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Pomelo is an important agricultural product in southern China. Near-infrared

hyperspectral imaging (NIRHI) technology is applied to the rapid detection of pomelo fruit

quality. Advanced chemometric methods have been investigated for the optimization of

the NIRHI spectral calibration model. The partial least squares (PLS) method is improved

for non-linear regression by combining it with the kernel Gaussian radial basis function

(RBF). In this study, the core parameters of the PLS latent variables and the RBF kernel

width were designed for grid search selection to observe the minimum prediction error

and a relatively high correlation coefficient. A deep learning architecture was proposed

for the parametric scaling optimization of the RBF-PLS modeling process for NIRHI data

in the spectral dimension. The RBF-PLS models were established for the quantitative

prediction of the sugar (SU), vitamin C (VC), and organic acid (OA) contents in pomelo

samples. Experimental results showed that the proposed RBF-PLS method performed

well in the parameter deep search progress for the prediction of the target contents.

The predictive errors for model training were 1.076% for SU, 41.381 mg/kg for VC, and

1.136 g/kg for OA, which were under 15% of their reference chemical measurements.

The corresponding model testing results were acceptably good. Therefore, the NIRHI

technology combined with the study of chemometric methods is applicable for the rapid

quantitative detection of pomelo fruit quality, and the proposed algorithmic framework

may be promoted for the detection of other agricultural products.

Keywords: near-infrared hyperspectral imaging (NIRHI), pomelo fruit quality, agricultural product, chemometric

method, partial least squares (PLS), Gaussian radial basis function (RBF)

INTRODUCTION

Pomelo is one of the special agricultural fruit products that is popular in southern China. Its
scientific name is Citrus maxima (Brum.) Merr. Ripe pomelo fruits are picked, stored, and served
for eating. The fruit peel has functional curative effects in traditional Chinese medicine (Jiang et al.,
2014). The flesh is edible and tastes delicious, sweet, and slightly sour; it is rich in sugar, vitamin
C, and organic acids, which provide a variety of nutrients for the human body (Sirisomboon
and Lapcharoensuk, 2012). People’s health can be partially improved from the consumption of
good-quality pomelo fruits. Eating pomelo can help maintain good stomach digestion ability and
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exerts an auxiliary effect of preventing influenza (Anlamlert et al.,
2015). Thus, the pomelo fruit quality should be determined
during the picking and storage process. Conventional laboratory
methods for detecting chemical contents are tedious and
time consuming. Rapid detection technology is appreciably on
demand (Xu et al., 2020).

Hyperspectral imaging (HI) is regarded as an emerging
advanced analytical technology for the non-destructive rapid
determination of agricultural product quality (ElMasry et al.,
2012; Barreto et al., 2018). HI generates two-dimensional spatial
digital imagery accompanied with spectroscopic records for the
analysis of spectral features in the ultraviolet, visible, near-
infrared, or infrared regions. It technically supports signal
processing in the field of computer vision (Lorente et al., 2012).
The near-infrared (NIR) spectral region (around 800–2,500 nm)
provides a versatile range of light frequencies to analyze the
molecule structure and quantify their substantial contents (Pojić
and Mastilović, 2013). The recognition of informative features
from the natural overlapping signals requires the investigation
of smart chemometric methods in the modern intelligent world
(Sciutto et al., 2014; Cheng and Sun, 2015). On this basis, HI
technology originating from the NIR region (denoted as NIRHI
for short) facilitates the combination analysis of the imaging
pixels and the NIR-range spectral data (Costa et al., 2011; Cheng
et al., 2014). This technology is used as an advanced tool for
qualitative and quantitative analyses in the fields of agriculture,
food, and industry (Wu and Sun, 2013; Verdú et al., 2016;
Arendse et al., 2018). Research on the quality detection of
bakery food, meat, and fresh vegetables (Kamruzzaman et al.,
2016; Erkinbaev et al., 2017) has been published, but quality
assessments for fruits are a brand-new emerging application
(Munera et al., 2017).

In NIRHI analysis, the spatial pixels include rich spectral
information, and the spectral signals can be used for the
rapid quantitative determination of any nutrient content in
agricultural products. The selection of the spatial region of
interest (ROI) and studies on chemometric methods to extract
informative latent variables in the spectral dimension are both
significant for NIRHI technology. Given that the selection of
ROI has been studied extensively (Chen et al., 2019), feature
extraction in the spectral dimension is the main focus of
this study.

