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Assessment of metabolic cost as a metric for human performance has expanded
across various fields within the scientific, clinical, and engineering communities. As
an alternative to measuring metabolic cost experimentally, musculoskeletal models
incorporating metabolic cost models have been developed. However, to utilize these
models for practical applications, the accuracy of their metabolic cost predictions
requires improvement. Previous studies have reported the benefits of using personalized
musculoskeletal models for various applications, yet no study has evaluated how model
personalization affects metabolic cost estimation. This study investigated the effect
of musculoskeletal model personalization on estimates of metabolic cost of transport
(CoT) during post-stroke walking using three commonly used metabolic cost models.
We analyzed walking data previously collected from two male stroke survivors with
right-sided hemiparesis. The three metabolic cost models were implemented within
three musculoskeletal modeling approaches involving different levels of personalization.
The first approach used a scaled generic OpenSim model and found muscle
activations via static optimization (SOGen). The second approach used a personalized
electromyographic (EMG)-driven musculoskeletal model with personalized functional
axes but found muscle activations via static optimization (SOCal). The third approach
used the same personalized EMG-driven model but calculated muscle activations
directly from EMG data (EMGCal). For each approach, the muscle activation estimates
were used to calculate each subject’s CoT at different gait speeds using three metabolic
cost models (Umberger et al., 2003; Bhargava et al., 2004; Umberger, 2010). The
calculated CoT values were compared with published CoT data as a function of
walking speed, step length asymmetry, stance time asymmetry, double support time
asymmetry, and severity of motor impairment (i.e., Fugl-Meyer score). Overall, only
SOCal and EMGCal with the Bhargava metabolic cost model were able to reproduce
accurately published experimental trends between CoT and various clinical measures
of walking asymmetry post-stroke. Tuning of the parameters in the different metabolic
cost models could potentially resolve the observed CoT magnitude differences between
model predictions and experimental measurements. Realistic CoT predictions may
allow researchers to predict human performance, surgical outcomes, and rehabilitation
outcomes reliably using computational simulations.
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INTRODUCTION

Metabolic cost has been used to evaluate human performance
during daily activities such as walking (Waters and Mulroy,
1999; Donelan et al., 2002, 2008; Mian et al., 2006; Long and
Srinivasan, 2013) and athletic activities such as running (Roberts
et al., 1998; Chang and Kram, 1999; Teunissen et al., 2007; Franz
et al., 2012; Long and Srinivasan, 2013) and cycling (Davies,
1980; Gnehm et al., 1997; Neptune and Van Den Bogert, 1997;
McDaniel et al., 2002; van der Woude et al., 2008). Metabolic
cost is defined as the energy consumed by the body during a
given activity, a quantity that has also been adopted as a metric
to evaluate the design or operational settings of assistive devices
(Malcolm et al., 2013; Collins et al., 2015; Galle et al., 2017).
Additional applications for which knowledge of metabolic cost
is useful include: prescription of training intensities (American
College of Sports Medicine, 2000), advancement of geriatric
medicine (Mian et al., 2006; Canavan et al., 2009; Corbett et al.,
2017), treatment of clinical gait disorders (Waters and Mulroy,
1999), and monitoring of energy intake and expenditure in obese
patients (Brychta et al., 2010). Various methods exist to measure
metabolic cost, with the two most popular being indirect and
direct calorimetry. Direct calorimetry measures metabolic cost
using a calorimeter and is the most accurate method. However,
its usage is limited due to the cost of dedicated equipment
and the need for specific expertise to acquire and interpret the
data. In contrast, indirect calorimetry estimates metabolic cost by
measuring respiratory gases influenced by the body’s metabolism
(Lam and Ravussin, 2016). Although indirect calorimetry is
more affordable than direct calorimetry, the trade-off is reduced
accuracy. Regardless of the method, the various applications
of metabolic cost measurement often require subjects to walk
repeatedly for long periods of time, limiting the participation
of subjects with severe impairments or who quickly fatigue
(Markovitz et al., 2004; Awad et al., 2017).

