
ORIGINAL RESEARCH
published: 21 August 2020

doi: 10.3389/fbioe.2020.00915

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 August 2020 | Volume 8 | Article 915

Edited by:

Maizirwan Mel,

International Islamic University

Malaysia, Malaysia

Reviewed by:

Lars Regestein,

Leibniz Institute for Natural Product

Research and Infection Biology,

Germany

Azlin Suhaida Azmi,

International Islamic University

Malaysia, Malaysia

*Correspondence:

Eva Balsa-Canto

ebalsa@iim.csic.es

Specialty section:

This article was submitted to

Bioprocess Engineering,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 08 April 2020

Accepted: 15 July 2020

Published: 21 August 2020

Citation:

Balsa-Canto E, Alonso-del-Real J and

Querol A (2020) Temperature Shapes

Ecological Dynamics in Mixed Culture

Fermentations Driven by Two Species

of the Saccharomyces Genus.

Front. Bioeng. Biotechnol. 8:915.

doi: 10.3389/fbioe.2020.00915

Temperature Shapes Ecological
Dynamics in Mixed Culture
Fermentations Driven by Two Species
of the Saccharomyces Genus
Eva Balsa-Canto 1*, Javier Alonso-del-Real 2 and Amparo Querol 2

1 (Bio)process Engineering Group, IIM-CSIC, Vigo, Spain, 2Grupo de Biología de Sistemas en Levaduras de Interés

Biotecnológico, IATA-CSIC, Valencia, Spain

Mixed culture wine fermentations combining species within the Saccharomyces genus

have the potential to produce new market tailored wines. They may also contribute to

alleviating the effects of climate change in winemaking. Species, such as S. kudriavzevii,

show good fermentative properties at low temperatures and produce wines with lower

alcohol content, higher glycerol amounts and good aroma. However, the design of

mixed culture fermentations combining S. cerevisiae and S. kudriavzevii species requires

investigating their ecological interactions under cold temperature regimes. Here, we

derived the first ecological model to predict individual and mixed yeast dynamics in

cold fermentations. The optimal model combines the Gilpin-Ayala modification to the

Lotka-Volterra competitive model with saturable competition and secondary models that

account for the role of temperature. The nullcline analysis of the proposedmodel revealed

how temperature shapes ecological dynamics inmixed co-inoculated cold fermentations.

For this particular medium and species, successful mixed cultures can be achieved only

at specific temperature ranges or by sequential inoculation. The proposed ecological

model can be calibrated for different species and provide valuable insights into the

functioning of alternative mixed wine fermentations.

Keywords: mixed culture fermentations, Saccharomyces, ecological modeling, Lotka-Volterra, Gilpin-Ayala

1. INTRODUCTION

Wine fermentation is a complicated ecological and biochemical process in which a wide variety
of yeasts produce ethanol and contribute to the sensory attributes of the final product. Still, the
alcohol-tolerant strains of Saccharomyces cerevisiae ever dominate the late stages of spontaneous
fermentations (Bauer and Pretorius, 2000; Cray et al., 2013). S. cerevisiae strains show strong
competitive fitness when sharing the fermentative environments with other Saccharomyces and
non-Saccharomyces yeasts, in part thanks to its ability to consume sugars in the presence of
oxygen (Crabtree effect). This property offers a competitive advantage over other non-cerevisiae
or non-Saccharomyces species which are displaced sooner or later during the process (Holm et al.,
2001; Arroyo-López et al., 2011; Alonso-del-Real et al., 2017).

The output of spontaneous fermentations depends on the amounts and variety of yeasts and
bacteria present in the must, grape variety and maturity and process conditions (e.g., temperature,
aeration, etc.). However, the variability, mostly in the must flora and grape chemical properties,
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results in severe difficulties to predict and reproduce wine
properties. The use of starters has dramatically improved
the reliability of the process and the quality of wines
(Pretorious, 2000).

S. cerevisiae yeast starters are universally preferred to initiate
fermentation processes. However, the new challenges faced by
the wine industry such as those related to climate change, or the
consumers’ demands for lower-alcohol wines, call for the use of
alternative starting strategies (Goold et al., 2017; Querol et al.,
2018).

Recent evidence suggests that mixed culture processes
combining S. cerevisiae with non-conventional Saccharomyces
species have the potential to produce new market tailored wines
(Fleet, 2008; Padilla et al., 2017). Besides, cryotolerant non-
cerevisiae species may contribute to alleviating the effects of
climate change in winemaking (Pérez-Torrado et al., 2018).
Species such as S. uvarum or S. kudriavzevii show good
fermentative properties at low temperatures and produce wines
with lower alcohol content, higher glycerol amounts and good
aromatic profiles (Gangl et al., 2009; Gamero et al., 2013; Alonso-
del-Real et al., 2017). What remains unclear is what are the
fermentation conditions, i.e., temperature and initial inoculum,
so that S. cerevisiae does not exclude other species in mixed
co-inoculated cultures.

The primary aim of this work is to address this question
through a model-based approach for the particular case of
mixed culture fermentations involving S. cerevisiae and S.
kudriavzevii strains. The underlying idea is to obtain an
ecological model whose parameters vary with the temperature
to recover the dynamics of both cells’ populations under cold to
mild temperature regimes.