For the analysis of spectral data, partial least square (PLS)
regression is a classical method in finding the latent variables
that reflect most of the information of the target analytes. PLS
performs principle component extraction, followed by linear
regression on the component variables (Wold et al., 2001; Jin and
Wang, 2019). However, for NIRHI analysis of complex objects
such as pomelo fruit, the spectral dimension contains signal
responses from all chemical compositions. The regression model
does not stand as a linear formula for a few target analytes.
A non-linear kernel function should then be introduced as an
algorithmic embedment of PLS (Kim et al., 2005). The Gaussian
radial basis function (RBF) is most commonly used for mapping
data into a higher dimensional data space for linear fitting
(Sandberg, 2003). Its effectiveness and fast tuning of the kernel
width ensure that RBF is a successful algorithm application in the

kernel PLS method (Shariati-Rad and Hasani, 2013; de Almeida
et al., 2018).

In this work, NIRHI technology was applied for the rapid
detection of the pomelo fruit quality during its picking
and storage processes. The RBF-implemented PLS (RBF-PLS)
method was investigated as an advanced chemometric method
for the quantitative determination of the sugar (SU), vitamin
C (VC), and organic acid (OA) contents. A deep learning
architecture was built for parametric scaling optimizations. The
model training procedure was launched by automatically tuning
the PLS parameters in combination with the machine learning of
the RBF kernel width, and the optimal model was tested based
on the assumed pseudo-unknown samples. In this way, NIRHI
may be considered a modern popular technology for detecting
the fruit quality of agricultural products.

MATERIALS AND METHODS

Hyperspectral System
As shown in Figure 1, the NIRHI optical system was constructed
under laboratory conditions with constant temperature and
humidity (25 ± 1◦C and 47 ± 1%RH). The NIR lights were
originally generated from a 500W-powered halogen light source.
The halogen light was transformed into a series of parallel lights
via a convex lens (with 30mm focal length). The ImSpector N25E
hyperspectral imager (Spectral Imaging Ltd., Oulu, Finland) is
the main optical part, which splits the source halogen light into
a single frequency and produces a batch of NIR wavelengths
according to the system pre-settings. The N25E imager generates
the full-length NIR waveband of 1,000–2,500 nm with the
common resolution of 8 nm.

The NIR lights are further delivered to the pomelo samples
through a pushbroom scanner. The scanner includes a flat
mirror and a transflective mirror as its main optical parts. The
pushbroom scanner uses a horizontally movable back-and-forth
motion to form the spatial dimensions of the hyperspectral
image. It is steadily set 20 cm away from the surface plane of
the sample pool in the vertical direction. The reflectance lights
that come out from the sample enter an MT-CT image detector,
which includes a CCD unit and some necessary fundamental
optical parts. The NIRHI spectral data are finally recorded
at the data output segment, where there is always a high-
performance computer.

Sample Preparation and Data Acquisition
A total of 300 mature pomelo fruits were collected from a pomelo
forest in southern China. An elementary pre-experimental
selection was made before measuring contents. Some fruits with
a homogeneous peel surface were reserved for further detection.
Some fruits with flesh that had minimal moisture were removed
from the experiments. A total of 248 pomelo fruits were selected
as the target samples for NIRHI measurements and conventional
chemical detection.

Each of the 248 target fruits was cut into two halves along its
central longitudinal surface. One half of each fruit was sent to
quantify its contents of SU, VC, and OA contents. These three
analytes should be detected on the cutting interface via different
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FIGURE 1 | The construction of the NIRHI optical system.

TABLE 1 | The descriptive statistics for the SU, VC, and OA of the 248 pomelo

fruit samples.

Maximum Minimum Average Standard

deviation

Sugar (SU, %) 14.52 8.63 11.51 1.78

Vitamin C (VC, mg/kg) 623.02 347.51 487.71 82.91

Organic acid (OA, g/kg) 13.68 8.91 11.12 1.39

chemical experiments. These chemically measured contents were
supposed to be the reference values for NIRHI modeling because
the analyte fruit flesh samples were from the same cutting
surface. The SU content was identified by 3,5-dinitrosalicylic
acid colorimetry (China’s agricultural industry standard, NY/T
2742-2015). The VC content was determined by 2,6-dichloro-
indophenol titration (China’s national standard, GB 5009.86-
2016). The OA content was detected by ion chromatography
(China’s national standard, GB 5009.157-2016). The descriptive
statistics for the SU, VC, and OA contents of the 248 pomelo fruit
samples are shown in Table 1.

