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Background: Acute myocardial infarction (AMI) is one of the leading causes of morbidity
and death worldwide. Studies have indicated that microRNAs in mesenchymal stem cell
(MSC)-derived exosomes are crucial for treating various diseases.

Methods: Human umbilical cord MSC (hucMSC)-derived exosomes (hucMSC-exo)
were isolated and used to treat cardiomyocytes that underwent hypoxia/reoxygenation
(H/R) injury. Bioluminescence assessment was used to study binding of miRNA to
its targeting gene.

Results: We found that H/R decreased the viability of AC16 cells, increased the
expression of NLRP3, and activated caspase-1(p20) and GSDMD-N as well as release
of IL-18 and IL-18, and such effects were abolished by administration of hucMSC-
exo. Administration of exosomes from negative scramble miRNA (NC)-transfected
hucMSCs blocked H/R-caused lactate dehydrogenase release, pyroptosis, and over-
regulation of NLRP3 and activated caspase-1(p20) and GSDMD-N as well as release
of IL-1p and IL-18. More importantly, in comparison to exsomes from NC-transfected
hucMSCs, exsomes from miR-100-5p-overexpressing hucMSCs had more obvious
effects, and those from miR-100-5p-inhibitor-transfected hucMSCs showed fewer
effects. Functional study showed that miR-100-5p bound to the 3’-untranslated region
(8’-UTR) of FOXO3 to suppress its transcription. Moreover, overexpression of FOXO3
abolished the protective effects of miR-100-5p.

Conclusion: Enriched miR-100-5p in hucMSC-exo suppressed FOXOS3 expression to
inhibit NLRP3 inflammasome activation and suppress cytokine release and, therefore,
protected cardiomyocytes from H/R-induced pyroptosis and injury.

Keywords: miRNA, hypoxia/reoxygenation, human umbilical cord mesenchymal stem cells, exosome,
inflammasome
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INTRODUCTION

Acute myocardial infarction (AMI), a major reason for death,
is caused by a sudden blockage in blood supply (Mozaffarian
et al., 2015; He and Zou, 2020). Myocardial reperfusion is the
restoration of coronary blood flow after a period of occlusion
(Hashmi and Al-Salam, 2015). However, rapid restoration of
blood flow to myocardium may cause additional injury, namely
ischemia/reperfusion (I/R) injury (Surendran et al, 2019).
Myocardial I/R injury could induce the priming and triggering
of the Nod-like receptor protein 3 (NLRP3) inflammasome
(Toldo et al., 2018). Upon activation, the NLRP3 inflammasome
promotes the maturation of caspase-1, leading to activation of
interleukin 1 beta (IL-1p) and IL-18 (Martinon et al., 2002).
Inflammasome activation-stimulated secretion of IL-1f and IL-
18 induces a pro-inflammatory cell death called pyroptosis,
which is associated with a variety of diseases, including
autoimmune disease, neurodegenerative disease, cardiovascular
disease, cancer, and AIDS (Walle and Lamkanfi, 2016).

Mesenchymal stem cells (MSCs), also called mesenchymal
stromal cells, are able to differentiate into various types of cells
(Ankrum et al., 2014). MSCs have been attracting researchers’
attention for decades because of their wide-ranging clinical
potential (Pittenger et al, 2019). They are among the most
commonly used cell types for human disease treatment, including
cancers (Lee and Hong, 2017), arthritic diseases (Ruiz et al,
2016), and cardiac disease (Karantalis and Hare, 2015). MSCs can
be isolated from different types of tissues, such as the amniotic
membrane, chorionic plate, decidua parietalis, adipose tissue,
and bone marrow (Mohamed-Ahmed et al., 2018; Wu et al.,
2018; Alstrup et al., 2019). Human umbilical cord tissue-derived
MSCs (hucMSCs) are MSCs isolated from human umbilical
cord. Compared to MSCs from other sources, hucMSCs can be
obtained non-invasively because huc tissue is usually abandoned
(Zhu et al., 2019).

Study indicates that the benefits of MSCs may be mainly
ascribed to paracrine mediators contained in vesicles (Akyurekli
etal., 2015). Exosomes are critical in transferring lipids, proteins,
and/or RNAs and have been indicated in various physiological
and pathological processes (Yeo et al., 2013). Furthermore, MSC-
derived exosomes (MSC-exo) have been shown to be effective in
treating endometrial stromal cell injury, cell death in myocardial
infarction, sepsis, and fetal brain injury after hypoxia-ischemia
(Zhu et al., 2018; Wang et al., 2020).

