III dataset just
like us.

Comparing our model with existing work for automatic ICD
coding. As shown in Table 5, the conclusions are as follow:

TABLE 6 | The result of universality study.

Method micro-F1 micro-AUC P@5

CNN-Att 0.625 0.907 0.620

CNN-Att- graph 0.651 0.920 0.619

Bold represent the best results.

1) G_Coder obtains better results in the micro-AUC, micro-
F1, and P@5. Compared with the state-of-the-art model
MultiResCNN, G_Coder improves the micro-AUC by 0.005,
the micro-F1 by 0.019, the P@5 by 0.012. P@5 measures the
ability of the method to return the top 5 high-confidence
subsets of codes. Our approach achieves relatively high
precision of the five most confident predictions, on average
3.3 are correct.

2) CNN-based models are more suitable for this task. LSTM
pay more attention to capture long sequence features,
and cannot extract important local features from noise
text. Simultaneously, the length of the medical record text
makes the recurrent neural network have extremely high
requirements for machine performance in this task. In
contrast, it can be seen from the model construction that
CNN can better extract long text features, and multilayer
CNN with different convolution kernels can better capture
local correlation.

3) The attention mechanism is essential. Each model utilizes
the attention mechanism, which shows that the mechanism
accurately highlights the information related to ICD in the
text. The following content will prove the value of the
knowledge graph and adversarial learning in this task.

Ablation Study
To gain more insight, the ablation study applied to verify
the effectiveness of the adversarial learning and knowledge
graph. To evaluate each module, we perform single variable
experiments. The comparisons of the No-one module
with the full model are given in Table 6. We remove
one module from the full model without changing other
modules and denote such a baseline by No-X. To evaluate
them, we compared with the two configurations: (1) No-
knowledge-graph, which removes the graph presentations
and directly uses a randomly initialized vector as final
representations of codes information; (2) No- adversarial-
learning, which removes the adversarial learning form
full model.

It can see from Table 6 that our full model obtains better
results in all evaluation matrix. Compared with the full model,
No-knowledge-graph dropped the micro-AUC from 0.933 to
0.923, the micro-F1 from 0.692 to 0.670, the P@5 from
0.653 to 0.637. At the same time, No-adversarial-learning
dropped the micro-AUC from 0.933 to 0.929, the micro-
F1 from 0.692 to 0.681, the P@5 from 0.653 to 0.647. The
above results show that the knowledge graph-based method
can add clinical experience to make the results better. And
adversarial learning generates adversarial samples through
perturbation factors to enhance the generalization ability
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TABLE 7 | Presentation of clinical text fragments and their corresponding ICD

codes (The bold part indicates the highest weight).

ICD-9 codes and description The highest weighted part

584.9 Acute renal failure, unspecified …support with acute renal failure

secondary to the prolong hypertension…

410.71 Acute myocardial infarction,

subendocardial infarction, initial

episode of care

…the patient experienced right

ventricular failure and went back on

bypass with drug manipulations…

414.01 Coronary atherosclerosis of

native coronary artery

…with a right heart bypass cannulation in

place. The patient was profoundly

hypoxic and acidotic. …

428.0 Congestive heart failure,

unspecified

…He also had lactic acidosis and

congestive heart failure. The

hypernatremia. …

TABLE 8 | The result of the evaluation of interpretability.

Type Total Correct Accuracy

High weight (weight ≥ 0.8) 16 10 0.625

Others (weight < 0.8) 84 60 0.714

of the model on the test set. From the results we have
obtained, one can conclude that the combination of data-driven
and medical knowledge can enhance the precision of ICD
automatic coding.

Universality Study
To prove that the knowledge graph is universal in this task. We
design the experiment, which is to add a knowledge graph to the
basic baseline model and compare it with the baseline model.

According to the experimental results inTable 6, it can be seen
that the knowledge graph not only performs well in G_Coder but
also can be extended to other model structures. The knowledge
graph improves the micro-F1 of the baseline model by 2.6%. This
shows that the knowledge graph is universal and can be flexibly
grafted into other model structures.

Evaluation of Interpretability
We use two methods to verify the interpretability. The first is an
intuitive method that attention extracts keywords and displays
the correlation between the code and the evidence. Examples can
be found in Table 7. It can be seen from which words the basis
of coding comes from. Taking 584.9 as an example, there is an
information overlap between “acute renewal failure, unspecified”
and “with acute renewal failure secondary” in clinical texts.

The second is a quantitative method where doctors judge
the results of attention distribution. A clinical medical record
was randomly selected, and segments were extracted based on
the results of its attention. We select 5-words in this setting
to emulate a span of attention over words likely to be given
by a human reader. Since the segment may overlap, the most
important 5-words were extracted according to attention weight.
As can be seen from Table 8, the score is divided into two stages,
one is high weight, that is >0.8, and the other is <0.8. In a total
of 100 segments, there are 16 with a weight >0.8 and 84 with

a weight <0.8. According to the evaluation results of human
coders, 10 of the high weights are correct, and the remaining
correct number is 60.

CONCLUSIONS AND DISCUSSIONS

Conclusions
Inspired by the structure of graphs that can model the
relationships and knowledge between all things in the world,
we think the graph structure can connect the parts of the
data in this task and create a knowledge graph using medical-
related data from the Freebase database. At the same time,
the development of deep learning has also allowed further
development of natural language processing such as automatic
coding and text classification. In this paper, we propose a new
explainable method for automatic ICD coding. The result of
the micro-F1 score of 50 most frequent codes is 69.2%, which
outperforms all the other models especially when raw clinical text
data is used as input features to the prediction models.

The experimental evaluation of the MIMIC-III dataset shows
the following points. First, we combined deep learning with
knowledge graphs in ICD coding tasks. The medical knowledge
graph supervises the coding process as a teacher. At the same
time, we apply the SDNE algorithm to encode each entity of
the knowledge graph and link it to the ICD-9 code. The Multi-
CNN algorithm is utilized to encode long text information
of MIMIC-III data. In the attention mechanism, we combine
the two mentioned above to identify the segments of text that
are most relevant to each ICD-9 code. Finally, we generate
adversarial samples through adversarial training and send the
samples to the training along with the original samples. It can
weaken the influence of writing style and make model more
stable. Moreover, in the ablation study and universality study,
we use the single variable rule to verify the importance of
adversarial learning and knowledge graph. The results prove
that the knowledge graph can be flexibly grafted into the model
structure to help understand the terminology. Two methods
are used to verify the interpretability of the method. It is
confirmed that this method is based on the important basis
in the clinical text for ICD coding. G_Coder has a higher
accuracy rate than the othermethod. And before the coder works,
G_Coder can perform ICD pre-selection to save time for whole
encoding work.

Discussions
The major limitation of this work is that it does not perform
well on infrequent codes. To achieve fully automatic coding,
infrequent coding has to be considered. And we hold that
the method can readily be extended to more codes as long
as sufficient training data is available. In addition, the new
ICD version should also be considered, such as ICD10, ICD11,
etc. ICD classification is a disease classification directory with
hierarchical relationship. The structure of ICD is also a direction
worth considering.
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