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The classification of colorectal cancer (CRC) lymph node metastasis (LNM) is a vital

clinical issue related to recurrence and design of treatment plans. However, it remains

unclear which method is effective in automatically classifying CRC LNM. Hence, this

study compared the performance of existing classification methods, i.e., machine

learning, deep learning, and deep transfer learning, to identify the most effective method.

A total of 3,364 samples (1,646 positive and 1,718 negative) from Harbin Medical

University Cancer Hospital were collected. All patches were manually segmented by

experienced radiologists, and the image size was based on the lesion to be intercepted.

Two classes of global features and one class of local features were extracted from the

patches. These features were used in eight machine learning algorithms, while the other

models used raw data. Experiment results showed that deep transfer learning was the

most effective method with an accuracy of 0.7583 and an area under the curve of 0.7941.

Furthermore, to improve the interpretability of the results from the deep learning and deep

transfer learningmodels, the classification heat-map features were used, which displayed

the region of feature extraction by superposing with raw data. The research findings are

expected to promote the use of effective methods in CRC LNM detection and hence

facilitate the design of proper treatment plans.

Keywords: colorectal cancer, lymph node, classification, transfer learning, deep learning

INTRODUCTION

Colorectal cancer (CRC) has a higher recurrence rate than all other cancers (Bray et al., 2018). CRC
lymph node metastasis (LNM) is the root cause of CRC recurrence (Ding et al., 2019; Yang and
Liu, 2020). CRC patients with LNM have a 5-year survival rate ranging from 50 to 68%, but those
without LNM have a higher rate up to 95% (Ishihara et al., 2017; Zhou et al., 2017). Treatment
of CRC is also influenced by the presence of LNM. The conventional treatment plan involves
endoscopic resection, and surgical resection accompanied by LN dissection is necessary for patients
with LNM (Nasu et al., 2013). Hence, it is important to determine the presence of CRC LNM, and
to this end, an automatic classification method for CRC LNM should be explored to give a second
objective opinion and then assist the radiologist in providing a correct report.
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As computer technologies advance in these years, medical
imaging classification methods have seen wider adoption. Many
new methods based on machine learning (Al-Absi et al., 2012),
deep learning (Sun et al., 2016), or deep transfer learning (Pratap
and Kokil, 2019), have gradually been applied to medical imaging
classification. Thesemethods can provide additional preoperative
information to aid radiologists in making proper treatment plans
(Carneiro et al., 2017; Lu et al., 2017).

There are many types of machine learning algorithms that
can be applied to medical imaging classification, such as
support vector machine (SVM) (Burges, 1998), decision trees
(DT) (Quinlan, 1986), and naïve Bayes (NB) (Friedman et al.,
1997). Vibha et al. (2006) used DT to classify mammograms
and obtained a classification accuracy of almost 90%. Inthajak
et al. (2011) presented a k-nearest neighbor (KNN) algorithm
to categorize medical images. Ahmad et al. (2016) used NB
classification to categorize each chest X-ray image to either
normal with infection or with fluid in capture features.
García-Floriano et al. (2019) proposed a machine learning
model based on SVM. This model could classify age-related
macular degeneration in fundus images and achieved a higher
classification accuracy than many well-regarded state-of-the-art
methods. Luo et al. (2018) used SVM to classify human stomach
cancer in optical coherence tomography images and obtained a
higher classification accuracy than human detection. Although
these methods outperformed human radiologists in terms of
classification accuracy, they are subject to problems in feature
extraction. The features that are often manually extracted fall
short of objectivity and will affect the algorithms’ performance
and hence the classification accuracy. Thus, a method that could
learn underlying data features is needed.

