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Freezing is an involuntary stopping of gait observed in late-stage Parkinson’s disease (PD)

patients. This is a highly debilitating symptom lacking a clear understanding of its causes.

Walking in these patients is also associated with high variability, making both prediction of

freezing and its understanding difficult. A neuromechanical model describes the motion

of the mechanical (motor) aspects of the body under the action of neuromuscular forcing.

In this work, a simplified neuromechanical model of gait is used to infer the causes for

both the observed variability and freezing in PD. The mathematical model consists of the

stance leg (during walking) modeled as a simple inverted pendulum acted upon by the

ankle-push off forces from the trailing leg and pathological forces by the plantar-flexors

of the stance leg. We model the effect on walking of the swing leg in the biped model

and provide a rationale for using an inverted pendulum model. Freezing and irregular

walking is demonstrated in the biped model as well as the inverted pendulum model.

The inverted pendulum model is further studied semi-analytically to show the presence

of horseshoe and chaos. While the plantar flexors of the swing leg push the center of

mass (CoM) forward, the plantar flexors of the stance leg generate an opposing torque.

Our study reveals that these opposing forces generated by the plantar flexors can induce

freezing. Other gait abnormalities nearer to freezing such as a reduction in step length,

and irregular walking patterns can also be explained by the model.

Keywords: Parkinson’s disease, gait, chaos, neuro-mechanical model, modeling

1. INTRODUCTION

Parkinson’s disease results from the loss of neurons in the substantia nigra pars compacta of the
basal ganglia (BG) (Davie, 2008), which has projections toward the motor, and cognitive areas
(Albin et al., 1989; Alexander and Crutcher, 1990). Freezing of gait (FoG) is a motor disability
in PD patients where subjects experience an “episodic absence or marked reduction of forwarding
progression of the feet despite the intention to walk” (Nutt et al., 2011, p 734). This debilitating
symptom occurs during the late-stage PD (Giladi et al., 2001) and is known to be very difficult to
predict and control. The physiology of this symptom is not yet established conclusively, consisting
of both neural and mechanical components. A set of correlations between the neural inputs

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.552635
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.552635&domain=pdf&date_stamp=2020-10-29
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mp603@exeter.ac.uk
mailto:p.m.prathyush@exeter.ac.uk
https://doi.org/10.3389/fbioe.2020.552635
https://www.frontiersin.org/articles/10.3389/fbioe.2020.552635/full


Parakkal Unni et al. Modeling PD Gait

(e.g., Dysfunction of Visuomotor and occipito-parietal pathways)
and mechanical variables (e.g., gait pattern generation and
automaticity) of PD-FoG have been studied (Heremans et al.,
2013) but causality is not well-established. Apart from freezing,
abnormal gait patterns in PD consists of high stride time
variability with less reduction in stride length (Heremans et al.,
2013). The relationship between these abnormalities and freezing
is also not well-understood.

Gait has been studied fundamentally from two different
perspectives. One that of robotics and control, and the second,
biophysical. Mathematical models of passive gait have been
studied extensively by several authors to understand their
stability (e.g., Goswami et al., 1996; Manchester et al., 2011;
Dai and Tedrake, 2013; Sadeghian and Barkhordari, 2020), and
the effect of external conditions such as ramps (McGeer, 1990)
and bifurcations has been investigated (e.g., Mahmoodi et al.,
2013; Iqbal et al., 2014; Fathizadeh et al., 2018, 2019; Znegui
et al., 2020). Impulsive dissipation at heel strike is studied for
a multidimensional biped model in (Ros et al., 2015). There
are other approaches to motor control using optimal control
which demands an arbitrary or learned cost-functionals (e.g.,
Flash and Hogan, 1985; Pekarek et al., 2007; Parakkal Unni et al.,
2017). These models are not sufficient to understand human
locomotion in PD patients as these papers have focused on the
stability behaviors and control of robots. Some of these cost
functional/error minimization based models, even though they
assume the existence of such a cost, have the advantage of being
useful for extracting parameters easily from the data (Delp et al.,
2007; Wu et al., 2019). However, they do not address explicitly
how the external inputs result in high variability and freezing
observed in PD gait (Heremans et al., 2013).

On the other hand, a biophysical model proposed in Taga
(1995) considers the interaction with the Central Pattern
Generators (CPG). The aim of the model is primarily to
demonstrate walking as a stable limit cycle that emerges from
the dynamic interaction between neural oscillation originating
in CPG and the pendulum oscillation of body linkages, rather
than involuntary stoppage of gait and variability. CPG-based
complex model, which depends on several parameters such as the
strength of neural connections, the magnitude of the coefficients
in the rhythmic force controller, and strength of sensory inputs,
has its significance. However, one drawback of such CPG-based
complex model is often the dependence on an excessive number
of parameters as described above to be determined for achieving
a desired locomotor pattern over a large search space. To identify
and tune such parameters for attaining involuntary freezing and
variability of gait behavior for a wider population of patients is
rather an arduous trial-and-error or learning and optimization
based task. Involuntary stoppage of gait and variability is the key
detail that is necessary to show the model’s ability to display PD
walking behavior. The effect of opposing forces generated by the
plantar flexors observed in PD, as reported in Nieuwboer et al.
(2004), is yet another detail for understanding the PD gait.

The model by Muralidharan et al. (2014) successfully captures
the neural dynamics of basal ganglia (BG) but does not focus
on the mechanics. A model which combines the chaotic region
of the Lorentz system with the passive dynamic walker by

Montazeri Moghadam et al. (2018), adds chaos externally, which
makes it less relevant biophysically. However, these authors have
established a need for explaining the variable nature of PD
walking. As chaos is known to be absent in the basal ganglia
(BG) of a PD patient (Mandali et al., 2015) the neuro-mechanical
interactions need to be studied to find out its underpinnings.
Another way to look at gait biophysically is through the
equilibrium point hypothesis (Feldman, 1986; Duan et al., 1997),
which suggests movements are the result of active changes
in the equilibrium state of the motor system. Torque length
characteristics of the muscles can be changed by a neural
controller to achieve motion. It has been shown that the muscles
act synergistically to reduce the variability in the targeted action.
For example, the uncontrolled manifold hypothesis by Latash
et al. (2002) explains the variability in muscle recruitment
as “good” and “bad” regions of variability, depending on
whether they achieve the targeted action or not. The muscle
recruitments which achieve targeted action are considered
“good” regions of variability, whereas the muscle recruitments
which does not achieve targeted action are considered as
“bad” regions of variability. The Equilibrium point approach
(Feldman, 1986) makes the electromyogram (EMG) activity
implicit. Another limitation of the equilibrium point hypothesis
is in its difficulty in testing. The empirical determination of
invariant characteristics (Sainburg, 2015) such as torque-length
characteristics (Feldman, 1986) is necessary for validating the
equilibrium point hypothesis. A way in which it is achieved is by
asking the subjects “not to intervene” (Feldman, 1986; Sainburg,
2015) while doing a task such as unloading and assuming this
results in stabilization of central commands tomuscles (Sainburg,
2015). But this assumption is not necessarily true as there could
be involuntary responses. The neuromuscular system is over-
actuated with redundancies, as it contains more actuators than
the degree of freedom. Use of muscle synergies (Latash, 2010)
in models is one way to address redundancies. These models
assume co-activation of a set of muscles as motor primitives to
address the redundancy associated with muscle activation (Aoi
et al., 2019; Tamura et al., 2020). The idea of muscle synergy is
still debated and is considered difficult to refute by any empirical
evidence or falsify (Popper, 2002; Olszewski and Sandroni, 2011)
by some authors (Tresch and Jarc, 2009).