Exosomes are enriched in different types of bioactive
molecules, including but not limited to lipids, proteins, and
RNAs (Keerthikumar et al., 2016). MicroRNAs (miRNAs), which
regulate about 30-70% of human gene expression, make up an
important fraction of exosomal content, and they are crucial
bioactive molecules in MSC-exo (Ferguson et al., 2018). MSC
exosomal microRNAs have been shown to alleviate kidney injury
from I/R (Cantaluppi et al, 2012), reduce ischemia-induced
cardiomyocyte apoptosis (Feng et al, 2014), and promote
neurite remodeling in the ischemic boundary zone of rats
with stroke (Xin et al., 2012). However, the role of hucMSC-
derived exosomal miRNAs in hypoxia/reoxygenation (H/R)-
induced cardiomyocyte injury remains largely unknown.

In the current study, we report that exosomes derived
from hucMSCs protect cardiomyocytes against H/R-induced
pyroptosis via miRNA-100-5p. A preliminary bioinformatics
analysis identified forkhead box O3 (FOXO3), an upstream
regulator of NLRP3 (Xu et al., 2020), as a target for miRNA-100-
5p. Accordingly, we also examined the possible involvement of
FOXO3/NLRP3 in the protective action of miRNA-100-5p.

MATERIALS AND METHODS

Isolation and Culture of hucMSC

This protocol has the approval of the ethical review board of
Tongji Hospital of Tongji University. hucMSCs were isolated
following the instructions of the Stem Cell Lab, Airlangga
University. Cells were grown in minimum essential medium
eagle-alpha modification («-MEM) (Invitrogen, Carlsbad, CA),
followed by PBS-washing, fixing, blocking, incubation with FITC
or PE-labeled antibodies specific to CD90, CD44, CD105, CD11b,
CD34, and CD45 (eBioscience, Supplementary Table S1) and
analyzed by BD FACSCalibur (Franklin Lakes, NJ). Mouse IgG
was used for a control.

Isolation and Characterization of
hucMSC-Derived Exosomes
(hucMSC-exo)

Cell supernatants were centrifuged to remove cell debris and
then passed through a 0.22 wm filter. Exosomes were extracted
from the cell supernatants with VEX Exosome Isolation Reagent
(Vazyme, Nanjing). Final exosomes were resuspended in PBS.
Extracted exosomes were checked using transmission electron
microscopy (TEM) (MagHelix, Creative Biostructure, Shirley,
NY). The marker proteins, CD63, CD9, and Alix were analyzed
using Western blot.

AC16 Cell Culture

Human ACI16 cells were purchased from ATCC (Manassa, VA)
and cultured in Dulbecco modified Eagles medium (DMEM)
with 10% fetal calf serum (FCS), and pen-strep at 37°C in a 5%
carbon dioxide humidified incubator.

Exosomes Uptake Experiment

Internalization of hucMSC-exosomes by AC16 cells was detected
by staining with PKH26 Dye (Sigma). Exosomes were diluted
with Diluent C and incubated with 6 wl PKH26 dye at 25°C
following the manufacturer’s protocol. Five minutes later, 3 ml
of FBS was added for an extra 1 min of incubation. The
mixture was washed with KSFM and centrifuged at 100,000 g for
80 min at 4°C. Supernatants were discarded, and exosomes were
resuspended with 1 ml KSFM. Then, 1,000 ng labeled exosomes
were administered to AC16 cells (3 x 10* cells/well) in 24-
well plates for 24 h at 37°C, followed by fixation and DAPI
(6-diamidino-2-phenylindole) staining.

Hypoxia/Reoxygenation (H/R) Treatment
Cells (1 x 10%well) were loaded into a 96-well plate
and cultured in an atmosphere of 1% Oy plus 5% CO,
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for 4 h and then moved to an atmosphere of 20% O,
and 5% CO; for 2 h. Cells cultured normally were
used for controls.

MicroRNA Interference and

Overexpression

Cells were seeded in a six-well plate (2 x 10° cells/well) for
overnight culture, followed by transfection of mimic (50 nM,
AACCCGUAGAUCCGAACUUGUG), inhibitor (50 nM, CACA
AGUUCGGAUCUACGGGUU), or a negative control scramble
miRNA (NC, 50 nM, UUCUCCGAACGUGUCACGUTT) with
LyoVec (InvivoGen, San Diego, CA).