With advances in computational biomechanics,
musculoskeletal models incorporating metabolic cost models
have emerged as tools to estimate metabolic cost. These tools
have been used to predict human movement and response to
mechanical interventions (Uchida et al., 2016; Falisse et al.,
2019). Although the creation and calibration of musculoskeletal
models involves high computational cost, once a subject-specific
model is created, it is easier, faster, and cheaper to evaluate
various treatment options in silico. Specifically, within the field
of exoskeleton design, musculoskeletal models can eliminate the
time and expense of iteratively designing and building physical
prototypes. Uchida et al. (2016) used the OpenSim simulation
framework (Seth et al., 2018) to optimize the design of an assistive
device intended to reduce the metabolic cost of running. Dembia
et al. (2017) simulated an ideal assistive device to minimize the
metabolic cost of several individuals walking with heavy loads.
Fey et al. (2012) developed an optimization to identify an optimal
prosthetic foot stiffness to minimize metabolic cost for amputee
walking. Miller et al. (2013) used direct collocation optimal
control to predict a gait pattern that reduced metabolic cost
while minimizing peak axial knee contact force. By predicting
the factors, designs, or movements that minimize metabolic

cost, these studies highlight the potential benefits of combining
musculoskeletal and metabolic cost models. However, for these
predictions to be used for practical applications, they need to be
validated against experimental measurements. Studies that have
performed a direct comparison between measured and predicted
metabolic cost have reported noticeable differences depending
on the metabolic cost model chosen (Miller, 2014; Koelewijn
et al., 2019), emphasizing the need to improve either the accuracy
of existing metabolic cost models, the fidelity of the associated
musculoskeletal models, or both.

Previous studies that estimated metabolic cost during walking
have focused on using scaled generic musculoskeletal models.
However, several studies have reported that personalization of
anatomical and physiological characteristics of a musculoskeletal
model can influence prediction of muscle forces, joint moments,
and novel movements, factors that also play a role in metabolic
cost calculations. Reinbolt et al. (2007) found that personalization
of the joint functional axes is important for obtaining reliable
inverse dynamic joint moments. Several studies (e.g., Lloyd and
Besier, 2003; Buchanan et al., 2005; Shao et al., 2009; Sartori
et al., 2012; Meyer et al., 2017) reported large improvements in
joint moment matching when muscle force-generating properties
were personalized using an electromyographic (EMG)-driven
model. Gerus et al. (2013) demonstrated that personalizing knee
geometry and corresponding muscle-tendon model parameter
values resulted in improved predictions of knee contact force
compared to predictions generated by a generic model. Since
muscle force estimates depend on joint moments, and the
production of muscle forces and activations depends on
muscle-tendon model parameters, the confounding effect of
model personalization may also affect metabolic cost estimates.
However, to the best of the authors’ knowledge, no study to date
has explored this possibility.

This study evaluated the influence of musculoskeletal model
personalization on metabolic cost estimates of walking post-
stroke. To evaluate the physical realism of different metabolic
cost modeling methods, we compared metabolic cost estimates
to trends reported in the literature for individuals post-stroke.
Finley and Bastian (2017) reported a decrease in metabolic cost
as walking speed increased and severity of motor impairment
decreased. For the same subject population, Finley et al. (2015)
and Finley and Bastian (2017) also reported that metabolic cost
increased as asymmetries in step length, stance time, and double
support time increased. To compare with these experimental
trends, the present study calculated metabolic cost estimates
using extensive gait data sets collected previously from two
individuals post-stroke for whom metabolic cost measurements
were not available. Our goal was to determine whether any
combination of musculoskeletal modeling method and metabolic
cost modeling method could reproduce all five physically
realistic metabolic cost trends observed in the literature.
Since metabolic cost has been adopted as a tool in various
scientific, clinical, and engineering fields to evaluate human
performance, surgical outcomes, and rehabilitation outcomes,
the results of this study may be useful for identifying which
modeling methods are most likely to predict physically realistic
metabolic cost estimates.
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MATERIALS AND METHODS

Experimental Data and Data Processing
Experimental walking data collected from two male stroke
survivors–one high functioning and one low functioning–were
used as inputs to the metabolic cost analyses (see Table 1
for subject characteristics). Data collected from both subjects
included marker-based motion, ground reaction, and surface
and fine-wire EMG data (Table 2, 16 channels per leg). The
data were collected at different walking speeds using a split-belt
instrumented treadmill with belts tied. Walking speeds ranged
from slower than self-selected to a maximum comfortable speed.
For the high functioning subject, the speed range was from
0.4 to 0.8 m/s in increments of 0.1 m/s, while for the low
functioning subject, the speed range was from 0.35 to 0.65 m/s
also in increments of 0.1 m/s. Additional experimental data
were also collected for static and isolated joint motion trials.
A static standing trial was collected for model scaling purposes.
Isolated joint motion trials were collected for each hip, knee, and
ankle for purposes of personalizing the model’s lower body joint
centers and functional axes. All functional axes for the joint of
interest were exercised during each isolated joint motion trial
(Reinbolt et al., 2005, 2008).