There is a need for a model to explain the empirical
observations in PD gait, such as the high coefficient of variability
and freezing near narrow passages (Snijders et al., 2008). Such a
model will help in understanding the essential aspects of neural
and mechanical systems contributing to PD gait, also shedding
light into the future experimentations required. In this work,
the relationships between the high variability and freezing will
be studied by deriving a set of forces acting on the stance leg.
They phenomenologically represent the EMG (Electromyogram)
signals and therefore the activity of the CPGs. Kinetics of both
swing leg and stance leg will be studied to better understand their
roles under the action of these forces.

In summary, the model is built with two aims. The first aim
is to explain the empirical observations that are seen in PD-
Gait with a minimum number of variables. These include (1)
a high coefficient of variation in PD subjects (Heremans et al.,
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2013), (2) a pattern of reduction of step lengths before freezing
(Nutt et al., 2011), (3) the ability of sensory and visual cues to
help reduce freezing (Rochester et al., 2005; Young et al., 2014;
Amini et al., 2019), (4) the difficulty of freezing prediction, and
(5) the occurrence of freezing near obstacles and narrow passages
(Snijders et al., 2008). Secondly, the model aims to show the role
of the swing leg as a supplier of ankle push of force as well as one
that determines the time of heel strike. Hence, a bipedal model
and a reduced low dimensional model resembling an inverted
pendulum are studied upon the action of the ankle push-off force.
Themovement of the CoM under the action of the ankle push-off
force is depicted in Figure 1. Hence, the hypothesis investigated
in this study is that the variability and the motor symptoms
associated with PD (Heremans et al., 2013) can be explained
by the experimentally observed premature activation of plantar
flexors observed in PD (Nieuwboer et al., 2004).

2. MATERIALS AND
METHODS—MODELING

2.1. Physiology
Walking is a complex process which involves the interaction of
the brain, spinal cord and the musculoskeletal systems (Nutt
et al., 2011). The typical gait cycle associated with walking
involves “stance” and “swing” phases. The stance phase begins
with a crucial heel strike phase, which is the initial contact that
occurs instantaneously. As soon as the stance phase ends, the
swing phase begins. The plantar flexor muscles of the trailing leg,
supply energy to “push-off” the contra-lateral leading leg (Zelik
and Adamczyk, 2016). Once the push-off occurs, the trailing leg
enters the swing phase. The soleus and gastrocnemiusmuscles are
the most notable plantar flexors, of which the significant role of
the latter one in PD freezing/walking is established (Nieuwboer
et al., 2004). Even though physiologically there is a non-linear
relationship between the EMG signals and the torques generated

(Genadry et al., 1988), a linear relationship can be assumed (Hof
and Van Den Berg, 1977) between the envelope of the EMG
(CPG firing) and the torques generated about the joint. Several
other muscles are involved in walking, but the present study
investigates only the effect of plantar flexors as these muscles
supply most of the energy required for walking. In this work,
the “freezing step” is defined as the step at which the legs do not
have sufficient angular momentum to progress walking forward.
When the physiology is modeled as an inverted pendulum-like
system, the freezing results in backward motion of the stance leg.
In a real-life scenario, this implies the patient either falls or stops
movement. The remark 1 defines freezing and related terms used
in this work.

REMARK 1. In this study, “freezing” or “freezing event” is defined
as the condition where there is no forward motion of the stance leg.
“Freezing episode” is defined as the events happening in the time
interval between the heels strike phase the freezing event. Hence,
the “start of the freeze” is defined to be at the heel strike phase after
which a freezing event occurs.

Here, we carry out a systematic stability analysis, including
unstable regimes, of the model in contrast to the stable limit cycle
behavior studied in robotics (Grizzle et al., 2001) and passive
walking dynamics literature (McGeer, 1990). Even though the
complex freezing behavior can be explained through several
possible routes (Nutt et al., 2011) (some of them purely based
on neural control) an attempt is made here to explain it in
the simplest possible way and to understand the effect of
neuromuscular inputs in generating unstable and chaotic walking
behavior as observed in PD (Heremans et al., 2013).

2.2. Dynamics of Walking
The dynamics of walking involves the coordinated action of
neural input and muscles of the limbs. It consists in a continuous
movement of the limbs as well as state reset at heel strike resulting

FIGURE 1 | Anatomical representation of the stance phase from the ankle push-off to the heel strike is shown. The position of the center of mass (CoM) is shown as a

red circle which is assumed to be rotating with respect to a pivot point S. The location of the plantar flexors, approximate region generating ankle push-off force and

heel strike region are noted. The initial angle and angular velocity are represented by θ0 and ω0, respectively.
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in discrete dynamics (Sinnet et al., 2011). Plantar flexors of the
swing leg supply the necessary torque to push the CoM forward.
During walking, the CoM is supported by leg in stance phase for
the majority of the time (80-90%) as the double support phase
is approximately 10-20% of the overall gait cycle (Wahde and
Pettersson, 2002; Kharb et al., 2011). Themotion of the CoMwith
single support under the action of the plantar flexors is modeled
in this work. The heel strike is modeled using discrete dynamics.

Traditionally the dynamics of walking is often modeled as
biped model (Taga, 1995). In this section, a simplified biped
model is presented. Further, a reduced, low dimensional, inverted
pendulum system is considered as a special case relevant to PD. It
is assumed that CoM is at the tip of the pendulum, and the links
and the swing leg aremassless. Therefore, themodel generates the
motion of the CoM of the human body. Running and jumping
gaits are not considered in this model as the links are assumed

to be rigid. It is also assumed that sufficient friction exists to
avoid any slip. The angular displacements are assumed to be small
enough (< 0.5 rad.) (Usherwood, 2005; Ranavolo et al., 2011;
Polese et al., 2012) to allow for first/second-order approximations
during the stance phase. Kane’s method (Kane and Levinson,
1985) is used to derive the equations of motion (EoM). Kane’s
dynamical equation is of the form F̄r + F̄∗r = 0, where F̄r and F̄∗r
represents generalized active forces and generalized inertia forces,
respectively, as described in Kane and Levinson (1985) (chapter
6, page 159). The equations in the form necessary for simulation
is obtained using python libraries, the details of which are given
in Gede et al. (2013).

Symbols m1, m2 represent the mass of the body and swing
leg, respectively, as shown in Figure 2. The length of both the
legs is represented by l. The variables associated with the system
are the components of the vector x = [θ1, θ2, ω1, ω2]

T which

FIGURE 2 | The toe-off, mid stance, and heel strike instances of the two connected links of the biped with its CoM while walking in the forward direction. CoM

indicated as a circle represents a point mass at the tip of the pendulum. The swing leg is indicated in red. The point of collision during a heel strike instance is circled in

red. The terms θ1 and θ2 are the angles that the stance and swing legs subtend w.r.t. the vertical (in the inertial reference frame), respectively. The quantities ω1, ω2

and m1, m2 are the corresponding angular velocities and masses of the body and swing leg, respectively. The torques that are acting on the stance leg are indicated

as ζ1(t) (Ankle push-off force) and ζ2(t) (Torque due to the activation of the plantar flexors of the stance leg). States immediately before and after heel strike is indicated

with “-” and “+” superscripts, respectively.
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are the angles and angular velocities (w.r.t inertial frame for
stance leg and w.r.t. stance leg frame for swing leg) as indicated
in Figure 2. There are two types of angular velocities. The one
which corresponds to the rotation of the rigid body with respect
to its center of rotation is called spin angular velocity and one
which corresponds to the revolution of a point with respect to an
origin is called orbital angular velocity. In this work, spin angular
velocities with respect to the center of rotation of the rigid links
are considered as they rotate about the center of rotation.