In ecology, the classical Lotka-Volterra model (LV, Volterra,
1926; Lotka, 1932) considers that the various species compete for
resources, and sums up the role of intraspecific -within the same
species- and interspecific - between different species- competitive
effects. Both effects are considered to depend linearly on the
cellular density. The LV model has been largely used to model
microbial interactions in various environments (Mounier et al.,
2008; Stein et al., 2013; Berry and Widder, 2014; Cadavez et al.,
2019).

Alternatives to the LV model have become increasingly
abundant in the literature (see, for example, the recent work by
Gavina et al., 2018 and the works cited therein). Generalized
versions of the LV model allow for more flexibility by including
non-linear intraspecific and interspecific competition terms. The
underlying idea is to account for higher-order interactions.
Gilpin and Ayala (1973) proposed a non-linear intraspecific
competition, and others added non-linear decay terms (see
the recent work by Gavina et al., 2018 for various examples).
Frequency-dependent or saturable competition alternatives
account for the aggregated effects of the production of toxic
compounds, crowding or cross-feeding (MacLean and Gudelj,
2006; Gore and van Oudenaarden, 2009; Ribeck and Lenski,
2015).

Lately, we have shown that measuring mixed microbial
density, even if the number of sampling times is significant, is not

enough to fully identify models that predict the ecology of mixed
co-inoculated cultures (Balsa-Canto et al., 2020). Therefore, in
this work, we combine individual growth time-series data in
single and mixed cultures obtained at cold temperatures and a
systematic model building approach to defining the ecological
model that offers the best compromise between complexity,
goodness-of-fit and cross-validation. The derived model is the
first, to the authors’ knowledge, to simultaneously recover single
and mixed yeast dynamics in cold fermentations. Its nullclines
offer valuable information concerning the role of temperature in
the coexistence of both species.

2. MATERIALS AND METHODS

2.1. Multi-Experiment Design
2.1.1. Synthetic Must Fermentations
We chose a commercial strain, T73 (Lalvin T73 from Lallemand
Montreal, Canada), as our wine S. cerevisiae representative and S.
kudriavzevii strain CR85, a natural isolate from oak tree bark in
Agudo, Ciudad Real, Spain. From now on, we regard strains as Sc
and Sk, respectively.

Fermentations were performed in 3x or 6x replicates in 250
mL flasks that contained 200 mL of synthetic must (SM), which
is frequently used in microvinification experiments (Rossignol
et al., 2003), with 100 g/L of glucose and 100 g/L of fructose.

To assess the relative growth of S. cerevisiae and S. kudriavzevii
species under winemaking conditions, we performed mixed
culture experiments in which we measured the relative amount
of both strains. As controls, we monitored the growth of each
strain in mono-cultures under the same conditions as the mixed
culture experiments. Overnight precultures were grown in yeast
extract–peptone–dextrose (YPD) medium at 25◦C. Afterwards
must was inoculated with the corresponding yeast strain to reach
an initial concentration of 106 cells/mL, and was incubated at a
fixed temperature (8, 12, 20, or 25◦C) with agitation at 100 rpm
during fermentation.

Cell samples were collected at several time points during
fermentation and kept at −20◦C for the subsequent total DNA
isolation, used for the quantitative polymerase chain reaction
(qPCR) analyses, as described below. Cell counting was carried
out in a Neubauer chamber to determine cell density at every
sampling point. Growth curves were obtained by considering cell
density and the proportion of competing strains given by the
qPCR data.

Müller valves were used to monitor fermentation stage
through weight loss until it reached a constant weight when it
was considered to be over.

2.1.2. qPCR Assays
To obtain the relative concentration of both strains in each
biological replicate, we followed a qPCR based strategy as
detailed in Alonso-del-Real et al. (2017). We designed species-
specific primers for S. cerevisiae and S. kudriavzevii on a region
corresponding to a fragment of the gene BUD3 for relative
quantification of both yeasts.
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2.2. Ecological Primary Models
We defined three primary models as candidates to describe the
ecology of the mixed cultures, i.e., to predict the individual
density in a mixed culture. The classical Lotka-Volterra
model underlies all candidate models (see Figure 1 for exact
formulations). Lotka (1932) and Volterra (1926) proposed a
widely known and used model to describe population dynamics
of species competing for common resources (e.g., nutrients)
(Murray, 2001). The model accounts for intraspecific and
interspecific competition. To do so, the model assumes logistic
growth of the species and considers that interspecific interactions
are linear, i.e., that a fraction of the competing species contributes
linearly to reduce growth rate. Gilpin and Ayala (1973) found out
that the classical Lotka-Volterra model could not describe those
cases in which intraspecific competence, or growth regulation, is
non-linear. Later, Thébault and Fontaine (2010) showed that the
influence of one species on another might lag in time or saturate
and proposed a non-linear interspecific interaction.