The half was equipped in the sample pool accessory. As
shown in Figure 2A, the halved pomelo fruit was placed into
the cuboid sample pool (the gray frame). The interspace between
the fruit and the box was filled with plasticine (the green
part). The filled sample pool was equipped to the constructed
hyperspectral system, and the NIRHI spectral data of this sample
were collected by pushbroom scanning. The NIRHI data have
two spatial dimensions and one spectral dimension. In the
spatial dimensions, the selection of ROI was studied in our
previous work (Chen et al., 2019), which reported that the 5 × 5

FIGURE 2 | The central longitudinal cut view of the equipped pomelo sample

(A) and the selected ROI areas (B).

square-size data extracted from the core spatial pixel area provide
optimal spectroscopy calibration results. Thus, we selected two
ROIs of 5 × 5 pixels from the main flesh areas around the fruit-
shaped equatorial plane (see the two blue boxes in Figure 2B).
The spectral data within these two ROI areas were extracted from
the NIRHI spatial-spectral data cube. Fifty pixels of NIR spectra
were acquired for each pomelo fruit sample. The average of these
50 spectral data was calculated as the spectral information of each
sample for further chemometric modeling. Finally, the average
spectra of all 248 pomelo samples were obtained, and the spectral
curves are illustrated in Figure 3.

The RBF-PLS Method
The RBF-implemented PLS method is a provoked kernel PLS
regression algorithm extended from the common PLS regression.
It uses the RBF kernel function to transform raw non-linear
complex data into a new defined feature space, in which the data
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can be linearly predicted with the tuning of the number of PLS
latent variables (Chakraborty, 2012; Goudarzi, 2016). The RBF
kernel is defined as follows (Ring and Eskofier, 2016):

K
(

xi, xj
)

= exp

(

−
∥

∥xi − xj
∥

∥

2

σ 2

)

, i, j = 1, 2 . . . n

where σ represents the kernel width. Different values of σ would
lead to diverse kernel mapping results in the new data space.
For a fixed value of σ , the function K

(

xi, xj
)

obtains different
computing values for varying training data of xi and xj, thereby
generating the kernel matrix for the n training samples, which is
constructed as
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Successively, the matrix K is transformed toM,

M = K −
1

n
InK −

1

n
KIn +

1

n2
InKIn,

where In is an n-dimensional square all-one matrix. To make
the method smart and data-driven, the algorithm of RBF-PLS
training can be operated in an iteration process as follows:

Step 1: E=M, F = Y ;
Step 2: Randomly initialize U (a matrix consists of s latent
variables);
Step 3: V = KU, V ← V/ ‖V‖;
Step 4: C = YTV ;
Step 5: U = YC, U ← U/ ‖U‖;
Step 6: Repeat Steps 3–6 until convergence occurs;
Step 7: Residual matrix E and F were computed,
E← (I − VVT)E(I − VVT), F← F − VVTY ,
where I is an n-dimensional identity matrix;
Step 8: Turn to Step 3 until the convergence occurs for the
residuals E and F.

The predicted data of training set are evaluated by
the equation

Y ′ = MU(VTMU)
− 1

VTY ,

where V is formed by the columns of latent vector v; U is formed
by the columns of latent vector u; and Y is the predictor matrix.
The training process shows that the optimization of the RBF-PLS
calibration model is mainly controlled by tuning the RBF kernel
width (i.e., σ ) and the number of PLS latent variables (i.e., s).
The combined optimization of σ and s should be an applicable
machine learning mode for advanced parameter training.

Furthermore, for the testing sample set, the kernel matrix
Ktest is computed and constructed similar to constructing K, and

FIGURE 3 | The extracted average spectra of the 248 pomelo samples in the

NIRHI spectral dimension.

Ktest is (t × n)-dimensional. Each element of Ktest is obtained
by computing the kernel function between the t testing samples
and the n training samples. Successively, we will have Ktest

transformed toMtest:

Mtest = Ktest −
1

n
ItK −

1

n
KtestIn +

1

n2
ItKIn,

where It is a t× n all-onematrix. The algorithm of the testing part
is similar to that of the training part, and the prediction equation
of the testing set has the same structure as that of the training set.