Hybrid systems (Lunze and Lamnabhi-Lagarrigue, 2009) are
a class of dynamical systems, which exhibit both continuous
states and discrete mode dynamics often associated with events
such as resets, jumps, and switching. The continuous behavior is
typically governed by a system of differential equations (similar
to Equation 1) and the discrete part is governed by a vector-
valued function (similar to Equation 2) (Lunze and Lamnabhi-
Lagarrigue, 2009)(chapter 1). The transition between the discrete
and continuous governing equations is determined by the state of
the system in the overall phase space. The dynamics in this work
is governed by the general hybrid dynamical system of the form,

ẋ = q(x), x− /∈ S (1)

x+ = 1(x−), x− ∈ S (2)

where,

S : = {x ∈ χ
∣
∣ greset

(

x) = 0
}

(3)

where, q(x), 1(x−), and greset(x) are continuous vector valued
functions of x. In the absence of external torques acting on the
leg, the term q(x) is,

q(x) =













ω1

ω2
1

2l(m1+m2 sin2 (θ2))

(

2gm1 sin (θ1)− gm2 sin (θ1+2 θ2)

+gm2 sin (θ1)+ lm2 ω2
1 sin (2 θ2)− 2lm2 ω2

2 sin (θ2)
)

−
sin (θ2)

l(m1+m2 sin2 (θ2))

(

gm1 cos (θ1)+ gm2 cos (θ1)

−lω2
1(m1 +m2)+ lm2 ω2

2 cos (θ2)
)













(4)

The function, 1(.) is the reset map, χ ⊂ R
4 the state space,

and greset(.) is the function that defines the heel strike. The set
“S” defines a surface where the heel strikes the ground and the
states change abruptly according to the reset map. The x− and
x+ indicate the states immediately before and after the heel
strike, respectively. The functions 1(.) and greset(.) are described
in sequel.

As the body mass is considerably larger than the mass of
the leg, the case where m2 goes to 0 has only been considered.
Further, small-angle approximation leads to the following
equation for ω̇1 and ω̇2

ω̇1 = g
θ1

l
(5)

ω̇2 = −
(g − lω2

1)θ2

l
(6)

The ankle push-off forces of the stance leg supply majority
of the energy needed to propel the leg forward. When this
neuromuscular forcing Ŵ(t) is added to the stance leg, the
Equation (5) becomes,

ω̇1 : = g
θ1

l
+ Ŵ(t) (7)

The forcing term Ŵ(t) is derived in the following section.

2.3. Derivation of the Forcing Terms
The torques acting on the stance leg are derived in this section
to generate the neuromuscular forcing term Ŵ(t) for the stance
leg. Torque produced by the plantar flexors on the trailing leg
is defined as Gr(t) and that on the leading leg as Gl(t). These
torques are assumed to be linearly related to the envelop of the
EMG signals which are positive functions of time (Nieuwboer
et al., 2004). The torque Gr(t) generates the ankle push off force
F(t) and is assumed to be in phase with the heel strike. In the
proposed model, the force F(t) and the torque Gl(t) are assumed
to be

Gl(t) : = τl(sin(2π fr1 t + φ)+ 1) (8)

F(t) : = τr(sin(2π fr2 t)+ 1) (9)

where τl and τr are constants. The variables, fr1 , fr2 and φ

represent frequencies and the phase difference between torques
on the leading and trailing leg, respectively. Both frequencies
are assumed to be unity. The ankle push off torque acting on
the leading leg (in stance phase) can be calculated using the free
body diagram shown in Figure 3. The pivot points of the trailing
leg and leading leg are “O” and “S,” respectively. Trailing leg
and leading leg subtends the same angle θ1 w.r.t. the normal to
the ground as the trailing leg and leading leg together with the
ground is assumed to form an isosceles triangle. By balancing the
moments about the point “S” in Figure 3 yields,

Iω̇1 = Gl(t)− lF(t) sin(θh)+mgl sin(θ1) (10)

When angle θ1 is small (sin(θ) ≈ θ) and since I = m1l
2, Equation

(10) is rewritten as,

m1l
2ω̇1 = Gl(t)− lF(t) sin(θh)+m1glθ1 (11)

Substituting F(t) andGl(t) from Equation (8) and (9) in Equation
(11), one obtains,

m1l
2ω̇1 = τl(sin(2π fr1 t + φ)+ 1)− lτr(sin(2π fr2 t)+ 1) sin(θh)

+m1glθ1 (12)

Rearranging Equation (12), angular acceleration of the
leading/stance leg is,

ω̇1 =

Plantar flexors of the leading leg (= ζ2(t))
︷ ︸︸ ︷

τl(sin(2π fr1 t + φ)+ 1)

l2m1
(13)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 October 2020 | Volume 8 | Article 552635

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Parakkal Unni et al. Modeling PD Gait

FIGURE 3 | The diagram visualizes the forces and moments on leading and trailing leg that enable the movement of the center of mass (CoM) forward. Symbols S

and O indicate the points on leading and trailing leg about which the torques Gl and Gr are applied. Gr is the torque generated by the plantar flexors of the trailing leg,

which results in a force F (ankle push-off) acting on the leading leg, about the point “S.” The distance between the pivot point to the point of action of the force is lf .

The plantar flexors of the leading leg generate a torque Gl in the leading leg, in the opposite direction. The angle the leading leg subtends with the vertical axis at S is

θ1. θh represents the hip angle. The moments are balanced about “S” to get the equations of motion (EoM). An approximate position of the starting stance phase is

shown in the background in gray color.

−

Ankle push off from trailing leg (= ζ1(t))
︷ ︸︸ ︷

τrl sin(θh)(sin(2π fr2 t)+ 1)

l2m1
+

Gravity
︷︸︸︷

gθ1

l

: =
ζ2(t)−ζ1(t)

m1l2
+

gθ1
l

(14)

where Ŵ(t) : =
(−ζ1(t)+ζ2(t))

m1l2
(as shown in Figure 2) is the time

varying neuromuscular forcing.
The initial velocity of the swing leg is assumed to be

constant in every step. As the mass m2 is assumed to be zero,
the corresponding angular momentum is also equal to zero.
Therefore, the angular velocity of the stance leg is reset to
conserve its angular momentum and the initial angular velocity
of the swing leg after reset is assumed to be a positive constant
to account for the impulse during the ankle push-off. This is
a valid assumption as the definition of freezing in this work is
independent of the swing leg movement. A reset is carried out

when θ1 + θ2 = 0 and θ1 < 0. Using Equations (6) and (14),
the equations of motion of a biped can be written as in Equations
(1)–(2), where the functions q(x), 1(x), greset(x) and the set S are
written as follows,

q(x) : =







ω1

ω2
ζ2(t)−ζ1(t)

m1l2
+

gθ1
l

−
(g−lω2

1)θ2
l







(15)

S : =

{
[

θ1, θ2, ω1, ω2

]T
∈ χ

∣
∣ greset

(
[

θ1, θ2, ω1, ω2

]T
)

= 0 ∧ θ1 < 0
}

,

greset(.) : = θ1 + θ2,

1(.) : =
[

−θ1, − θ2, ω1 cos(θh), ω0
2

]

(16)
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with initial conditions ω1(0) = ω0
1 , θ1(0) = θ01 , ω2(0) =

ω0
2 , θ2(0) = θ02 .