All these models can be embedded in the following
mathematical formulation:

dxi

dt
= G(xi, xj)

= µixi

(

1−

(

xi

Ki

)θi

− ai,jfc(xj)

)

i, j = Sc, Sk i 6= j (1)

where i can be either Saccharomyces cerevisiae (Sc) or
Saccharomyces kudriavzevii (Sk) and j will be either Sk or Sc
with i 6= j; xi corresponds to the cell density for both species;
µi corresponds to the specific growth rate; Ki is the so-called
carrying capacity for species i; θi ≥ 1 controls the degree of
non-linearity in intraspecific growth regulation. Coefficients ai,j
measure the competitive strength of species j on i. If ai,j > 0
species or strains are said to be competing. fc(xj) describes the
interspecific competition, which depends linearly on xj for the
case of the Lotka-Voterra (LV) and Gilpin-Ayala (GA) models
while Holling type II function is used to describe saturable or
delayed interactions (SGA). Note that if ai,j = 0 and aj,i =

0, Equation (1) are transformed into the Richards model for
single cultures.

2.3. Lag-Phase Description
Previous models can be modified to include the role of a certain
inhibition before the exponential phase, i.e., the so called lag-
phase, li(T) which may, in principle, vary with the environment.
Equations (1) would read:

dxi

dt
= li(T)G(xi, xj) (2)

Following Baranyi and Roberts (1994) we defined the lag-phase
as follows:

li =
li,0(T)

li,0(T)+ (1− li,0(T)e(−µi(T)t))
0 ≤ li(T) ≤ 1 (3)

2.4. Secondary Models
Primary models (Equation 1) determine the magnitude of the
responses of interest, such as maximum specific growth rate,
lag phase or the time to reach a specified level. Nevertheless,
µi, Ki and ai,j parameters may depend on the environment, i.e.,
the temperature in this work. Secondary models describe this
dependence (McMeekin et al., 2002).

Taking into account previous data on the dependency of µ

with the temperature (Salvadó et al., 2011), we proposed two
secondary models with a maximum of three parameters each:
the Ratkowsky or squared-root model (SQRT) Ratkowsky et al.
(1983) and the well-known Arrhenius equation (A):

µSQRT :µi(T) = µ2
i,0(T − µi,1)

2 (4)

µA :µi(T) = µi,0 + µi,1e
(−

µi,2
T ) (5)

Similarly for the carrying capacity and the competition
parameters we define:

Ki,SQRT :Ki(T) = K2
i,0(T − Ki,1)

2 (6)

Ki,A :Ki(T) = Ki,0 + Ki,1e
(−

Ki,2
T ) (7)

and:

ai,j,SQRT : ai,j(T) = a2i,j,0(T − ai,j,1)
2 (8)

ai, j,A : ai,j(T) = ai,j,0 + ai,j,1e
(−

ai,j,2
T ) (9)

Note that the Arrhenius equations can also explain the case in
which the biological parameter is constant with the temperature
(with ai,j,1 = 0).

Note that subscripts 0, 1, and 2 identify the parameters
required to define the secondary models. Two parameters
with subscripts 0 and 1 are required for the Ratkowski
temperature dependency while three subscripts 0, 1, and 2
identify the three parameters required to define the Arrhenius
temperature dependency.

2.5. Inferring Ecological Interactions and
the Role of the Temperature in One Step
We used data fitting to infer the best combination of primary
and secondary models. We considered three cases, each
corresponding to one of the primary models, namely LV, GA,
and SGA. At the same time, we defined a mixed integer-real
formulation to select the best secondarymodel automatically. For
that purpose, we redefined the biological parameters as follows:

µi(T) = wµ,iµSQRT,i + (1− wµ,i)µA,i i = Sc, Sk (10)

Ki(T) = wK,iKSQRT,i + (1− wK,i)KA,i i = Sc, Sk (11)

ai,j(T) = wa,i,jaSQRT,i,j + (1− wa,i,j)aA,i,j i, j = Sc, Sk (12)

in such a way that wµ,i, wK,i, and wa,i,j are binary parameters
which take the value 1 for SQRT and 0 for Arrhenius temperature
dependence. Data fitting aims at computing the best combination

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 August 2020 | Volume 8 | Article 915

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Balsa-Canto et al. Temperature Shapes Ecology of Fermentations

FIGURE 1 | Formulation of candidate models and model selection. (A) presents the different mechanisms included in the models, namely, growth, lag-phase, intra-

and interspecific competition. Different definitions for intra- and interspecific competition result in different candidate models: Lotka-Volterra (LV), Gilpin-Ayala (GA), and

Gilpin-Ayala with saturable competition (SGA). (B) presents the comparison of the best-fitted models. SGA is the best model; its fit to the multi-experiment data set

results in better cAIC and the minimum training and validation errors in cross-validation. (C) shows the worst and best fit to the data for the multi-experiment model

calibration.
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of binary and real parameters, providing the best secondary
model plus the corresponding parameters.