The RBF-PLS model is developed by regression of the
response matrix X against the predictor matrix Y. The model
based on experimental data is established to quantitatively
estimate the pseudo-unknown samples based on their measured
features. RBF-PLS regression and prediction were carried out
using the MATLAB coding platform (ver. R2018a) accompanied
with its toolboxes. The parametric scaling on the kernel
function can be launched in a deep learning mode, and
the selection of latent variables can be embedded for deep
combined optimization.

Model Evaluation Indicators
The chemometric study for the NIRHI analytical model requires
the method to be intelligently adjusted to the detected data.
Thus, the data knowledge should be recognized in a self-adaptive
machine learning mode. On this basis, the NIRHI spectral data
of all 248 pomelo fruit samples should be primarily divided into
the training set and the testing set. The training samples are
used to establish and optimize the model. By contrast, the testing
samples, which are not involved in the model training process,
aim to evaluate the best-trained calibration model. The model
optimization effects need to be validated during the training
process, so the training sample set should be further divided
into two subsets: the calibration set and the validation set. The
calibration set is for model establishment, and the validation set
is for model optimization.

Experimental evidence showed that the samples divided for
calibration, validation, and testing are usually in the ratio of 2:1:1
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(Chen et al., 2015). Of the total 248 samples, we randomly chose
120 samples for calibration, 64 samples for validation, and 64
samples for testing.

The model prediction effects are generally quantified using
two important indicators. One is the root mean square error
(RMSE), which is used to estimate the model prediction bias.
The other one is the correlation coefficient (CC), which is
a statistical metric representing the closeness of the NIRHI
predicted values to the chemically measured reference contents.
These two indicators are formulated as follows:

RMSE =

√

√

√

√

1

n− 1

n
∑

i=1

(yi − ŷi)
2,

CC =

∑n
i=1 (yi − yave)(ŷi − ŷave)

√

∑

(yi − yave)
2∑ (ŷi − ŷave)

2
,

where ŷi and yi are the NIRHI predicted value and its chemically
measured reference value of the i-th sample, respectively. ŷave and
yave are the average predicted value and average reference value of
n samples, respectively. n is the total number of target samples.

As the best optimal model was identified by the validation
samples and evaluated by the testing samples, the model
indicators were denoted as RMSEV and CCV for the validation
sample set and denoted as RMSET and CCT for the testing
sample set.

RESULTS AND DISCUSSIONS

Parametric Scaling Deep Learning Results
of the RBF-PLS Model
The extracted NIRHI spectra of the 248 pomelo fruit samples
were used to establish calibration models by using the proposed

FIGURE 4 | The combined deep tuning of RBF kernel width (σ ) and the number of PLS latent variables (s) for the optimization of the NIRHI calibration model (A–C are

for the prediction of SU, VC, and OA, respectively).

TABLE 2 | The optimal RBF-PLS models for NIRHI prediction of SU, VC, and OA contents in pomelo fruit samples.

RBR-PLS model PLS model

Kernel parameters RMSEV CCV RMSEV CCV

SU (%) σ = 38.97; s = 8 1.076% 0.921 1.361% 0.895

VC (mg/kg) σ = 44.38; s = 14 41.381 mg/kg 0.913 50.672 mg/kg 0.862

OA (g/kg) σ = 27.20; s = 11 1.136 g/kg 0.902 1.475 g/kg 0.875
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FIGURE 5 | The iterative optimization of the RBF-PLS models for the NIRHI data training (A–C are for the prediction of SU, VC, and OA, respectively).

RBF-PLS method. A deep learning architecture was built for
parametric scaling search of the optimal RBF-PLS parameters.
The models for predicting the SU, VC, and OA contents were
trained based on the 128 calibration samples, and the modeling
parameters were tunable for deep searching of their optimal
combination values. For the RBF kernel, the kernel width (σ ) is
commonly set as 2i (i = 0,±1,±2 . . .) (Menezes et al., 2019).
For statistical convenience, we set σ to change from 0.01 to 64
with the step of 0.01, which included the close estimation of
2i with i = 0,±1,±2,±3,±4,±5,±6. Thus, there were 6,400
candidate values of σ for the kernel width scaling. Meanwhile,
the PLS latent variable queues in the front were considered
the most informative for spectral data interpretation (Shariati-
Rad and Hasani, 2010). The number of latent variables (s) was
set as integers from 1 to 20, which indicated that the most

important latent variables were used for model optimization.