REMARK 2. It may be noted that the torque generated by the
plantar flexors is assumed to act about the point “O” as the pivot
point. Balancing the moments due to the ankle push off force,
F(t) and Gr(t) about the point O, the ankle push-off force can be
determined in terms of Gr(t) as,

F(t) =
Gr(t)

lf cos(θ1)
(17)

Here, the distance, lf is taken between the heel to the pivot point
on the foot for calculating the moments, as shown in Figure 3.
Therefore, implicitly, the following assumption has been made
while prescribing F(t).

Gr(t)

lf cos(θ1)
: = τr(sin(2π fr2 t)+ 1) (18)

2.4. Rationale for Using a Low Dimensional
Model for Analysis
The angular velocity of the stance leg contributes directly to the
angular acceleration of the swing leg. A higher absolute angular
velocity of the stance leg leads to lower acceleration of the swing
leg. However, the dynamics of the stance leg in Equation (14)
is uncoupled from the dynamics of the swing leg, and hence
resembles the dynamics of an “inverted pendulum system.” It
may be noted that the term “lω2

1” can be approximated to a
constant as in the physiological range of low angular velocities
(especially in PD patients) g >> lω2

1 (typically quantity lω2
1 =

0.448 m.rad2.s−2 = 0.7× 0.82 is of order “0” while g = 9.8 m.s−2

is of order 1). This results in a condition where the swing leg
acts independently to the stance leg, effectively determining the
step length. Therefore, an inverted pendulum walking model
for PD subjects is valid when constant step length is assumed.
Figure 1 depicts the physical rationale behind the use of an
inverted pendulum model. The constant step length assumption
is general enough to explain the variability in stepping as this
leads to variability in stepping angular velocities rather than step
lengths. In summary, in the following sections we present analysis
of the stance phase walking model in light of the PD walking
behavior at a constant step length. Physiologically, the hip applies
torques on the swing leg and controls its initial angular velocity.
The hip torques acting on the swing is not relevant in propelling
the CoM forward, as most of the torque required for that is
supplied by the ankle (Zelik and Adamczyk, 2016). Therefore, an
assumption made on the swing leg angular velocity will not affect
the applicability of the model to the freezing problem as freezing
is related to the inability of the legs to propel the CoM forward in
the case of walking. Hence, swing leg angular velocity is reset to
ω0
2 in every step. Furthermore, the low dimensional model helps

to avoid making any assumptions on the initial angular velocity
of the swing leg ω0

2 as it doesn’t involve a swing leg.

3. ANALYSIS OF THE REDUCED SYSTEM

When considered independently of the swing leg, the dynamics
has states corresponding only to the stance leg, i.e., x =

[θ1, ω1]
T . The terms defining the Equation (1)–(2) for the

inverted pendulum case are given below.

q(.) : =

[

ω1
ζ2(t)−ζ1(t)

m1l2
+

gθ1
l

]

(19)

S : =

{
[

θ1,ω1

]T
∈ χ

∣
∣ greset

(
[

θ1,ω1

]T
)

= 0
}

(20)

greset(.) : = θ1 − θreset (21)

1(.) : =
[

−θ1,ω1 cos(θh)
]T

(22)

As the inverted pendulum model is analyzed independently,
θ1, m1, θ01 and ω0

1 will be referred here as θ , m, θ0 and ω0,
respectively. These equations are solved to produce the motion
trajectory during the stance phase of the stepping cycle. The
sequence of model evolution is depicted in Figure 4, with the
beginning and end of the stance positions, initial angular position
(θ0), initial angular velocity (ω0) and the angle at reset (θreset).
Step length is defined to be equal to |θreset| where |.| denotes the
absolute value.

3.1. Gait Cycle
The proposed model considers only the “stance” phase of the gait
cycle. Therefore, “gait cycle” in this study has been defined as the
process, where the model states evolve from an initial condition
of a step (“double support phase”) until the reset condition
(where the heel of the swing leg is assumed to collide with the
ground or “heel strike condition”) is met and the initial condition
of the next step is computed. Here, the state of the system moves
through three different states (beginning of the “stance” (double
support), end of the “stance” (before collision of the contra-lateral
leg), heel strike (after collision of the contra-lateral leg) whose
notations are given below (Equation 23) 1,2.

[θ0, ω0]
T 7→ [θ−0 , ω−

0 ]
T

︸ ︷︷ ︸

Before collision

7→ [θ+0 , ω+
0 ]

T

︸ ︷︷ ︸

After collision

= [θ1, ω1]
T (23)

Here [θ0, ω0]
T , [θ−0 , ω−

0 ]
T , [θ+0 , ω+

0 ]
T correspond to the

states at the initiation of the step, states at the end of the flow
“immediately” before collision, and states “immediately” after
collision, respectively. The states immediately after collision form
the initial condition for the next step [θ1, ω1]

T . The superscripts
(“-,” “+”) need not indicate the relative sizes of the states but the
chronological order in which they appear, that is “-” superscript
represent before collision variables and “+” represents after
collision. But it should be noted that the transformation from
[θ−0 , ω−

0 ]
T to [θ+0 , ω+

0 ]
T happens instantaneously in the model.

Counterclockwise angles are defined as positive. In a typical
walking simulation this results in θ− < 0 < θ+. That is, the

1Here a 7→ b indicates state a “maps to” state b after some time t where t ≥ 0,
2[x−1 , x−2 ]

T and [x1, x2]
T− are used interchangeably, where, x1 and x2 are

components of some vector
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FIGURE 4 | Gait cycle for the low dimensional (inverted pendulum system) system is shown. Terms [θ0,ω0]
T and [θ0,ω0]

T− indicate the initial and final angular position

and velocity of the leading/stance leg, respectively, at the beginning and end of the stance phase. θreset is the angular displacement at which the angle is reset. The

CoM (center of mass) which is assumed to be acting as a point mass at the tip of the inverted pendulum is shown as a circle. States before and after heel strike is

indicated with “-” and “+” superscripts, respectively.

stance phase ends at a negative value for the angle and resets to a
positive value before beginning the next stance phase.

Subscripts (indicating the step number) will be dropped from
before and after collision state symbols when the step number
is not relevant for the derivation (Equation 24). The same
superscript will be used while referring to other parameters which
change during collision 3.

The states [θ , ω]T evolve as a function of time except at the
collision point, where the same time point maps to two different
state values. 4

[θn, ωn]
T 7→ [θ−, ω−]T

︸ ︷︷ ︸

Before collision

7→ [θ+, ω+]T
︸ ︷︷ ︸

After collision

= [θn+1, ωn+1]
T

(24)

3p− and p+ refers to any parameter p before and after collision, respectively, in a

particular step cycle.
4 θ(t) and ω(t) are multi-valued functions at the point of collision.