The optimal parameters for the candidate models correspond
to those that maximize the likelihood of the data, e.g., those that
minimize the following log-likelihood function:

L =

nexp
∑

k=1

nobs
∑

j=1

nst
∑

i=1

(

xm
k,j,i

− xd
k,j,i

σk,j,i

)2

, (13)

where nexp corresponds to the number of experiments (single
and mixed cultures); nobs corresponds to the number of observed
quantities, i.e., xSc&xSk in single and mixed culture experiments
and nst corresponds to the number of sampling times per
experiment. xm regards the model predictions and xd the
measured data. σ 2

k,j,i
regards the data noise variance as computed

from the experimental replicates.
We selected the best model attending to the Akaike’s

information criterion (AIC) and the quality in cross-validation.
The AIC intends to balance parsimony and relative information
loss across candidate models, penalizing the number of
parameters to avoid over-fitting, its value for each candidate
modelM reads:

AICM = L(p∗)+ 2np + 2np(np + 1)/(nd − np − 1) (14)

being p∗ the optimum value of model parameters as found in
parameter estimation; np the number of parameters in the model
M and nd the number of data. The minimumAIC value (AICmin)
was used to re-scale the Akaike’s information criterion. The re-
scaled value 1M =AICM-AICmin was used to assess the relative
merit of the model: models such as 1M ≤ 2 have substantial
support, models for which 4 ≤ 1M ≤ 7 have considerably less
support and models with 1M > 10 have no support Burnham
and Anderson (2004).

We also compared models by cross-validation. For each trial,
we split the data into two datasets—the “training” dataset and
the “validation” dataset. We defined the “training” dataset by
leaving one experiment out at each iteration (the “validation”
experiment). In this way, we solved the data fitting problem using
13 experiments and used the optimal parameters to assess the
predictive abilities of the model with the “validation” experiment.
We ran all trials for all candidate models and computed the
normalized mean squared error for training and validation. The
best model was the one reporting the best compromise between
training and validation over all trials.

2.6. Numerical Methods
Data fitting and model selection problems were solved using
the numerical approaches available in AMIGO2 toolbox (Balsa-
Canto et al., 2016). Specifically, CVODES (Hindmarsh et al.,
2005) was used to solve the model while the enhanced
Scatter Search method (eSS, Egea et al., 2009) was used to
optimize parameters.

3. RESULTS

3.1. A Gilpin-Ayala Model With Saturable
Competition Best Describes Mixed Culture
Dynamics
Data-fitting results reveal that the Gilpin-Ayala model with
and without saturable competition perform better than the
Lotka-Volterra model. Figure 1B summarizes the statistics for
the three primary models showing a significant difference
in the goodness-of-fit between the LV and the GA models
(1cAIC > 18), thus signifying the critical role of the non-linear
intraspecific competence.

The minimum AICc value corresponds to the SGA model.
Still, the re-scaled AIC for the GA model is around 4; thus
indicating that SGA and GA models offer in practice the same
quality. Besides, both models perform well at cross-validation,
with validation errors around the 6% (Figure 1B). Nevertheless,
the SGA outcompetes the GAmodel for all cross-validation trials
but for the one in which we omit the single culture of S. cerevisiae
at T = 25◦C.

Figure 1C presents the worst and the bests fits. The quality
of fits is visually good; the R2 values range from 0.881 for the
worst case, corresponding to the single culture of Sc at T = 8◦C,
and 0.990 for the best case, corresponding to a mixed culture
at T = 25◦C. The R2 value for the simultaneous fitting of all
experiments, single and mixed, is 0.973.

Table 1 presents the optimal parameter values for the SGA
model plus their associated uncertainty as computed through
cross-validation. As can be seen from the table, the maximum
relative uncertainty is around 16.0%. Figure S1 shows the
uncertainty associated with the predictions.

3.2. Temperature Modulates the Specific
Growth Rate, the Maximum Yield, and the
Lag-Phase of the Individual Cells
The specific growth rate increases with the temperature for both
species (see Figure 2A) and follows the Arrhenius equation for
Sc and SQRT secondary model for Sk. Figure 2A presents a
comparison of the specific growth rate for both species showing
how only at low temperatures (≤ 12◦C) the value for Sk is
higher than that for Sc. From Figure 2A, it is apparent that the
temperature has a significant effect on the specific growth rate,
particularly for Sc. For the case of Sk the specific growth rates
increases from 0.023 to 0.222 (around 10 times) while for Sc, it
increases from 0.018 to 0.415 within the range of temperatures
(more than 20 times).

The carrying capacities, KSc & KSk, which coincide with the
final cell counts in single cultures, increase with the temperature
following an Arrhenius dependency for both species (Table 1,
Figure 2B). The carrying capacity for Sc is above the carrying
capacity for Sk independently of the temperature. Interestingly
KSk increases more rapidly with the temperature than KSc (KSc

increases a 68% from 8 to 25◦CwhileKSk increases an 81%) while
the opposite behavior was observed with the specific growth rates.

Figure 2C presents the biomass yield for single and mixed
co-inoculated (50/50) cultures after 10 days (standard duration
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FIGURE 2 | Comparison of strain behavior in single and mixed cultures using the best model. (A) presents the specific growth rate µi (T ) as a function of the

temperature for both strains. (B) shows the carrying capacity as a function of the temperature (Ki (T )). (C) shows the biomass yield after 10 days in mixed

co-inoculated (50/50) fermentations. (D) shows the effect of the lag-phase. In the case of S. cerevisiae, the time required to achieve the maximum specific growth rate

depends on the temperature. The lag-phase is significantly longer at lower temperatures. (E) presents the relative decrease of the mean per-capita growth rate (over

time) in mixed culture. The per-capita growth rate for Sk in mixed cultures (Rm,Sk ) is up to a 15.4% lower than its value in single culture (Rs,Sk ). For the case of Sc, the

effect of temperature on the per-capita growth rate is higher than the presence of another cell. (F) presents the 2x and 10x times for single and mixed cultures. (G)

shows the relative increase in 2x and 10x times in mixed culture. The presence of Sc has a significant effect on the 10x time for Sk. Figures were obtained for a