The experimental data were processed using standard
methods. The ground reaction and marker motion data were
low-pass filtered using a fourth-order zero-phase lag Butterworth
filter with a cut-off frequency of 7/tf Hz (Hug, 2011), where

TABLE 1 | Clinical characteristics of study participants.

Gender Age Paretic Limb Lower Limb
Fugl-Meyer

Self-Selected
Speed (m/s)

M 79 R 32 0.5

M 62 R 25 0.35

TABLE 2 | Muscle groups from which a surface or fine-wire (*) EMG signal
was recorded.

High Functioning Subject Low Functioning Subject

*Adductor Longus *Adductor Longus

Gluteus Maximus Gluteus Maximus

Gluteus Medius Gluteus Medius

*Iliopsoas *Iliopsoas

Semimembranosus Semimembranosus

Biceps Femoris Long Head Biceps Femoris Long Head

Rectus Femoris Tensor Fasciae Latae

Vastus Lateralis Rectus Femoris

Vastus Medialis Vastus Lateralis

Gastrocnemius Medialis Vastus Medialis

*Tibialis Anterior Gastrocnemius Lateralis

Tibialis Posterior Gastrocnemius Medialis

Peroneus Longus Tibialis Anterior

Soleus *Tibialis Posterior

*Extensor Digitorum Longus Peroneus Longus

*Flexor Digitorum Longus Soleus

tf is the period of the gait cycle being processed (Meyer et al.,
2017). On average, this variable cut-off frequency caused data
collected at a normal walking speed to be filtered at approximately
6 Hz. The EMG data were high-pass filtered (40 Hz), demeaned,
rectified, and low-pass filtered (3.5/tf Hz) using a fourth-order
zero-phase lag Butterworth filter. EMG amplitudes for each
muscle were normalized to the maximum value over all trials
and resampled to 101 time points per gait cycle, as described in
Meyer et al. (2017).

Musculoskeletal Model
A generic full-body OpenSim musculoskeletal model (Rajagopal
et al., 2016; Seth et al., 2018) served as the starting point for
all three metabolic cost analyses. The generic model used for
both subjects started with 40 Hill-type muscle-tendon actuators
per leg and 37 degrees of freedom (DOFs), including: 3 DOF
hip joints, 1 DOF knee joints, 2 DOF ankle joints. For the
high functioning subject, six muscles without related EMG
data were eliminated (extensor hallucis longus, flexor hallucis
longus, gracilis, piriformis, sartorius, tensor fascia latae). For
the low functioning subject, seven muscles without related
EMG data were eliminated (extensor digitorum longus, flexor
digitorum longus, extensor hallucis longus, flexor hallucis
longus, gracilis, piriformis, sartorius). The remaining muscles
actuated hip flexion-extension, hip adduction-abduction, hip
internal-external rotation, knee flexion-extension, ankle flexion-
extension, and ankle inversion–eversion on each leg.

Joint Model Personalization
Personalization of the joint functional axes for the hip, knee, and
ankle of each leg was performed by following a two-step process.
First, the geometry of the generic OpenSim model was scaled to
match the dimensions of each subject using the OpenSim Scale
Model tool and the static standing trial data. Second, marker
positions and functional axes of the model’s lower body joints
were personalized as described in Reinbolt et al. (2005, 2008),
Meyer et al. (2016), and Sauder et al. (2019). The personalization
process involved using non-linear optimization to adjust the
positions and orientations of the model’s lower body joints and
marker triads placed on the body segments. The cost function
minimized the sum of squares of errors between the experimental
and model marker positions from all isolated joint motion
trials and one walking trial analyzed together. The optimization
process was performed using Matlab’s lsqnonlin algorithm, which
iteratively ran OpenSim Inverse Kinematics analyses to calculate
marker location errors.