3.2. Heel Strike Condition
A heel strike is defined as the state at which the swing leg
(trailing leg) collides with the ground. This is modeled using an
appropriate reset condition. At heel strike, both the angle and
angular velocity are reset from the “before collision” to “after
collision” state as described in Equation (24). The collision of the
swing leg (trailing leg) at heel strike is modeled to be inelastic
with angular momentum conserved. Therefore, the magnitudes
of the angular momentum about the point of collision after and
before collision are equated in the following way to generate the
transition rule for angular velocity

lm(v+ sin(90)) = lm(v− sin(90+ θh)) (25)

lm(lω+)1 = lm(lω−) cos(θh) (26)

ω+ = ω− cos(θh) (27)

at the nth iteration(step)

ωn+1 = ω+
n = ω−

n cos(θh) (28)
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where θh is the hip angle. The angle, on the other hand, will be
reset from θ− to −θ−. This results in the following transition
rules at θ− = θreset

ω+
n = ω−

n cos(θh) (29)

θ+n = −θ−n (30)

Rearranging we obtain 1(.) as

1

(
[

θ , θ̇
]T−

)

=
[

−θ , θ̇ cos(θh)
]T

. (31)

3.3. Analytical and Numerical Solution of
the Equations of Motion
The differential equation Equation (1), was solved using the
definition of the vector field given in Equation (19) analytically
to obtain the flows given below.

θ(t) = fθ (t, ω0, θ0) : = N1/D1

ω(t) = fω(t, ω0, θ0) =
d

dt
(fθ ) : = N2/D2

(32)

where N1, N2, D1, D2 are given in Supplementary Section 1.
The analytical solution is intended to be used for the bifurcation
analysis as numerical solutions may not always be able to detect
the chaotic behavior (Lozi, 2013). The analytical solution will
therefore be used to generate the discrete map governing the
motion in the following sections. A numerical solution of the
Equations (1)–(2) using definitions given in Equations (19)–(22)
with the appropriate reset conditions (in the physiological range)
are solved to show the freezing behavior and dynamics in the
phase plane. PD subjects freeze intermittently, and the amount
of time the subject walks until the freeze is an important measure
to quantify the transient walking behavior. A simulation for a 10
s- window is carried out for different values of the parameters τl
and τr (for a constant initial condition). The total time for which
transient walking behavior occurred is computed numerically as
a function of the parameters τl and τr . Numerical methods are
also used in solving boundary value problems to gain further
insights into the system as given in the remark 3.

REMARK 3. The parameters τl and τr determines the amount of
energy supplied to the system apart from gravity. To understand
how they influence the kinetic energy of the system, the difference
in speed between the initial and final states are compared for the
boundary value problem with boundary conditions θ0 = 0 rad.
and θ0.5 = −0.1 rad. with definitions given in Equations (19)–
(22) unchanged. Here the boundary conditions are chosen from the
physiological range.

The quantities τl, τr , ω, φ, θreset and step length has units N m,
N, rad. s−1, rad., rad., and rad., respectively, when not specified.

3.4. Derivation of a Map to Describe
Successive Stance Phases
The evolution of the flow (given by Equation 32) is terminated
when the swing leg meets the ground. In other words, when
there is sufficient energy in the system for forward motion, there

exists a “reset time” T(θ0, ω0) such that fθ (T(θ0, ω0), ω0, θ0) =
Areset(θ0). Here, Areset(.) is a function of the joint angle and the
ground that determines the angle of the stance leg while the foot
strikes the ground. The arguments associated with the reset time
T(θ0, ω0) will be dropped and will be referred to as T from here
on. Accounting the transition rules in Equation (29) for reset and
conservation of angular momentum,
one defines5

θ1 = θ+(T) : = −fθ (T, ω0, θ0) (33)

ω1 = ω+(T) : = fω(T, ω0, θ0) cos(θh) (34)

Following an induction hypothesis, for an arbitrary initial
condition (θn, ωn) the map is

θn+1 = −fθ (T, ωn, θn) (35)

ωn+1 = fω(T, ωn, θn) cos(θh) (36)

The following definitions are made to make the notations
compact for further analysis

θn+1 = f̃θ (T, ωn, θn) : = −fθ (T, ωn, θn) (37)

ωn+1 = f̃ω(T, ωn, θn) : = fω(T, ωn, θn) cos(θh) (38)

where f̃ω(T, ωn, θn, φ) and f̃θ (T, ωn, θn, φ) are T parametrized
family of maps for (ωn, θn) 7→ (ωn+1, θn+1).

To investigate the condition of same step lengths and to
generate a 1D map for further evaluation, Areset(θ , t) is set to be
θreset . Here θreset is an arbitrary angle in the physiological range at
which the swing leg meets the ground. Then for an intermediate
step, (when there is sufficient energy to move forward) there

exists a T̃ s.t. f̃θ (T̃(θn, ωn), ωn, θn) = θn = −θreset . When there
is not enough energy and therefore momentum to move forward,
the model behavior is defined as freezing.

To find the T̃ at which θn maps to itself the following
minimization problem is solved 6 using Newton’s method
(Wolfram Research Inc., 2019). This detects implicitly the time
at which the swing leg collides with the ground.

T̃(θn, ωn) : = argmin
T

(f̃θ (T, ωn, θn, φ)− θn) (39)

Substituting T̃ from Equation (39) in Equation (38) the following
map is obtained.

ωn+1 = f̃ω(T̃(θn, ωn), ωn, θn)

: = H(ωn) when θn = θ0 ∀n ∈ N

When used as a 1D map,

ωn+1 : = f̃ω(ωn) (40)

5Even though the symbol θ(T) is used at the point of collision, it may be noted that

this is a one to many mapping and therefore is not a single valued function in the

traditional sense of the word.
6The solution to this optimization problem may not always exist.
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The argument T̃ in the function will be dropped from here-on.
The function T̃ acts on the same input ωn and θn = θ0. This map
has been analyzed to show the freezing behavior and variabilities
associated with PD walking. The map has been analyzed for a
particular parameter value to show the presence of horseshoe in
the Supplementary Section 2.

REMARK 4. Equations (1)–(2) represent a general hybrid system.
When the hybrid bipedal system’s solution is sought these
equations are solved using the definitions given in Equations
(15)–(16); and, Equations (19)–(22) are used for hybrid inverted
pendulum system.

4. RESULTS

Numerical simulation of the PD gait and associated freezing
behavior is described in this section. The change in the angular
velocity from negative to zero is a property of any solution
containing freezing by definition. Typically in this model, the
angular velocity changes to a positive value under the action of
gravity during a freeze. The effect of variation of the parameters
τl, τr , φ, θreset are also investigated. The work aims to show
that, the two opposing torques modeled to be generated from
the plantar flexors could elicit freezing and chaotic behavior.
The ability of these torques to generate freezing behavior
has been shown first in a simplified biped model described
using Equations (15)–(16), and then in the inverted pendulum
model generated by Equations (19)–(22). As argued previously
the inverted pendulum dynamics sufficiently captures the PD
walking scenario. The results are presented in the sequel to
support this hypothesis. Also, walking is the process of moving
the CoM by pushing the stance leg forward, and the inverted
pendulum model helps to study the effect of the stance leg
independent of other variables. A range of values for the
constants τl, τr , and φ have been analyzed, such that the trend
in behavior is clear to understand. The range in which the

behavior of the map f̃ω changes the number of periodic orbits
from “0” to “more than one” in lower absolute value of angular
velocity conditions, is given Table 1. Simulations are carried out
to understand the behavior of the system over and above this
range. But it may be noted that the maximum value of the
torque for l = 0.6 m., θreset = −0.1 rad. is approximately
0.23|τr| N m and 2|τl| N m in forward and backward directions,
respectively. Hence, in this case, forward pushing plantar flexors
has to generate 8.7 times the “premature activation of plantar
flexors” to nullify the effect if the phase is matched exactly.
Physiologically the minimum value of these torques is zero and
the maximum is subject-specific.