Deep learning (Lecun et al., 2015) has achieved stunning
success in image classification in the ImageNet Large Scale Visual
Recognition Challenge (Krizhevsky et al., 2017) in 2012. There
are several landmark studies (Ma et al., 2017; Golatkar et al.,
2018) that have promoted the development of deep learning
algorithms. Compared to machine learning, deep learning has
a vital advantage, i.e., the ability to automatically learn the
potential features of data by utilizing the convolution neural
network (CNN). A CNN could automatically learn potential
features from raw data layer by layer with little or no hands-on
intervention. Now, CNNs have already become a study focus,
especially in medical imaging (Litjens et al., 2017; Shen et al.,
2017). For instance, Song et al. (2017) used a CNN for lung
nodule classification on computed tomography (CT). Liu and
An (2017) built a classification model for detection of prostate
cancer based on deep learning. Despite the good performance of
deep learning methods in image classification, however, there are
two problems that undermine their wider adoption – the need
for massive number of data and high-performance computing
devices, like graphic processing units (GPUs). As deep learning
needs a large number of data to train and fit the CNN parameters,
GPUs are preferred than other equipment to process the images
faster, but it incurs a high training cost. Thus, reducing the
training cost is the key to solving the problem.

Transfer learning, introduced by Pan and Yang (2010), uses
the existing knowledge learned from one environment to solve

similar problems in different environments. Pan and Yang (2010)
summarized the classification process as well as the pros and
cons of transfer learning methods. Transfer learning methods
have a lower training cost than their deep learning counterparts
as the former does not require as many data as the latter needs
for training. In transfer learning, a model pretrained on another
large dataset, such as ImageNet, is employed to complete a task
through fine-tuning1 or other methods (Long et al., 2013, 2017;
Tzeng et al., 2014), so it has a lower cost than deep learning.
Because of these advantages, transfer learning is widely used
in medical imaging. Vesal et al. (2018) used two pre-trained
models to classify breast cancer histology images and obtained
an accuracy of 97.50 and 91.25%. da Nobrega et al. (2018) used
a deep transfer learning model (Tan et al., 2018) to classify
lung nodules in CT lung images. Dornaika et al. (2019) used
transfer learning to estimate age through facial images, and the
experiments were carried out on three public databases.

In previous studies, comparisons were made to find the most
effective method for specific diseases. Wang L. et al. (2017)
used four methods with eight classification schemes to classify
ophthalmic images and found that local binary pattern with SVM
and wavelet transformation with SVM had the best classification
performance, with an accuracy of 87%.WangH. et al. (2017) used
five methods, including random forest, SVM, adaptive boosting,
back-propagation artificial neural network (ANN), and CNN to
classify mediastinal LNM of non-small cell lung cancer. Lee et al.
(2019) used eight deep learning algorithms to differentiate benign
and malignant tumors from cervical metastatic LN of thyroid
cancer based on preoperative CT images, trying to identify
the most suitable model. However, to the authors’ knowledge,
there are few methods used for CRC LNM classification based
on machine learning, deep learning, or deep transfer learning.
Furthermore, no previous studies have compared these three
methods. Therefore, which method is the most effective one for
CRC LNM classification is unclear.

According to the literature, the use of machine learning,
deep learning, or transfer learning in medical imaging is rapidly
developing and evolving. Using computational approaches to
provide additional preoperative information can help doctors
design proper treatment plans (Carneiro et al., 2017; Lu et al.,
2017). Several papers have been published on CRC (Simjanoska
et al., 2013; Ciompi et al., 2017; Nakaya et al., 2017; Bychkov
et al., 2018), but few studies have explored the performance of
machine learning, deep learning, and transfer learning in CRC
LNM classification, and which method has the best performance
is yet to be determined, which motivated us to conduct this
research. To identify the most effective method for CRC LNM
classification, the following approaches were taken in this study.

First, eight machine learning, two deep learning, and one
transfer learning classificationmethods were used to classify CRC
LNM images.

Next, the classification results were compared to evaluate the
performance of different methods and identify the one with the
best classification performance.

1Transfer learning and Fine-Tuning. Available online at: https://ru.coursera.org/
lecture/machine-learning-duke/transfer-learning-and-fine-tuning-OdURo

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 January 2021 | Volume 8 | Article 620257

https://ru.coursera.org/lecture/machine-learning-duke/transfer-learning-and-fine-tuning-OdURo
https://ru.coursera.org/lecture/machine-learning-duke/transfer-learning-and-fine-tuning-OdURo
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Li et al. Classification of CRC LNM

Finally, a classification heat-map was used to improve the
interpretability of the classification method for CRC LNM.