Muscle-Tendon Model and Geometry
Personalization
Experimental data from ten gait trials collected at each available
walking speed were used to calibrate an EMG-driven model
of both legs for each subject. Before performing EMG-driven
model calibration, we analyzed marker data from each gait trial
using the OpenSim Inverse Kinematics tool to generate joint
angle trajectories. The OpenSim Inverse Dynamics tool was
then used to calculate the joint moments produced by muscle
forces. Next, a surrogate model of each subject’s musculoskeletal
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geometry was generated to allow the EMG-driven model to
modify musculoskeletal geometry (Meyer et al., 2016, 2017).
The surrogate model was developed by sampling a wide range
of joint angle combinations for the lower limbs using a Latin
hypercube design. Muscle-tendon lengths and moment arms for
each muscle were then calculated using the OpenSim Muscle
Analysis tool. Linear regression using least squares was used to
fit muscle-tendon lengths and moment arms simultaneously as
related polynomial functions of the corresponding joint angles
actuated by each muscle. Each muscle-tendon moment arm
polynomial was defined to be the first derivative of the related
muscle-tendon length polynomial with respect to the associated
joint angle (An et al., 1984). Muscle-tendon velocity was defined
as the first derivative of the resulting muscle-tendon length
polynomial with respect to time.

To personalize the model’s muscle-tendon force-generating
properties, we allowed our EMG-driven model calibration
process to modify three types of parameters: EMG-to-activation
parameters (electromechanical delays, activation dynamics
time constants, activation non-linearization shape factors, and
EMG scale factors), Hill-type muscle-tendon model parameters
(optimal muscle fiber lengths and tendon slack lengths), and
surrogate musculoskeletal geometry parameters. Using Matlab’s
fmincon algorithm with sequential quadratic programming, we
adjusted the model parameter values to best match calculated
experimental inverse dynamic joint moments and published
passive joint moments (Silder et al., 2007). In addition, penalty
terms were added to the cost function to discourage substantial
divergence of model parameter values from their original values
(Supplementary Tables S1, S2). A detailed description of our
EMG-driven modeling approach can be found in Meyer et al.
(2017) as well as in the Supplementary Material.

Metabolic Cost Analysis
To evaluate the extent to which model personalization affects
estimated metabolic cost, we developed three musculoskeletal
models for each subject with varying levels of personalization.
The least personalized model was a scaled generic OpenSim
model where muscle activations were calculated via static
optimization using quadratic programming (SOGen)
(Supplementary Figure S1; Shourijeh and Fregly, 2020). The
intermediate personalized model used the subject’s calibrated
EMG-driven model but with muscle activations found via
static optimization (SOCal) (Supplementary Figure S2). The
most personalized model again used the subject’s calibrated
EMG-driven model but with muscle activations calculated
from the subject’s experimental EMG data (EMGCal) (Figure 1
and Supplementary Figure S3). The muscle activations found
by each approach were used to calculate each subject’s cost
of transport (CoT in J/m/kg) for different gait speeds using
metabolic cost models published by Umberger et al. (2003)
(U03), Umberger (2010) (U10), and Bhargava et al. (2004) (B04).
CoT is defined as the metabolic cost expended to move a unit of
body mass a unit of distance. These three metabolic cost models
were chosen due to their popularity, where all three models
are a function of work and heat rate due to muscle activation,
muscle shortening and lengthening, and maintenance of muscle

contraction. The key difference between these models is the
assignment of negative (B04) or positive (U10 and U03) heat rate
during muscle lengthening, along with the inclusion (U03 and
B04) or exclusion (U10) of eccentric contraction work rate in the
metabolic cost calculations.

To evaluate the physical realism of each musculoskeletal
model/metabolic cost model combination, we identified five
experimental trends in the literature for how CoT varies
as a function of other clinically relevant quantities for
individuals post-stroke. The first three quantities were step length
asymmetry, stance time asymmetry, and double-support time
asymmetry, all of which have been reported to increase as the CoT
increases (Finley and Bastian, 2017). The two other quantities
were walking speed and Fugl-Meyer score, which have been
observed to decrease as the CoT increases. Asymmetries in
step length, stance time, and double-support time between the
paretic and non-paretic legs were calculated as specified in Finley
et al. (2015) and Finley and Bastian (2017), where paretic leg
values were subtracted from the non-paretic leg values and then
absolute values taken. Step length asymmetry was computed as
the difference between distance between the non-paretic foot and
the pelvis during heel strike of the non-paretic leg and distance
between the paretic foot and the pelvis at heel strike of the paretitc
leg (defined as the difference in step position in Finley et al.,
2015 and Finley and Bastian, 2017). Stance time asymmetry was
computed as the difference between duration from heel strike to
toe-off of the non-paretic leg and duration from heel strike to
toe-off of the paretic leg. Double-support time asymmetry was
computed as the difference between duration from heel strike of
the paretic leg to toe-off of the non-paretic leg and duration from
heel strike of the non-paretic leg to toe-off of the paretic leg.