Quantitative Real Time PCR (qRT-PCR)
RNAs were extracted using Trizol (Invitrogen). One microgram
of RNA was used to synthesize cDNA with the Revert Aid™
First Strand cDNA Synthesis Kit (Thermo) with special stem-loop
primers for miRNA and random primers for gene expression,
respectively. qRT-PCR was performed to quantify the expression
level of miR-100-5p; NLRP3 and FOXO3 were measured using
SYBR Green PCR Master Mix (Invitrogen) on an ABI 7300
thermocycler (ABI, Beverly, MA). U6 or GAPDH was used
as a control for miRNA or gene expression, respectively. The
primer sequences are listed in Supplementary Table S2. The
27 AACt relative quantification method was used to quantify
gene expression.

Protein Isolation and Western Blotting

Analysis

Cells were lysed using ice-cold RIPA buffer (Beyotime,
Shanghai, China) and proteins were quantified by a BCA
kit (Promega); 25 microgram proteins were separated by 10
or 15% gels and electroblotted to nitrocellular membranes
(Bio-Rad). After blockage with 3% BSA, membranes were first
incubated with first antibodies (Supplementary Table S3)
and then incubated with HRP-conjugated secondary antibody
(1:2,500, Beyotime). Immunoreactive signals were visualized
using ECL chromogenic substrate (Promega). Densitometry
analysis was performed with Image ] (NIH, Bethesda,
MD, United States).

Cell Viability Assessment

After ACI16 cells were cultured and treated, CCK-8 (Jiancheng
Bio, Nanjing, China) was loaded and incubated for 3 h in the
dark. The optical density (OD) at 450 nm was detected. Cell
viability was calculated as cell viability = OD (treatments)/OD
(controls) x 100%.

Hoechst 33342/PI Staining

The treated cells were collected and incubated with Hoechst
33342 and PI (Solarbio, Shanghai, China) for 20 min
at 4°C and observed with a fluorescence microscope
(Fujifilm).
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FIGURE 1 | Isolation and identification of hucMSC-exo. (A) hucMSC surface markers were detected by flow cytometry analysis. (B) Morphology of purified
hucMSC-exo. Scale bar: 100 nm. (C) Western blotting shows that CD9, CD63, and Alix were expressed in hucMSC-exo isolated from two umbilical cord samples
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Detection of Lactate Dehydrogenase

(LDH) Level

The levels of LDH were determined with an LDH assay
kit (Beyotime) according to the manufacturer’s protocol and
analyzed by a microplate reader.

Determination of IL-18 and IL-18 Content
The contents of IL-1f and IL-18 in culture medium were
measured with Enzyme-linked immunosorbent assay (ELISA)
kits (Jiancheng Bio, Nanjing, China).

Luciferase Assay

The full-length promoter region of NLRP3 (Wei et al,
2016), 3’-untranslated region (3’-UTR) of FOXO3 predicted
by miRWalk (Sticht et al., 2018) were inserted into a pGL3
vector (Promega, Madison, WI). The full length of human

FOXO3 cDNA was cloned into a pCDNA3.1 vector (Addgene).
To study whether miR-100-5p targets FOXO3, 293T cells
were transfected with miR-100-5p mimic, inhibitor, or NC
and pGL3-FOXO3 3’-UTR plasmid. To further investigate
whether miR-100-5p targets 3’-UTR of FOXO3, 293T were
transfected by miR-100-5p mimic or NC and pGL3-FOXO3
3-UTR (WT) or mutant plasmid. For the NLRP3 promoter
activity assay, 293T were transfected with pGL3-NLRP3-
promoter and pCDNA3.1-FOXO3 (0eFOXO3) or an empty
vector. Lipofectamine 2000 reagent (Invitrogen) was used for
transfection. Bioluminescence was measured with Luciferase
assay kits (Promega).

Statistical Analysis

Graphpad Prism 6.0 (San Diego, CA) was used in this study.
Student’s ¢-test or analysis of variance (ANOVA) was applied to
compare data. A P < 0.05 was defined as statistically significant.
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RESULTS

Isolation and Identification of

hucMSC-Derived Exosomes

To investigate the potential roles of hucMSC-derived exosomes
in H/R-induced injury, hucMSCs were isolated first. Flow
cytometric analysis showed the positive expression of CD44,
CD90, and CD105 combined with very low expression of CD11b,
CD34, and CD45 in isolated hucMSCs (Figure 1A). Next,
hucMSC-exo were isolated, and the morphology was checked
with a TEM (Figure 1B). Western blot results confirmed the
expression of three exosome markers, CD63, CD9, and AliX,
in hucMSC-exo from two umbilical cord samples (Figure 1C).
Collectively, these results confirm the successful isolation of
hucMSCs and hucMSC-derived exosomes.