2× 106(CFU/ml), 50% of each species (50/50).

of a cold mixed fermentation). What stands out in the figure
is that the total biomass yield is higher in mixed cultures than
in single cultures for temperatures lower than around 20◦C.
The final amount of Sk decreases with the temperature. On the

contrary, the final amount of Sc increases with temperature. Its
value is, in general, being lower than in single culture but at high
temperatures in which xSc(tf ) ≈ KSc. The yield of Sc in mixed
cultures, is higher than the yield of Sk, for T > 10◦C.
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TABLE 1 | Best model parameter values and associated uncertainty.

Species Biological Secondary Model Optimal % Uncertainty

parameter model parameter value

S. cerevisiae µSc(T ) Arrhenius µSc,0 1.39× 10−2 15.2

µSc,1 3.68 7.03

µSc,2 5.54× 101 2.30

KSc(T ) Arrhenius KSc,0 8.02 0.11

KSc,1 1.70× 101 13.4

KSc,2 1.08× 102 3.92

lSc - lSc,0 3.64× 10−1 16.4

θSc - θSc 5.55× 10−1 7.59

aSc,Sk SQRT aSc,Sk,0 4.63× 10−3 13.1

aSc,Sk,1 0.00 0.00

γSk - γSk 8.63 0.84

S. kudriavzevii µSk (T ) SQRT µSc,0 1.89× 10−2 1.62

µSc,1 0.00 0.00

KSk (T ) Arrhenius KSk,0 7.94 0.2

KSk,1 4.96× 101 5.38

KSk,2 1.32× 102 1.65

lSk - lSk,0 1.00 0.00

θSk - θSk 7.07× 10−1 8.38

aSk,Sc cte aSk,Sc,0 5.99 4.27

γSc - γSc 8.92 0.27

The table reports the optimal parameter values for the best model plus their associated

uncertainty as computed through cross-validation. For those biological parameters that

depend on the temperature, the best secondary model is reported.

It should be noted that cold temperatures induce a lag phase in
S. cerevisiae (see Figure 2D). Lag parameters (lSc,0 and lSk,0) were
considered for both strains during the parameter estimation. For
all runs, the parameter for Sk converged to its maximum value
1. Thus no lag effect is obtained for Sk. However, the lag phase
parameter value for Sc is 0.364 (see Table 1) inducing a delay
in growth which is being reduced as the temperature increases.
Figure 2D shows this effect: the specific growth rate is only
achieved after around 490h at very low temperatures while it is
rapidly achieved (around 21 h) at T = 25◦C. Despite the lag
phase, Scmaximum growth rate (max(µi ·li(t))) is higher than the
maximum Sk growth rate for T >= 12.16◦C in single cultures.

3.3. S. cerevisiae Accelerates Its Growth in
the Presence of S. kudriavzevii
The per-capita growth rate is defined as R(t) = 1

xi
dxi
dt
. We

computed its value for each strain in single (Rs(t)) and mixed
culture (Rm(t)). Figures S2A–D present Rs(t) and Rm(t) for
various temperature values. Sc per-capita growth rate increases
till a maximum value before decreasing to 0 which would
correspond to the stationary phase (xSc = KSc, in single cultures;
max(XSc) in mixed cultures). Sk per-capita growth rate starts at
its maximum at t = 0 and decays till the end of the process
for both single and mixed cultures. Note that in mixed cultures,
the per-capita growth rate becomes negative, indicating that the
population decays—the more negative the most important the

decay. Indeed, the simulation of the system dynamics reveals an
overshoot of Sk population followed by a collapse till the final Sk
value is achieved (data shown in Figure S4).

The comparison of the per-capita growth rate in single
and mixed cultures (Rm(t) − Rs(t), Figures S2E,F) reveals that
Sk is slower in mixed cultures throughout the process and
independently of the temperature (Rm,Sk(t) − Rs,Sk(t) ≤ 0 in
t ∈ [0, tf ]). Note that this difference is ≤ 1% at the beginning
of the culture for all temperatures, indicating that the maximum
per-capita growth rate is not significantly affected by the presence
of another cell at early times. However, at higher temperatures,
the per-capita growth rate in mixed cultures is significantly lower
than in single cultures, this would correspond to the decay
(exclusion) of Sk (see Figure S2).

On the contrary, at some point during the process, Sc per-
capita growth rate in mixed cultures is higher than in single
cultures (Rm,Sc(t) − Rs,Sc(t) > 0). For example, at T = 25◦C
the per-capita growth rate from 28.3 h on, is higher for Sc in the
presence of Sk. The lower the temperature, the lower the effect,
but still this “acceleration” is observed at all tested temperatures.
It is also relevant that the growth rate difference is less than 7%
for all cases.