We performed statistical analyses to evaluate whether trends
in CoT as a function of the five quantities described above
were different between each musculoskeletal model/metabolic
cost model combination and the experimental data published
in Finley and Bastian (2017). The selected statistical analysis
was analysis of covariance, which compared the slopes and
y-intercepts of regression models that fitted model predictions
and experimental measurements. To provide a fair comparison
with the experimental data published in Finley and Bastian
(2017), we cropped the experimental data points to within
±0.05 m/s of the maximum and minimum speeds used in our
study. This criterion was chosen to maximize the number of
experimental data points retained from Finley and Bastian (2017)
study while being consistent with the 0.05 m/s speed interval
present in our study. To examine the relationship between Fugl-
Meyer score and CoT, we first calculated the average CoT value
across all speeds and trials per subject. These values were then
compared to the average CoT values published in Finley and
Bastian (2017) for a subset of subjects whose Fugl-Meyer scores
were within ±3 of our high and low functioning subjects.

RESULTS

The ability to predict CoT trends consistent with experimental
measurements varied across the nine modeling combinations
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FIGURE 1 | Flowchart of the three different approaches used to obtain estimates of muscle activations (SOGen: red, SOCal: blue, EMGCal: black).

TABLE 3 | Analysis of covariance p-values comparing slopes of CoT versus walking speed, step length asymmetry, stance time asymmetry, and double support time
asymmetry regression lines between the nine model predictions and experimental measurements from Finley and Bastian (2017).

Umberger et al., 2003 Umberger, 2010 Bhargava et al., 2004

SOGen SOCal EMGCal SOGen SOCal EMGCal SOGen SOCal EMGCal

Walking Speed 0.018 0.000 0.000 0.013 0.000 0.000 0.001 0.073 0.213

Step Length Asymmetry 0.030 0.004 0.002 0.035 0.005 0.005 0.701 0.367 0.245

Stance Time Asymmetry 0.722 0.920 0.983 0.713 0.915 0.966 0.420 0.514 0.686

Double Support Time Asymmetry 0.171 0.061 0.071 0.094 0.050 0.045 0.701 0.601 0.975

Statistically similar slopes (p > 0.05) are shown in bold.

(Table 3 and Figures 2–5). Overall, only the Bhargava et al.
(2004) metabolic cost model predicted slopes of CoT versus
walking speed, step length asymmetry, stance time asymmetry,
and double support time asymmetry regression lines that were
statistically similar to those measured experimentally in Finley
and Bastian (2017). Within the Bhargava metabolic cost model,
p-values tended to increase as the level of musculoskeletal model
personalization increased, with the EMGCal musculoskeletal
model generally exhibiting the largest p-values and thus the
greatest statistical similarity to experimental measurements. In
contrast, the Umberger et al. (2003) and Umberger (2010) meta-
bolic cost models predicted slopes that were statistically similar to
those measured experimentally for only stance time asymmetry
and double support time asymmetry. Within the two Umberger
metabolic cost models, p-values tended to be comparable across
the three levels of musculoskeletal model personalization.

In contrast, the ability to predict CoT magnitudes
consistent with experimental measurements was weak
for all nine modeling combinations. Specifically, none of
the nine modeling combinations predicted y-intercepts of
CoT versus speed, step position asymmetry, stance time
asymmetry, or double support time asymmetry regression
lines that were statistically similar to those measured
experimentally in Finley and Bastian (2017) (all p-values < 0.05).
However, when absolute values of y-intercept differences
were calculated (Table 4), the Bhargava et al. (2004)
metabolic cost model tended to have the smallest differences,
consistent with possessing the smallest regression line offsets
relative to the experimental regression lines (Figures 2–5).
Furthermore, within the Bhargava metabolic cost model,
y-intercept differences generally decreased as the level of
musculoskeletal model personalization increased, with the
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FIGURE 2 | Comparison of model predicted (red circles) and experimentally measured (blue triangles) cost of transport as a function of walking speed. Model
predictions include all possible combinations of three musculoskeletal models possessing different levels of personalization (columns) and three metabolic cost
models (rows). Experimental measurements were obtained from Finley and Bastian (2017).

EMGCal musculoskeletal model again exhibiting the greatest
similarity to experimental measurements.