hucMSC-exo Protect Against
Hypoxia/Reoxygenation-Induced Injury
in AC16 Cells

To analyze the protective effects of hucMSC-derived exosomes
on H/R-induced injury, we first performed an exosome uptake
assay. The results show that PKH26-stained hucMSC-exo
could be internalized by AC16 cells (Figure 2A). Next, AC16

cells were incubated with hucMSC-exo for 24 h and then
subjected to H/R challenge. A CCK-8 assay showed that
H/R significantly decreased the viability of ACI16 cells. In
contrast, supplement with hucMSC-exo significantly increased
cell viability as compared to the H/R group (Figure 2B). We
also checked the effect of hucMSC-exo on NLRP3 expression.
As indicated in Figures 2C,D, H/R significantly increased
NLRP3 expression as compared to control at both protein
and mRNA levels. Administration of hucMSC-exo significantly
inhibited NLRP3 expression compared to the H/R-group.
Moreover, H/R significantly upregulated the level of activated
casp-1(p20) and GSDMD-N (Figure 2E) and the release
of IL-18 and IL-18 (Figure 2F), which was suppressed by
administration of hucMSC-exo. The data suggest that hucMSC-
exo protects AC19 cells from H/R induced NLRP3 inflammasome
activation and pyroptosis.

Exosomal Transferring of miR-100-5p
Protects Against
Hypoxia/Reoxygenation-Induced
Pyroptosis in AC16 Cells

MiRNAs are crucial bioactive molecules in MSC-exo. miR-100-5p
is the most abundant miRNA in hucMSC-exo (Zhu et al., 2019).
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FIGURE 6 | Schematic illustration of hucMSC-exo protected H/R-challenged
ACB cells via the miR-100-5p/FOXO3/NLRP3 pathway.

AC16 cells

To investigate the roles of miR-100-5p in hucMSC-exo, hucMSCs
were transfected with either scramble miRNA (NC), miR-100-5p
inhibitor (inhibitor), or miR-100-5p mimic (mimic) to silence
or overexpress miR-100-5p in hucMSC. Figure 3A indicates
that miR-100-5p was successfully silenced or overexpressed in
hucMSCs. Then, exosomes were isolated from each group, and
miR-100-5p expression was checked. Results show that the
exosomal miR-100-5p expression pattern is similar to that in
hucMSCs (Figure 3B).

AC16 cells were then incubated with exosomes isolated
from the NC (NC-exo), inhibitor (inhibitor-exo), or mimic
(mimic-exo) groups for 24 h, followed by H/R challenge.
qRT-PCR results show that H/R significantly suppressed
miR-100-5p expression compared to the control, which
was abolished by supplementation of NC-exo and mimic-
exo (Figure 3C). Pyroptosis assay results show that H/R
significantly increased LDH release, which was significantly
suppressed by supplementation of NC-exo and mimic-exo
(Figure 3D). Hoechst 33342/PI staining showed that H/R
significantly increased the PI-positive cell number, which was
decreased by supplementation of NC-exo and mimic-exo
(Figure 3E). Supplementation of NC-exo and mimic-exo also
significantly attenuated H/R-induced upregulation of NLRP3
(Figure 3F), upregulation of activated casp-1(p20) and GSDMD-
N (Figure 3G), and elevation of IL-18 and IL-18 (Figure 3H). In
comparison to NC-exo, mimic-exo had a more obvious effect,

and inhibitor-exo showed less effect. The findings suggest that
hucMSC-exo protects against H/R-caused pyroptosis in AC16
cells via miR-100-5p.

miR-100-5p Negatively Regulates
FOXO3/NLRP3

To investigate how miR-100-5p is involved in the protective
effect of hucMSC-exo, negative control miRNA (NC), miR-
100-5p-inhibitor, or miR-100-5p-mimic was transfected into
HEK293 cells (Figure 4A). Using bioinformatics analysis, we
found a potential binding site of miR-100-5p on FOXO3 3’-
UTR (Figure 4B). In vitro cell study shows that FOXO3 mRNA
expression was suppressed by miR-100-5p-mimic but enhanced
by miR-100-5p-inhibitor (Figure 4C). A bioluminescence assay
further confirmed that miR-100-5p bound to FOXO3 3’-UTR
to suppress its transcription (Figure 4D). Furthermore, as
FOXO3 is a well-known transcription factor, a luciferase assay
was performed, and the results showed that overexpression of
FOXO3 enhanced the promoter activity of NLRP3 (Figure 4E).
Collectively, we show that miR-100-5p binds to 3’-UTR
of FOXO3 to suppress its transcription, leading to the
downregulation of NLPR3.