Figure 2E presents the relative difference in the mean over-
time per-capita growth rate as a function of temperature

(r1meanRi = 100 ×
mean(Rm,i(t))−mean(Rs,i(t))

max(Rs,i)
with t ∈

[0, 10 days]). The figure emphasizes that the impact of the
presence of Sc over Sk mean per-capita growth rate is higher
than the impact of Sk over Sc. Sk mean per-capita growth rate
decreases substantially: between a 6.4% at T = 8◦C a 15.2% at
T = 25◦C; while Sc mean per-capita growth rate decreases less
than a 5.4% within the temperature range.

We also used the model to compute the (first) population
doubling 2x time and 10x time for each species as a function
of the temperature in both single (ts2x,i and ts10x,i) and mixed
cultures (tm2x,i and tm10x,i). The doubling time regards the time
required to achieve Xi = 2 × Xi,0 and the 10x time regards the
time required to achieve Xi = 10×Xi,0. Remark that their values
are affected by the lag-phase and the presence of a second species
in mixed cultures. Results for Xi,0 = 1 × 106 CFU/ml are shown
in Figure 2F.

Doubling times decrease when the temperature increases
for both species, being values for Sc always larger than for
Sk. Doubling times for Sc and Sk differ significantly at low
temperatures. At 8◦C Sc requires 81.19 h to double population
while Sk requires only 32.47 h. Interestingly, doubling times
almost coincide for both species in the range [22 − 25]◦C;
being the values below 4 h. 10x times also decrease with the
temperature for both cells; however, 10x times for Sc are shorter
than those for Sk at higher temperatures. For example, at 25◦C,
ts10x,Sc = 8.58 h while ts10x,Sk = 11.14 h. Figure 3 shows
the ratio between 2x and 10x times for both cells in single and
mixed cultures. Results show that the ratio of doubling times is
pretty similar in single and mixed culture; and the ratio>1 for
all cases, indicating that Sc is slower in doubling its population
than Sk. Despite this result at early times of the process, for
temperatures above 16◦C, Sc is faster than Sk in multiplying
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FIGURE 3 | Characteristics of mixed cultures. (A) presents the projection of the model nullclines over the temperature and the final density of Sk; the black line shows

the intersection between the nullclines indicating the range of temperatures for which both cells coexist independently of the initial inoculation. Black and red squares

mark two different examples: Ex. 1 at T = 24.5◦C in which Sc excludes Sk and Ex.2 at T = 16◦C in which both strains coexist. (B) shows the model nullclines for the

two examples and the corresponding mixed culture dynamics. (C) presents the density in % for both cells in mixed culture after around 10 days, as a function of

temperature and considering two different co-inoculation conditions. The percentage of Sk exceeds that of Sc at cold temperatures. While the opposite behavior is

found for T > 12◦C. For T > 24◦C Sk is excluded. (D) presents an illustrative example of sequential inoculation at 25◦C showing how both species may coexist.

the initial population by 10. This difference is even higher in
mixed cultures.

To explore this in more detail, we also computed the increase
in the doubling and 10x times experienced by each species due

to the presence of the other (r1t2x,i = 100 ×
tm2x,i−ts2x,i

ts2x,i
and

r1t10x,i = 100×
tm10x,i−ts10x,i

ts10x,i
). Figure 2G presents the results. The

relative increase in doubling time is lower for Sc independently
of the temperature. Sk increases the doubling time in around 1%
due to the presence of Sc regardless of the temperature, while Sc
doubling time increases between the 0.17 (at 8◦C) and the 0.89%
(at 25◦C) due to the presence of Sk. When considering 10x times,
the relative increase for Sc is lower than 1.92% while for Sk ranges
from 1.43 and 5.65%.

3.4. Temperature Shapes Coexistence in
Mixed Culture Fermentations
The inspection of the interspecific competition parameters
reveals the competitive strength of Sc over Sk (aSk,Sc) is
independent of temperature. In contrast, the competitive
strength of Sk over Sc (aSc,Sk) increases quadratically with
the temperature. Interestingly, and regardless the temperature,
aSc,Sk ≤ 2.895 in the considered range of temperatures, which
is around half the strength of the interaction of Sc over Sk. This
has implications on the coexistence/exclusion of the species.

The geometric analysis of the nullclines of the best model
allows characterizing the global behavior of the competing
species, i.e., identifying the conditions leading to the exclusion
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of one species. The nullclines are the lines (for the LV model)

or the curves (for the GA and SGA models) where
dxi
dt

=

0, i = 1, 2, i.e., show the boundary between the increase and
decrease in xi. We can obtain two nullclines, each for each
species, as a function of xSc. If the nullclines intersect each other,
both species coexist, and the intersection corresponds to the
equilibrium point. If the nullclines do not intersect with each
other, one species excludes the other, and the relative position
of the nullclines indicates which is the species being excluded.
Remark that the result is independent of the initial inoculum in
co-inoculation (i.e., with xi,0 > 0). In our particular case, because
biological parameters depend on the temperature, we define two
temperature-dependent nullclines as follows:

Sc nullcline :
dxSc

dt
= 0;

xSk(T) =
γSk

[

aSc,Sk(T)
(

1− ( xSc
KSc(T)

)θSc
)

− 1
] (15)

Sk nullcline :
dxSk

dt
= 0;

xSk(T) = KSk(T)

[

1− aSk,Sc
xSc

xSc + γSc

]
1

θSk
(16)

Figure 3A presents the geometrical configuration of the
nullclines as a function of the temperature. An inspection of the
figure reveals that nullclines intersect each other in the range
T ∈ [8, 24]◦C, while for T > 24◦C the Sc nullcline is above the
Sk nullcline indicating that Sc excludes Sk. Figure 3B shows a
couple of examples at T = 24.5◦C and T = 16◦C, respectively.
In the first example, the Sc nullcline is above the Sk nullcline,
indicating that Sc excludes Sk, as shown in the system dynamics.
In the second example, both nullclines intersect each other, and
both cells coexist.