When mean CoT across speeds was compared between each
subject used in our study and subjects with comparable Fugl-
Meyer scores in Finley and Bastian (2017), the U03-SOGen,
B04-SOCal, and B04-EMGCal model combinations exhibited
the best ability to predict CoT as a function of Fugl-Meyer
score (Table 5). Specifically, for both subjects, U03-SOGen, B04-
SOCal, and B04-EMGCal predicted mean CoT values within
two standard deviations of the mean CoT value calculated for
corresponding subjects in Finley and Bastian (2017). The B04-
SOGen mean CoT value for the high functioning subject was
also within two standard deviations of Finley and Bastian’s
subjects. In addition, all nine modeling combinations predicted
a higher mean CoT value for the low functioning subject
than for the high functioning subject, in agreement with
(Finley and Bastian, 2017).

DISCUSSION

This study evaluated the effect of musculoskeletal model
personalization on metabolic cost estimates for walking
post-stroke obtained using three published metabolic cost

models: Umberger et al. (2003) (U03), Umberger (2010) (U10),
and Bhargava et al. (2004) (B04). These three metabolic cost
models were implemented within three musculoskeletal models
incorporating varying levels of personalization: scaled generic
musculoskeletal models with muscle activations found by static
optimization (SOGen), calibrated EMG-driven musculoskeletal
models with muscle activations found by static optimization
(SOCal), and calibrated EMG-driven musculoskeletal models
with muscle activations found from experimental EMG data
(EMGCal). These nine modeling combinations were investigated
using published walking data collected from two individuals
post-stroke, and trends in estimated CoT as a function of walking
speed, step length asymmetry, stance time asymmetry, and
double support time asymmetry were compared with published
experimental data collected from individuals post-stroke (Finley
and Bastian, 2017). All nine modeling combinations predicted
the correct positive and negative correlations between CoT
and the four selected quantities (excluding Fugl-Meyer score)
as observed in Finley and Bastian’s post-stroke population.
However, for the four other quantities, only the personalized
musculoskeletal models (SOCal and EMGCal) paired with the
Bhargava et al. (2004) metabolic cost model produced slopes
that were statistically similar to those calculated from Finley
and Bastian’s experimental data. Specifically, B04-EMGCal
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FIGURE 3 | Comparison of model predicted (red circles) and experimentally measured (blue triangles) cost of transport as a function of step length asymmetry
between paretic and non-paretic legs. See Figure 2 caption for additional details.

exhibited the strongest similarities to Finley and Bastian (2017)
as noted by p-values that were all greater than 0.2 (Table 3).
Although B04-SOCal and B04-EMGCal were the only modeling
combinations that produced slopes for CoT versus speed
regression lines that were statistically similar to Finley and
Bastian (2017), B04-SOCal’s p-value of 0.073 approached a
statistically significant difference. In addition, between these two
modeling combinations, B04-EMGCal produced y-intercepts for
CoT versus speed regression lines that were closest to Finley and
Bastian (2017). While we could not investigate thoroughly the
relationship between CoT and Fugl-Meyer score due to having
only two subjects in our study, B04-EMGCal was still one of
the best model combinations for consistency with (Finley and
Bastian, 2017). These findings suggest that a calibrated EMG-
driven musculoskeletal model combined with the Bhargava et al.
(2004) metabolic cost model may provide the best CoT estimates
during walking for individuals post-stroke.

In general, p-values assessing statistical differences between
predicted and measured (Finley and Bastian, 2017) regression
slopes of CoT versus walking speed, step length asymmetry,
stance time asymmetry, and double support time asymmetry
increased as the level of musculoskeletal model personalization
increased from B04-SOGen to B04-SOCal and B04-EMGCal.
Similarly, absolute differences between predicted and measured
regression y-intercepts decreased as the level of musculoskeletal

model personalization increased from B04-SOGen to B04-
SOCal and B04-EMGCal. This pattern was not observed across
musculoskeletal model personalization levels for the Umberger
et al. (2003) and Umberger (2010) metabolic cost models. For
these models, the magnitudes of predicted CoT values were
almost twice as large as the published CoT averages. These
observations can be explained by looking at the RMSE errors
between muscle activations produced by static optimization to
those obtained from the EMG-Driven model (Supplementary
Table S3). On average, SOGen produced RMSE errors of 0.13
(±0.10) for the high functioning patient and 0.14 (±0.12)
for the low functioning patient. SOCal produced RMSE
errors of 0.10 (±0.09) for the high functioning subject and
0.11 (±0.10) for the low functioning subject. Thus, SOGen
produced slightly larger RMSE errors than did SOCal. However,
due to minimization of muscle activation inherent to static
optimization, SOGen and SOCal both struggled to match the
larger muscle activations produced in the EMG-driven model.
This difference in magnitude is amplified in both of Umberger’s
models due to the activation dependent scaling factors associated
to the calculation of the maintenance heat rate and the
shortening/lengthening heat rate.