4.1. Freezing in a Biped Model
The hybrid system (Equations 1–2) defined by the Equations
(15)–(16) are simulated numerically and the results are shown
in Figures 5A,B. The figure shows normal walking for the
first few steps and then freezing afterwards (highlighted). The
gradual reduction in step length observed experimentally prior
to freezing (Nutt et al., 2011) is also observed in the model.

TABLE 1 | Summary of qualitative behavior of the map.

No Parameter Range

simulated

Figure no Consequence of

increasing the parameter

1 τl [0, 5] Figure 10 Increased τl results in the

appearance of period 1-2-3

and higher orbits. This

results in freezing at lower

absolute angular velocity

conditions

2 φ [-6.28, -1.28] Figure 11 Increase in φ results in the

period doubling bifurcations

as described in the

Figure 9. When everything

else remains constant a

variation in φ results in

freezing and high variability

in walking.

3 τr [30, 55] Figure 12A Increased τr results in

disappearance of period

1-2-3 and higher orbits. This

is one of the ways in which

the patients get out of a

freeze

4 θreset [0.05, 0.15] Figure 12B Increased step length

results in freezing region

change its location on the

map, from low initial

absolute angular velocity to

a higher absolute angular

velocity initial conditions.

There are two dissipative forces in this model; they are, the
opposing torques due to the plantar flexors and the dissipation
at the heel strike. Long-range walking will be achieved when
the speed gain in every step compensate these two effects.
The dissipative effect of the heel strike can’t be controlled by
the neuromuscular system, but the effect of plantar flexors
can. Figures 6A,B illustrates the effect of the plantar flexors in
this regard.

A simulation was carried out for a 10 s window and the time
difference between, the start of the simulation and the time of the
last heel strike before the freezing event (as defined in remark 1),
has been computed. This is shown as a function of the parameters
τl and τr in Figure 6A. The blue shades indicate eventual freezing
and shorter walking time and the yellow region is the safer non-
freezing region. There is an intermediate region of parameter τl
and τr in which the walking happens without freezing in the 10 s
window. A higher value of τl necessitates a higher τr for walking.
But a very high τr doesn’t necessarily produce balanced walking
as it can result in a lack of coordination between the swing leg
and the stance leg. Although the initial value problem (IVP) in
Figure 6A and boundary value problem (BVP) in Figure 6B can’t
be directly compared, they show analogous qualitative results.
That is, to achieve the same speed gain [or kinetic energy (KE)
gain] a higher τl demands a higher τr . A key aspect of PD freezing
is, therefore, the inability of the two plantar flexors to coordinate
to produce the required energy. From an energy point of view,
the role of the swing leg is mainly in the generation of ankle push

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 October 2020 | Volume 8 | Article 552635

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Parakkal Unni et al. Modeling PD Gait

FIGURE 5 | Results of numerical simulation of the biped during freezing. Parameters are chosen to be τl = 2.3 N m, τr = 15.74 N, φ = −π/2 rad. and initial

conditions θ2(0) = −0.1 rad., θ1(0) = 0.1 rad., ω2(0) = 2 rad. s−1, ω1(0) = −0.6 rad. s−1. The change in the θreset in every step and gradual reduction in θ1 nearer to a

freezing event is evident. (A) Simulated time series of the states θ1 and ω1. Region of slowing down and freezing is highlighted (B) Shows numerical simulation of

biped in the phase plane.

FIGURE 6 | (A) A simulation was carried out for a time window of 10 s, and the total time walked before freezing was computed. This time is plotted as a function of τl
and τr . The initial conditions are set to be θ2(0) = −0.1 rad., θ1(0) = 0.1 rad., ω2(0) = 1 rad. s−1, ω1(0) = −0.6 rad. s−1 and φ = −π/2 rad. The yellow region forms

the optimal region of the parameters τl , τr where walking is achieved. (B) Contour plot of the difference in speed(|ω(0)| − |ω(0.5)|) as a function of τl and τr determined

by solving a BVP numerically with θ0
0 = 0 and θ0.5

1 = −0.1 rad. for the biped model with the other initial conditions being θ0
2 = −0.1 rad., ω0

2 = 1 (and φ = −π/2 rad.).

This illustrates a decrease in the speed and therefore kinetic energy when there is an increase in τl and a decrease in τr .
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of force. In the following sections, the dynamics of the stance
leg is studied independently using an inverted pendulum model,
reducing the role of the swing only as a supplier of the ankle
push-off force.

4.2. Freezing in an Inverted Pendulum
Model
Freezing is defined as the condition where there is no more
forward motion of the leg. Numerical simulation of such a
scenario in the inverted pendulum model is shown in Figure 7A

where there is a freezing episode after 18 s. A gradual reduction in
step length observed in the bipedmodel translate to the increased
time taken in making the final few steps before freezing. The
simulation in the phase plane for the last three steps is shown
in Figure 7B. The dissipative torques due to the opposing plantar
flexors act in the same way in the case of the inverted pendulum
model. Figures 8A,B illustrate this similarity, where, an increased
τr generates higher speed gains and, an elevated τl results in lower
speed gains and lower total walk times. This is because increasing
parameter τr heightens the forward ankle push-off while larger
τl amplifies the dissipative torque. A key difference between the
inverted pendulum model and the biped model is that a higher
τr will not result in an imbalance in the former as there is no
swing leg in that model, while there is a lack of balance in the
latter. The contour plot of the speed differences as a function of
τl and τr is shown in Figure 8B. The figure shows that a higher
value of τl and a lower value of τr result in negative speed gain

(reduction in KE). Numerical simulation of the total time of the
walk, defined as the difference between the time in which the
first step is taken and the last step before freezing in 10 s is
shown in Figure 8A. More than 9 s of walking is indicative of
the fact that there is no freezing in that parameter range in that
time frame. A higher τr and lower τl results in better walking
performance as in the case of a biped. Therefore, energetically,
PD related behavior that is of interest is analogous in the case
of inverted pendulum and biped model. Therefore, the analytical
solution of the inverted pendulum model is investigated further
to understand the consequence of the change in parameters
τl, τr and φ. These parameters are controlled by the neural system
while others such as mass of the body and length of the legs
are not. The quantity θreset differentiates the inverted pendulum
model from the biped model. Hence, the effect of this parameter
is also studied.

4.3. Parameter Exploration of the Inverted

Pendulum: Study of the Map f̃ω
The neural control on the muscles alters the magnitude and
the phase of the control signals. Exploration of the parameters
τl, τr , and φ, therefore, reflects the effect of the neural control on
walking dynamics. One of the hypotheses that are investigated
through the model is that of the generation of variability
through the premature activation of the plantar flexors. We have
quantified the phase difference of the “premature” activation
using the parameter φ in the model. Figure 9 shows the

FIGURE 7 | Simulation of the inverted pendulum dynamics for the parameter values φ = −π/2 rad., ω0 = −1 rad. s−1, τl = 2 N m, τr = 11 N. Freezing occurs after

18 s. (A) States θ and ω as a function of time (10–20 s). Region of slowing down and freezing is highlighted. (B) Numerical simulation of the inverted pendulum states

in the phase plane for 16–20 s.
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FIGURE 8 | (A) A simulation was carried out for a time window of 10 s, and the total time of walking before freezing was computed. This time is plotted as a function

of τl and τr . The angle is reset when θ (t) = −0.1 rad. and φ = −π/2 rad. The colors indicate the duration of the walk (see the legend). (B) Contour plot of difference in

speed (|ω(0)| − |ω(0.5)|) as a function of τl and τr determined by solving a BVP with θ0 = 0 rad. and θ0.5 = −0.1 rad. (and φ = −π/2 rad.) in Equation (1)–(2) using

definitions in Equation (19)–(22). This illustrates a decrease in the speed and therefore KE when there is an increase in τl and a decrease in τr .