To further illustrate the fact that coexistence or exclusion
are independent of the initial relative amount of the competing
species in co-inoculation, we present, in Figure 3C, the
percentage of each cell for different temperatures after 10 h.
We considered the following two inoculation: Sc/Sk 25/75 and
15/85. Results reveal that Sc never gets excluded, although
its final amount depends on the temperature. The higher the
temperature, the larger the final density of Sc. Sk dominates
fermentation at cold temperatures. The model predicts that the
most favorable case corresponds to the 15/85 fermentation at 8◦C
in which the final Sk density is 10 times higher than that for Sc.
As predicted by the nullclines, for T > 24◦C, Sk is excluded and
it almost disappears after 10 h.

Cold temperatures as low as 8 − 12◦C are rarely used in
industrial settings.We therefore decided to explore the possibility
of increasing the final amount of Sk at mild temperatures. We
planned a sequential inoculation at 25◦C inwhich Sc is inoculated
into the system once Sk has already multiplied by 10 its initial
population. Figure 3D presents the results, illustrating, how it is
possible to overcome exclusion with sequential inoculation. The
experimental results show how after 240h both cells coexist while
in co-inoculation Sk had substantially decayed after 140h.

4. DISCUSSION

Prior studies have noted the importance of the temperature in the
dynamics of mixed cultures of S. cerevisieae and non-cerevisiae
species (Arroyo-López et al., 2011; Alonso-del-Real et al., 2017).
These studies analyzed the individual growth curves using
single experiment data fitting to a Gompertz model (Arroyo-
López et al., 2011; Alonso-del-Real et al., 2017). However, the
approach is local in nature, i.e., derived models cannot be used to
make predictions of systems behavior under different operating
conditions nor to predict the ecology of mixed cultures.

The present study was designed to investigate the ecology
of two Saccharomyces yeast species in mixed culture cold
fermentations through a model-based approach. We used an
iterative model building and selection procedure, based on
multi-experiment data fitting, to find the model that offers
the best compromise between complexity, goodness-of-fit and
cross-validation.

The Gilpin-Ayala model clearly outperformed the classical
Lotka-Volterra model. It should be noted that both models
are fundamentally different. The LV model assumes that single
growth, i.e., the intraspecific competence, depends linearly on the
cellular density. In this case, the per-capita growth rate decreases
linearly with the cellular density, and the maximum growth rate
is achieved when the cellular density corresponds to half the
carrying capacity xi = Ki/2. In the GA model the intraspecific
competence depends non-linearly on the cellular density, thus
the per-capita growth rate decreases non-linearly with the density

and the maximum growth rate is achieved at xi =
(

1
1+ois

)1/ois
Ki.

In fact, as ois → 0, the growth curve tends toward the Gompertz
growth curve that achieves its maximum at xi = Ki/e (Zwietering
et al., 1990).

Our results suggest that non-linear effects are particularly

relevant at low densities (oi < 1 for both strains) and that the

Gompertzmodel might not be particularly well-suited to describe
the dynamics of individual growth in mixed cultures. Also, the
fact that oSc < oSk implies that regulation is faster for Sc than
for Sk. This would be enough to compensate for the lag-phase
for T >= 14◦C for which Sc achieves the maximum growth rate
earlier than Sk.

Both the specific growth rate (µ) and the carrying capacity (K)

embed information about nutrient use and cellular decay. Thus

the results in single growth suggest that both species differ in their
abilities to exploit available nutrients and the magnitude of decay.
Indeed these abilities are strongly affected by temperature.

In what regards to the specific growth rate dependence with
the temperature results are in good agreement with previous
works in the range below optimal growth temperature (Salvadó
et al., 2011). We also obtained that the carrying capacity varies
with the temperature. This fact is typically not considered
in the food predictive microbiology literature, i.e., secondary
models are generally used for µ (Ross and Dalgaard, 2003). Our
secondary model selection procedure excluded this possibility;
results revealed that the carrying capacity augmented with the
temperature following an Arrhenius type dependency for both
species. This finding is consistent with that of Zakhartsev et al.
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(2015) who also noted that the biomass yield for S. cerevisiae
increases with the temperature below the optimal growth
temperature. The authors related this behavior to higher cellular
maintenance costs far from the optimal growth temperature. The
fact that the growth rate for Sk is higher than for Sc at very low
temperatures, might indicate that this effect is enhanced for Sc as
compared to Sk.