Apart from differences in muscle activations, differences in
joint moment matching also existed between static optimization
and EMG-driven modeling (Supplementary Table S4). On
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FIGURE 4 | Comparison of model predicted (red circles) and experimentally measured (blue triangles) cost of transport as a function of stance time asymmetry
between paretic and non-paretic legs. See Figure 2 caption for additional details.

average, due to the omission of calibrated joint functional
axes, SOGen produced RMSE errors of 1.52 ± 1.08 Nm for
the high functioning subject and 1.89 ± 2.48 Nm for the
low functioning subject. In contrast, EMGCal produced RMSE
errors of 4.78 ± 1.91 Nm for the high functioning subject and
4.55 ± 2.09 Nm for the low functioning subject. Although the
RMSE errors were lower for SOGen than for EMGCal, the
average errors in joint moment matching for EMGCal were
within the ranges reported by Meyer et al. (2017), even though
the present study matched an additional moment at the hip (i.e.,
internal-external rotation).

For all three levels of musculoskeletal model personalization,
the Bhargava et al. (2004) metabolic cost model tended to
slightly underestimate the experimental CoT values reported
in Finley and Bastian (2017), while the Umberger et al.
(2003) and Umberger (2010) metabolic cost models tended to
overestimate the experimental values. The same trends were
observed in Miller (2014), which compared the performance
of B04 and U10, among other models. In contrast to studies
like Miller (2014) and Ong et al. (2019), which used a
musculoskeletal model combined with the U03 metabolic cost
model and predicted CoT values within the range of 2 to
8 J/Kg.m, the U03-SOCal, U03-EMGCal, U10-SOCal, and U10-
EMGCal model combinations in our study produced CoT

values ranging from 7 to 15 J/Kg.m. This magnitude difference
was unexpected but may be due to the minimization of a
metabolic cost term within the optimization cost function used
for estimating muscle activations in these two previous studies.
Furthermore, in contrast to the two studies mentioned above,
our study used calibrated EMG-driven models to calculate
CoT. The absence of muscle activation minimization may
help explain why our EMGCal musculoskeletal model paired
with any metabolic cost model produced CoT estimates that
were larger than those produced by SOGen and SOCal, as
static optimization is known to produce the lowest possible
level of muscle co-contraction while still matching the joint
moment constraints (Heintz and Gutierrez-Farewik, 2007;
Shourijeh and Fregly, 2020).

Although all modeling combinations correctly predicted the
positive or negative trends in published experimental CoT data,
not all combinations resulted in regression slopes that were
statistically similar to those found in Finley and Bastian’s (2017)
experimental data. This finding is similar to a recent study by
Koelewijn et al. (2019), where several metabolic cost models
(including U03 and B04) were shown to predict the correct trends
for CoT as a function of walking slope or gait speed in accordance
with trends found in the literature (Margaria, 1968). In addition,
Koelewijn et al. (2019) found that B04 tended to underestimate
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FIGURE 5 | Comparison of model predicted (red circles) and experimentally measured (blue triangles) cost of transport as a function of double support time
asymmetry between paretic and non-paretic legs. See Figure 2 caption for additional details.

TABLE 4 | Absolute differences in regression line y-intercepts of CoT versus walking speed, step length asymmetry, stance time asymmetry, and double support time
asymmetry between the nine model predictions and experimental measurements from Finley and Bastian (2017).

Umberger et al., 2003 Umberger, 2010 Bhargava et al., 2004

SOGen SOCal EMGCal SOGen SOCal EMGCal SOGen SOCal EMGCal

Walking Speed 2.48 8.14 9.34 4.12 9.15 10.86 2.86 2.07 1.59

Step Length Asymmetry 1.25 3.52 4.27 2.72 4.40 5.94 1.24 1.23 0.98

Stance Time Asymmetry 1.14 3.55 4.14 2.65 4.45 5.88 1.42 1.44 1.39

Double Support Time Asymmetry 1.30 3.70 4.53 2.71 4.55 6.09 1.32 1.26 0.91

TABLE 5 | Comparison of cost of transport between the nine modeling combinations and the experimental measurements reported in Finley and Bastian (2017) as a
function of Fugl-Meyer score.