The predictive RMSEV of the validation samples was used as
the main indicator to identify the appreciating model with
its optimal parameter combination of (σ , s). The grid search
of the RMSEV corresponding to each combination is shown
in Figure 4. In Figure 4, the two-dimensional axes represent
the parametric tuning of σ and s, respectively. The predictive
RMSEV values of each model were demonstrated as contour
color mappings. Figures 4A–C show the validation results for
the SU, VC, and OA contents, respectively. The most optimal
training results could be found at the dark blue digit locations,
so the optimal combination of (σ , s) was identified (see Table 2).
The corresponding modeling results (RMSEV and CCV) were
also listed in the table. For comparison, the classical PLS model

was established in model training, and the results are listed in
Table 2. The prediction results in Table 2 indicated that the RBF-
PLS models performed better than the PLS model during the
training process. Therefore, the RBF-PLS models are feasible for
the NIRHI quantitative determination of the designated contents
related to the quality of pomelo fruits.

Iteration Progress for the Selection of PLS
Latent Variables
The RBF-PLS model was optimized by iterative updating of the
matrix of latent variables (i.e., the matrix U). For a fixed value of
s, the applied latent variables were randomly initialized and then
gradually alternated. The progress of updating the latent variables
was iteratively set for 200 times. For example, the optimal model
for the prediction of the SU content was determined with eight
latent variables. The eight latent variables were randomly chosen
at the beginning, and they gave the initial predictive RMSEV
of 2.807%. The 200-time iteration model made the prediction
more accurate as the RMSEV curve went down and became
stable (see Figure 5A). Finally, the prediction on the SU content
with eight latent variables observed its optimal result of RMSEV
equal to 1.076%, which was captured within the 200 iteration
time. Similarly, the iterative optimization trends of the RBF-PLS
models for the prediction of the VC and OA contents are shown
in Figures 5B,C. As shown in Figure 5, the iteration mechanism
during the PLS process is feasible to enhance the optimization
ability of the RBF-PLS calibration model for the NIRHI spectral
analysis of pomelo fruit samples.
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FIGURE 6 | The regression plots of the NIRHI predictions and the reference chemical measurements for the testing samples (A–C are for the prediction of SU, VC,

and OA, respectively).

Model Evaluation Based on the Testing
Samples
To verify the effectiveness of the RBF-PLS model applied
to the NIRHI spectral analysis of pomelo fruit samples, the
well-trained models for the prediction of the SU, VC, and
OA contents were evaluated by the testing samples, which
were not involved in the modeling process. The testing
models were re-established by using the optimally selected
parameter combination of (σ , s), as shown in Table 2. The
regression plots of the NIRHI predictions and the reference
chemical measurements are shown in Figure 6. The predicted
RMSET values were obtained as 1.404%, 61.540 mg/kg, and
1.573 g/kg for the model testing on the SU, VC, and OA
contents, respectively, which were under 15% of their reference
chemical measurements. The acquired CCT was larger than
0.85, which seemed to be acceptable for model evaluation of
agricultural products.

CONCLUSIONS

The RBF-PLS method was proposed to extract the spectral
features from the NIRHI data for the quantitative determination
of the SU, VC, and OA contents in pomelo samples. The
NIRHI spatial properties were pre-determined based on previous

research results. The spectral calibration models were trained in
the deep search of the combined parameters (σ , s), where σ was
screened from 6,400 possible candidate values changing from
0.01 to 64 with a step of 0.01, and s was changed as an integer
from 1 to 20. To observe the minimum RMSEV and CCV, the
grid values of (σ , s) were all tested, and the optimal parameters
were identified. The optimal models were found during the
calibration and validation processes, with the predictive results
of RMSEV equal to 1.076% for SU, 41.381 mg/kg for VC, and
1.136 g/kg for OA. All of the three CCV exceeded 0.9. The
selected models were evaluated based on the testing samples, and
the prediction results were also appreciable. The experimental
results indicated that the proposed parametric scaling RBF-
PLS method is feasible to determine some pomelo fruit quality
targeting contents in combination with the NIRHI technology.
Studies on NIRHI chemometric methods are essential to
improve the calibration models in the rapid determination of
agricultural products.
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