In mixed cultures, both cells are affected by the presence of the
other. However, the effects are uneven: the competitive strength
of Sc over Sk is higher than the competitive strength of Sk over Sc.
For Sc, the effect of the temperature is much higher than the effect
of Sk: doubling and 10x times are only slightly affected (< 2%)
by the presence of Sk and the final yield of Sc is always higher
than that of Sk. On the contrary, the presence of Sc exerts several
effects on the dynamics of Sk: (1) the time required tomultiply the
initial population by ten increases up to a 6%; (2) the population
experiences an overshoot and a decay whose intensity depends on
the temperature; (3) Sk is excluded at higher temperatures (above
24◦C) in co-inoculation independently of the initial inoculum.

In ecology, coexistence and exclusion relate to the concept
of ecological niche. Ecological niche corresponds to the joint
description of the environmental conditions that allow a species
to satisfy its minimum survival requirements along with the
effects of that species on these environmental conditions (Chase
and Leibold, 2003).

In our particular case, niche partitionings can be due to
the following initial environmental factors: temperature and
available nutrients and to a whole variety of effects on the
environment: production of ethanol or other toxic compounds,
cell-to-cell contact or flocking effects, etc. Niche differences
cause species to limit themselves (intraspecific competence)
more than they limit competitors (interspecific competence)
allowing for coexistence (Hector and Hooper, 2002; Levine and
HilleRisLambers, 2009).

In what regards to temperature, our model (see Figure S5)
predicts two different scenarios. At low temperatures ([8 −

10oC]), the effect of Sc over Sk is lower than the Sk intraspecific
competence during the standard fermentation times (around 10
days). Thus, both cells can coexist. Interestingly, the final biomass
yield is higher than that achieved in single cultures, as if both
species experiment a mutual benefit in mixed cultures at low
temperatures. At higher temperatures T > 24◦C, the effect of Sc
over Sk is higher than the Sk intraspecific competence for most of
the process duration; thus Sk is excluded.

These results imply that temperature is a differential niche
property for both cells. This accords with previous observations
which concluded that a significant shift in the adaptation to
growing at higher temperatures occurred in the Saccharomyces
genus after the divergence of S. cerevisiae lineages from
the S. kudriavzevii and S. bayanus var. uvarum lineages
(Salvadó et al., 2011).

In what concerns the ability to exploit nutrients, our results
show only a slight modification in the per-capita growth rate in
single and mixed cultures, particularly at early times. This would
indicate that both cells have a predefined nutrient consumption
pattern and that this pattern would be a differential niche. This
finding is consistent with earlier observations (Tronchoni et al.,
2009; Henriques et al., 2018; Alonso-del-Real et al., 2019). In their

work Tronchoni et al. (2009) showed that both species prefer
glucose to fructose, while the transport of both hexoses increases
with the temperature in the range [8 − 25]◦C (Henriques et al.,
2018). Besides, Alonso-del-Real et al. (2019) used transcriptomic
analysis and HPLC determination of metabolites present in the
must during the fermentation to identify the different pattern of
nitrogen source preference between the species. Interestingly, the
authors observed that nitrogen source and sugar consumption in
mixed cultures showed a very similar profile to that exhibited by
S. cerevisiae in single cultures.

The fact that for Sk the difference between intra- and
interspecific competence becomes negative late in the
process at lower temperatures, may originate in the limited
tolerance of Sk to ethanol (Arroyo-López et al., 2010) or
the possible production of other kind of toxic compound
such as the already described small peptides derived from
the enzyme glyceraldehyde-3-phosphate dehydrogenase
(Albergaria et al., 2010; Branco et al., 2014). The ability of Sc
to divert the metabolism to the production of ethanol and
toxic compounds would be then a niche characteristic of
the species.

Niche partitioning would also explain why it is possible
to overcome exclusion by sequential inoculation. 24h after
Sk inoculation, more than half the glucose and the fructose
have already been consumed (Henriques et al., 2018). Possibly
also assimilable nitrogen sources have been significantly
reduced. When Sc enters the process the available nutrients,
particularly the nitrogen sources, affect the specific growth
rate and the carrying capacity. Also the production of
ethanol is limited by the remaining amount of hexoses.
The experimental results showed how after 240h both cells
coexist while in co-inoculation Sk had substantially decayed
after 140h. Further investigation should focus on developing
mechanistic models accounting for niche partitioning—
temperature, differential nutrient consumption, and ethanol
production—so as to enable the automatic design of sequential
mixed cultures.

5. CONCLUSIONS

The main goal of the current work was to explore the role of the
temperature in the dynamics of mixed fermentations through an
ecological model-based approach.

We considered the particular case of mixed culture
fermentations involving S. cerevisiae and S. kudriavzevii
strains. The best model corresponded to a Gilpin-Ayala model
with saturable competition; different secondary models were
obtained for the different biological parameters.

The analysis of the model revealed that Sc excludes Sk
at temperatures higher than 24◦C in co-inoculation. We also
obtained major differences in growth properties in single and
mixed cultures for both species concluding that temperature,
nutrient consumption patterns and tolerance to toxic compounds
are differential niches for both species which affect per-capita
growth rate and decay.

The principal implication of this research is that sequential
inoculation is the most promising alternative for novel
fermentations at mild temperatures. Although the study focuses
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on a particular strain combination, the findings may well have a
bearing on other cases.

The ecological models considered in this work are
particularly well-suited to explore coexistence and exclusion
conditions. Further research is needed to formulate mechanistic
models suited for optimal model-based design of novel
mixed fermentations.
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