FOXO3 Overexpression Reverses the
Protective Effects of hucMSC-exo in H/R

Injury

Next, the effects of FOXO3 overexpression on H/R injury
were investigated. FOXO3 was first overexpressed in AC16 cells
(Figure 5A). Then, AC16-0eFOXO3 or AC16-vector cells were
incubated with hucMSC-exo for 24 h, followed by H/R challenge.
As expected, the protective effects of hucMSC-exo were all
blocked by FOXO3 overexpression as indicated by the analysis,
LDH release and PI positive cells, the expression of NLPR3,
activated casp-1, and GSDMD-N as well as the release of IL-
1B/IL-18 (Figures 5B-F). These findings suggest that hucMSC-
exo protects AC6 cells against H/R-induced injury in a FOXO3-
dependent manner.

DISCUSSION

Pyroptosis, or caspase l-dependent cell death, is a form
of inflammatory programmed cell death pathway activated
by inflammatory cytokines, including caspase-1, caspase-5, or
caspase-11 (Man et al., 2017). Increasing evidence suggests
that pyroptosis is involved in numerous diseases, including
cardiovascular diseases (Walle and Lamkanfi, 2016). H/R injury
is a widely accepted in vitro model of I/R (Li and Jackson, 2002).
In the current study, we observed that H/R caused significant
injury to AC16 cardiomyocytes manifested by decreased cell
viability and enhanced pyroptosis. We also find that H/R caused
significant elevation of activated caspase-1, GSDMD-N, and
IL-1B/IL-18, which was triggered by NLRP3 inflammasome
activation (Walle and Lamkanfi, 2016).

MSC-exo are shown to be effective in treating cell death in
myocardial infarction (Zhu et al., 2018). We find in this study that
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hucMSC-exo treatment protects against H/R-induced pyroptosis
in cardiomyocytes. Approximately 2200 miRNAs are reported
to exist in the mammalian genome (Chakraborty et al., 2017,
2020a,b). Dysregulation of miRNAs has been linked to numerous
diseases, including myocardial infarction (Chakraborty et al.,
2020b), and miRNA-based therapeutics have shown clinically
significant benefits for various diseases (Chakraborty et al,
2020b). Previous studies reveal the functions of exosomal
miR-100-5p in different diseases. For example, exosomes from
cisplatin-resistant lung cancer cells have low expression of miR-
100-5p, which could alter cisplatin sensitivity of other lung cancer
cells in a miR-100-5p-dependent manner (Qin et al., 2017).
A recent study reports that infrapatellar fat pad MSCs-derived
exosomes protect articular cartilage from damage via delivering
exosomal miR-100-5p (Wu et al., 2019). We find in this study that
exosomes from hucMSC transfected with miR-100-5p-inhibitor
had little effect on H/R-induced pyroptosis, and H/R induced
increase of NLPR3 expression, activated caspase-1, GSDMD-N,
IL-1B, and IL-18. These data indicate that miR-100-5p is crucial
in the protective role of hucMSC-exo on H/R-treated AC16 cells.
Our study, consistently with previous reports, suggests that the
exosomal transfer of miR-100-5p is an important mechanism
for the regulation of recipient cell functions. Additionally, H/R
treatment suppressed the expression of miR-100-5p. It is reported
that H/R could elevate intracellular reactive oxygen species (ROS)
in cardiomyocytes (Park et al., 2011). Considering that expression
of miRNAs could be altered by agents that induce oxidative
stress (Magenta et al., 2013), we suppose that the expression
of miR-100-5p is regulated by H/R-induced ROS, and further
investigation is needed.

FOXO3 is a member of the FOXO subclass of transcription
factors, which play an important role in a variety of biological
processes, including apoptosis, proliferation, and invasiveness
(Stefanetti et al., 2018). Several miRNAs are reported to regulate
the expression of FOXO3 in various cell types via directly binding
to 3°-UTR, such as miR-155 in liver cancer cells (Liao et al,
2018), miR-10b-3p in esophageal squamous cell carcinoma cells
(Lu et al, 2018), and miR-34a in macrophages (Song et al,
2017). In this study, we prove that miR-100-5p suppresses the
transcription of FOXO3 via binding to 3’-UTR, leading to
subsequent NLRP3 inhibition.

FOXO3 overexpression is implicated in a variety of patho-
biological processes. For example, FOXO3 overexpression is
shown to counteract the miR-223 inhibitory effect on apoptosis
in active tuberculosis patients (Xi et al, 2015). Abid et al.
(2005) show that FOXO3 overexpression inhibited vascular
smooth muscle cell proliferation and neointimal hyperplasia.
Another study indicates that overexpression of FOXO3 results
in suppression of growth and survival of breast cancer
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