FIGURE 9 | Stable ω is shown as a function of the parameter φ for ω0 = −0.433 rad.s−1, τl = 5 N m, τr = 35 N. The Feigenbaum bound was found to be at

φ = −1.37 rad. where walking becomes fully chaotic. The period-doubling cascade has been highlighted and enlarged. This chaotic region forms only a small part of

the overall parameter space of φ. This region is sandwiched between the walking and the freezing regions indicated in red.
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bifurcation diagram of the parameter φ in the range 0 to −2π
for constant values of τl and τr . A period-doubling route to
chaos can be observed when φ is varied between −5π /8 and
−π/4. The map f̃ω is iterated for 500 walking cycles and the
last 50 walking cycles are used to compute the equilibrium
points. The Feigenbaum bound is found to be at φ = −1.37
rad. at which walking becomes fully chaotic. This indicates that
the premature activation (or lack of coordination between the
muscles) can generate highly variable behavior in the system
despite deterministic neural signals. The region of chaotic φ is
sandwiched between the periodic orbits and freezing region. This
suggests a higher variability in walking likely arising from a shift
in φ (early activation of plantar flexors) must be treated with
caution. Figure 9 shows the presence of chaos in the system
for carefully selected parameter values. Its presence and stability
are illustrated for other parameters values and initial conditions
using a set of maps in Figures 10–12B and bifurcation diagrams
in Figures 13A–D. A summary of the insights obtained from
the maps are given in the Table 1. The presence of a period 3
orbit in a one-dimensional map is indicative of other periodic
orbits and chaos. The presence of horseshoe in any of the
period 1, 2,..., n maps also indicates chaos. An illustration of
the presence of horseshoe for a set of parameter values is given

in Supplementary Section 2. The intersection of the f̃ 1ω , f̃
2
ω , f̃

3
ω

maps with ωn = ωn+1 indicate period 1, 2, 3 orbits, respectively.
Figures 10–12B illustrate how the maps change with respect to
the change of parameters.

Variation of the parameter τl or the magnitude of premature
activation (as φ is set to -1.57 rad.) results in a set of rich dynamic
behaviors as shown in Figure 10. The presence of the periodic

orbits starts appearing approximately around τl ≈ 3 N m,
where, the maps tangentially intersect the ωn = ωn+1 line. The
intermittency thus generated could elicit a period of slow walking
(as ωn and ωn+1 are less than -0.5 rad. s−1) as observed in PD.
The period 3 orbits are generated upon a further increase in τl.
As can be seen from the maps in Figures 10–12B, a higher initial
value of ωn (e.g., ωn > 0.45 rad. s−1 for τl ≈ 3 N m) results in
a further increase in ωn+1 and gets attracted toward the periodic
orbit of higher absolute value of angular velocity. This explains
how swaying back and forth helps the PD patients in getting out
of a freeze. Increasing τr results in almost opposite behavior as
that of τl (Figure 12A). Varying φ can result in chaotic behavior
as shown in Figure 9, and, Figure 11 indicates the variation in
the maps which leads to this behavior. The neural control of the
activity of plantar flexors is not explicitly modeled here. However,
coming out of freeze could be the result of an increase of τr or
decrease τl or increased initial absolute angular velocity generated
by swaying. A low absolute value of angular velocity (voluntary or
involuntary) or decrease of τr or increase of τl results in freezing
(angular velocity moving to the region where ωn = 0 rad. s−1).
This explains the higher chances of freezing episodes even when
the subject reduces the velocity (voluntarily/involuntarily) near
narrow passages. Increase in the step length or |θreset| results
in freezing at comparatively higher absolute angular velocities
(Figure 12B). But it may be noted that, typically, an increased
step length is also associated with an increased absolute angular
velocity due to inertia and therefore could be beneficial. There is
likely an optimum step length for every subject as there is a trade-
off between fatigue and initial angular velocity, which warrants
further study.

FIGURE 10 | Maps obtained by varying the parameter τl and fixing τr = 35 N, φ = −1.57 rad., θreset = −0.1 rad. The black, green, and red curves represent

f̃1ω , f̃
2
ω , f̃

3
ω , respectively, and the ωn = ωn+1 is shown in blue. The curves intersect the blue line at a higher absolute value of angular velocity forming an attractor, this is

not shown in the figure. There are no periodic orbits for the low velocity regimes for τl = 0− 2 N m but they appear afterwards. Units:

τl , τr , ω, φ, θreset and step length has units N m, N, rad. s−1, rad., rad., and rad., respectively, when not specified.
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FIGURE 11 | Varying the parameter φ and fixing τr = 35 N, τl = 5 N m, θreset = −0.1 rad. The black, green, and red curves represent f̃1ω , f̃
2
ω , f̃

3
ω , respectively, and the

ωn = ωn+1 is shown in blue. The curves intersect the blue line at a higher absolute value of angular velocity forming an attractor, this is not shown in the figure.

Creation of the periodic orbits and its coexistence is observed. Units: τl , τr , ω, φ, θreset and step length has units N m, N, rad. s−1, rad., rad., and rad., respectively,

when not specified.

4.4. Bifurcations of the One Dimensional
System for the Inverted Pendulum Model
Even though for most of the regions, the slope of the map in
relation to the ωn = ωn+1 can be identified visually, the stability
of the system is not explicitly studied in the previous section.

The contour of f̃ nω (x, τl, τr ,φ) = x for n=1 and 3 are plotted
for variation in parameters in Figures 13, 14, respectively. The
stability is computed by taking the derivatives (numerically) for
themaps described in Figures 10–12B. These contours show how
the points of intersection with ωn = ωn+1 line for the maps
shown in Figures 10–12B change upon variation in parameters.

Period one orbits are the normal walking cycles. The existence
of these orbits in both low and high angular velocity conditions
and different parameter variations are shown in Figure 13. In
Figure 13A, two fixed points comes closer to each other and
completely vanish for high values of τl resulting in a complete
lack of periodic solutions. Typically walking could be ascribed
to the stable region for periodic orbits, but, when ω0 is lower,
and τl is non-zero, another periodic point emerges in the low-
velocity regimes. This, therefore, results in slow-walking regions
which under perturbations could lead to freezing. Also, at low-
velocity regimes, the region is discontinuous and unstable for
small perturbations of the parameter values or initial conditions.
The stable periodic orbit moves to lower absolute value of angular
velocities as τl is increased and eventually disappears.

The behavior observed while decreasing τr is analogous to
increase in τl. Figure 13B illustrates how changing τr and ω0

results in creation/destruction of the periodic orbits. It can be
seen that at a sufficiently low value of τr the periodic orbit
disappears. A higher value of τr results in the separation of the

periodic orbits resulting in higher stable walking angular speeds.
A similar behavior could be observed while decreasing τl in
Figure 13A.

Initial angular velocity plays a major role in the behavior of
the system. The effect of neural control parameters τl and τr in
generating periodic behavior has been illustrated for lower and
higher absolute angular velocity conditions in Figures 13C,D,
respectively. In Figure 13C, the periodic orbit appears stable
only for a tiny fraction of the parameters space. This is due
to the highly discontinuous map shown previously. Conversely,
at higher initial angular speeds the period one orbit is stable
as shown in Figure 13D. It can be seen that an increase in
τl moves the periodic orbit into an unstable region resulting
in the possibility of a freeze. The presence of these orbits
could only be seen in the low-velocity regions of the maps.
Orbits of minimal period three indicate chaos and the presence
of every other periodic orbits (Glendinning, 1994). The period 3
orbits for the variation of the parameters τl and τr is shown in the
Figure 14. The Period 3 orbit is shown in blue and the period one
in yellow.