High-Functioning Subject

Umberger et al., 2003 Umberger, 2010 Bhargava et al., 2004

CoT Finley SOGen SOCal EMGCal SOGen SOCal EMGCal SOGen SOCal EMGCal

Mean 3.61 5.56 8.13 8.73 7.10 9.04 10.46 2.89 2.89 2.92

Std Dev 1.45 0.88 1.71 1.67 0.93 1.76 1.71 0.27 0.46 0.43

Low-Functioning Subject

Mean 5.1 5.98 8.74 9.82 7.38 9.60 11.30 3.03 3.19 3.77

Std Dev 1.02 1.13 1.89 1.95 1.26 1.94 1.99 0.54 0.60 0.53

The high functioning subject (top) possessed a Fugl-Meyer score of 32, while low functioning subject (bottom) had a Fugl-Meyer score of 25. Experimental measurements
used for comparison were taken from Finley subjects with similar Fugl-Meyer scores.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 November 2020 | Volume 8 | Article 588925

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-588925 November 20, 2020 Time: 16:39 # 10

Arones et al. Model Personalization Affects Metabolic Cost

CoT values in comparison to experimental values, consistent
with our findings.

To improve CoT predictions further, researchers should
consider optimizing the various parameters within metabolic
cost models, such as maximum muscle stress. As reported in
Russell Esposito and Miller (2018), decreasing the maximum
muscle stress value increases metabolic cost and vice versa,
which could help reduce magnitude discrepancies in CoT
predictions. Interestingly, when (Falisse et al., 2019) used
the Bhargava et al. (2004) metabolic cost model with
different values of maximum muscle stress for different
muscles, they obtained reasonable agreement between
model predicted and experimentally measured CoT values.
Alternatively, one could use a single scale factor to calibrate
metabolic cost models as reported in Michaud et al. (2019),
who used both B04 and U03 to find good agreement
between model predicted and published experimentally
measured CoT values.

The most significant limitation of this study was the
absence of experimental metabolic cost data for evaluating our
model-based estimates. This limitation makes it difficult
to determine the accuracy of our modeling methods.
Furthermore, none of the musculoskeletal models used
in our analyses included muscles to actuate the upper
body. Consequently, the calculated CoT for all nine model
combinations may be an underestimate. However, since
Finley and Bastian’s data set was collected from subjects
who were allowed to use handrails, their measurements
may also be underestimates. In addition, we were limited
to studying only two subjects, since extensive EMG data
sets were required to perform the study. In contrast, the
data reported in Finley and Bastian (2017) were based on
15 individuals who were more than 6 months post-stroke
(58 ± 14 years old) with an average Fugl-Meyer score of
23 ± 6 and an average self-selected speed of 0.43 m/s ± 0.3.
Both of our subjects were more than 6 months post-stroke,
and the age and Fugl-Meyer score of the high functioning
subject exceeded one standard deviation above the average
population metrics found in Finley and Bastian (2017)
(Table 1). Therefore, our high functioning subject may not
have been as well represented in the published data from
Finley and Bastian.

CONCLUSION

In conclusion, this study investigated the effect of
musculoskeletal model personalization on estimated metabolic
cost for walking post-stroke as calculated using three published
metabolic cost models. Previously collected walking data from
two stroke survivors were used to analyze correlations between
estimated CoT and various variables commonly associated
with gait asymmetry. Although all modeling combinations
exhibited the correct positive and negative correlations observed
in Finley and Bastian (2017), only B04-SOCal and B04-EMGCal
produced statistically similar regression slopes to those found
in Finley and Bastian for walking speed and all gait asymmetry

variables (excluding Fugl-Meyer score). While the regression
y-intercepts were not statistically similar to those found
in Finley and Bastian (2017), B04-EMGCal produced CoT
estimates that were closest in magnitude to those calculated
from Finlay and Bastian’s data. Our results suggest that use
of a personalized EMG-driven model paired with Bhargava’s
metabolic cost model may improve prediction of CoT during
walking for individuals post-stroke. Since metabolic cost can
be used as a tool to gauge physical exertion, the results of this
study may impact scientific, clinical, and engineering fields
that target minimization of metabolic cost through surgical or
rehabilitation methods.
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