5. DISCUSSION, SUMMARY, AND FUTURE
WORK

Freezing of gait results from a complex set of interacting
physiological systems which consist of the brain, spinal cord,
musculoskeletal system and external disturbances (Nutt et al.,
2011). The model explains how a lack of coordination between
central pattern generators of the plantar flexors of the leading leg
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FIGURE 12 | Variations of the parameters τr and θreset are depicted in Figures 12A,B, respectively. Units: τl , τr , ω, φ, θreset and step length has units N m, N, rad.

s−1, rad., rad., and rad., respectively, when not specified. (A) Varying the parameter τr keeping τl = 5 N m,φ = −1.57 rad., θreset = −0.1 rad. fixed. The black, green,

and red curves represent f̃1ω , f̃
2
ω , f̃

3
ω , respectively, and the ωn = ωn+1 is shown in blue. The curves intersect the blue line at a higher absolute value of angular velocity

forming an attractor, this is not shown in the figure. Increasing τr has an analogous behavior as decreasing τl . (B) Varying the parameter θreset keeping

τr = 35 N, φ = −1.57 rad., τl = 0.5 N m. The black, green and red curves (overlapped) represent f̃1ω , f̃
2
ω , f̃

3
ω , respectively, and the ωn = ωn+1 is shown in blue. The

curves intersect at a high absolute value of angular velocity. The unstable region moving to the higher absolute value of angular velocities (moving to the left) can be

observed while |θreset| is increased.

and trailing leg (Nieuwboer et al., 2004) could lead to freezing
and variability of walking.

A model of the torques generated by the plantar flexors
acting on the stance leg has been proposed, and its effect
on a biped and a reduced inverted pendulum model has
been studied. The pattern of freezing observed in the model
matches well with the behavior observed experimentally7

in Nutt et al. (2011) and Figure 5A). The equilibrium
point description (Feldman, 1986; Sainburg, 2015) of the
control of the muscles is avoided here and instead, we

7Here we are referring to the Figure 1 in Nutt et al. (2011). Source of the

figure :https://pubmed.ncbi.nlm.nih.gov/21777828/#&gid=article-figures&pid=

figure-1-uid-0

opted for an explicit control signal. However, variabilities
in the “torque-length-characteristics” (Feldman, 1986) for a
particular (set of) equilibrium point (points) can generate
torques required for motion. Therefore, a parallel between
the equilibrium point hypothesis of postural balance and
our model can be drawn if the torques prescribed in the
model are assumed to be the result of variabilities in the
“torque-length-characteristics.”

Chaotic regions are observed to be closer to those regions
where freezing ensues. In the inverted pendulum model,
these regions show up only at low absolute angular velocity
initial conditions. This may explain why freezing is a “rarely”
occurring intermittent condition. This also may explain why
freezing happens near obstacles or narrow paths where the
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FIGURE 13 | Period one orbits are shown by varying τl and τr for two different values of initial angular velocities in (C,D). Period one orbits found by varying τl and ω0

is shown in (A). Period one orbits found by varying τrand ω0 is shown in (B). The parameter values used are given in the respective figures. The green region shows

the stable region where
˙̃
fω < 1. The stable periodic regions are the ones where the green region overlap the curves of the periodic orbits. Units:

τl , τr , ω, φ, θreset and step length has units N m, N, rad. s−1, rad., rad., and rad., respectively, when not specified. (A) φ = −π/2 rad., τr = 40 N, θreset = −0.1 rad.

(B) φ = −π/2 rad., τl = 5 N m, θreset = −0.1 rad. (C) φ = −π/2 rad., ω0 = −0.4 rad. s−1,

θreset = −0.1 rad. (D) φ = −π/2 rad., ω0 = −1 rad. s−1,

θreset = −0.1 rad.

subject voluntarily slows down to reduce the probability
of collision. Obstacles could be either perceived or real.
Hence, even though the pattern of freeze remains the same

the causes could be varied. It might even be possible
that the control of τl is driven by perceived obstacles or
anxiety about the consequence of freezing (Ehgoetz Martens
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FIGURE 14 | Constant parameters used are φ = −π/2 rad., ω0 = −0.4 rad.

s−1, and θreset = −0.1 rad. The stable period 3 region is shown in green. The

intersection of the period 3 orbits (in blue) and the stable regions form the

region of stable period three orbits. The presence of period 3 orbits implies

orbits of all other periods and therefore chaos.

et al., 2014; Martens et al., 2016). Increase in τl, therefore,
could be thought to be indirectly influenced by anxiety and
perceived obstacles. However, this hypothesis warrants further
experimentation.

Varying the parameter step length which controls the stride
length is observed to affect the maps and therefore the freezing
regions. The results indicated that keeping the steps closer to each
other such that |θreset| is minimized, is safer for the PD patient.
The stability of the period 2 & 3 orbits are highly sensitive to small
variations of parameters (φ, τr , τl) which are proposed to be the
reason for sporadic variabilities in gait seen in PD subjects. We
also hypothesize that stable low absolute angular velocity regions
of the state space for some parameter values form a “cantor set”
and necessitates further study.

It can be speculated that a reason for the observed help
of auditory/sensory cues (Rochester et al., 2005; Young et al.,
2014; Amini et al., 2019) in reducing instances of freezing, is
by indirectly forcing PD patients to make shorter steps with
lesser variability, thus reducing the possibility of moving into
the freezing region of walking. Variability in the walking times
observed in the Inverted pendulummodel translates to variability
in step lengths in the biped model. Biped model shows a more
complicated dependence on the parameters to eventual freezing
(Figure 6A). This dependence is also a function of the initial
conditions and could be investigated further in future work along
with detailed bifurcation analysis.

The CPG activity is controlled by feedback mechanisms
with delays, noise and input from the brain (which in turn
is affected by different factors, including emotional state).
The ground and other environmental conditions also play
a role in walking. These variabilities are not accounted for

in our model, which represents a limitation of the study.
Like any other studies which are based on a mathematical
model and numerical simulations, our results and conclusions
also might not necessarily represent the entire spectrum of
patients. Further extensive patient-based studies are to be
performed prior to use of these ideas for the treatment of
PD gait. As future work, a more detailed model is planned to
include these variabilities. The future models will be compared
with the simpler versions to understand the minimum set of
variables generating the abnormal walking behavior. The key
aspects explained using the proposed model can be summarized
as follows

1. The higher variability in PD patients could be the result of
parameters being closer to the point of chaos. A further change
of the parameters can result in freezing. Therefore, increased
variability should be looked at with caution (clinically)
and should be treated to reduce it. The difficulty in the
prediction of freezing also owes to the horseshoe near the
freezing regions.

2. The pattern of reducing the step-sizes before freezing has
been shown to be the result of slowing down (Figure 5A).
Voluntary/involuntary reduction in angular velocity (in
absolute terms) near the obstacles makes the subject more
susceptible to freezing and highly irregular walking.

3. One plausible reason why sensory cues such as auditory or
visual cues help in freezing is by reducing step lengths.
The proposed model shows that the reduction in step length
helps in reducing freezing episodes at lower absolute value of
angular velocity conditions as it moves the patient away from
the freezing region. Further experimental study is needed to
understand the clinical applicability.
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