MATERIALS AND METHODS

Data
Data used in the present study were collected from Harbin
Medical University Cancer Hospital. There were 3,364 samples
in the dataset, among which 1,646 were positive and 1,718
were negative. The standard of all samples was an LN of
a diameter >3mm. All patients underwent 3.0T magnetic
resonance imaging (MRI) before surgery using Philips Achieva,
with a 16-channel torso array coil. MRI sagittal T2WI scan
sequence was performed with the following parameters: TR/TE
3000/100ms, the number of signal frequency (NSA) 2, and the
layer thickness 4.0mm, and layer spacing 0.4mm. The position of
the rectal lesions was determined by the sagittal position, which
was perpendicular to the intestinal canal lesions, with a transverse
T2WI scan: TR/TE 3,824/110ms, NSA 0–3, layer thickness
3.5mm, and interval 0.2mm. According to the sagittal lesion
position, patients with parallel pathological changes received
coronal T2WI scans: TR/TE 3,824/110ms, NSA 3, and layer
spacing 0.2mm. Then, the objective LN in the sagittal, transverse,
and coronal images were located. All images used in this study
were marked as CRC LNs and classified as negative or positive by
experienced radiologists. All patches were manually segmented
by experienced radiologists, and the image size was based on the
lesion to be intercepted. Figure 1 presents the CRC LN.

Methods
In this study, intensity features were extracted by a gray-
level histogram (GLH) (Otsu, 1979), and the textural features
were extracted by the gray-level co-occurrence matrix (GLCM)
(Haralick et al., 1973). These two features are global features.
Furthermore, the scale-invariant feature transform (SIFT) (Lowe,
1999, 2004) operator was used for local features. These methods
were implemented in Python.

Eight classical supervised machine learning methods,
including AdaBoost (AB) (Freund and Schapire, 1997),
DT (Quinlan, 1986), KNN (Cover and Hart, 1967), logistic
regression (LR) (Cucchiara, 2012), NB (Friedman et al.,

FIGURE 1 | Sample CRC LN images (top row, negative; bottom row, positive).

1997), SVM (Burges, 1998), stochastic gradient descent (SGD)
(Ratnayake et al., 2014), and multilayer perceptron (MLP),
two deep learning models [LeNet (Lecun et al., 1998) and
AlexNet (Krizhevsky et al., 2017)], and one transfer learning
model (AlexNet pre-trained model) were studied for CRC LNM
classification. The results of these methods were compared.

A detailed introduction to classical machine learning methods
was presented in Marsland (2009). Classical machine learning
methods were implemented using Python and the sckit-learn
package. The optimal parameters of each method were searched
via grid search in the parameter space and determined based on
the four folds of training samples (Wang H. et al., 2017). AB used
100 decision stumps as weak learners, the learning rate was 0.1,
and the maximum split number was equal to 1. DT used sckit-
learn package default parameters. The KNN used 10 points of
nearest neighbors. LR was a linear classification model, for which
the parameters of the norm were l2, the optimization algorithm
was selected as linear, and iteration was 100. The NB classifier
selected Gaussian NB from the sckit-learn package. SVM used a
radial basis function as the kernel function, the kernel coefficient
was 1e-3, and the penalty parameter was 1.0. SGD employed
hinge as the loss function and l2 as a penalty, and the iteration was
100. MLP, a form of ANN, was trained with a back-propagation
algorithm (Rumelhart et al., 1985). In this method, two hidden
layers with 32 and 16 neurons for the first and second layers were
used. Epochs were 200, and the learning rate was 1e-3.

Deep learning methods were implemented by Python and
Keras library for Python. LeNet and AlexNet’s structures were
based on Lecun et al. (1998) and Krizhevsky et al. (2017).
A relu activation function was used in the convolution layer,
and a sigmoid function in the full connection layer. The
optimization function was SGD (Bottou, 2010). The loss function
was binary_crossentropy. The learning rate was 1e-3, and epochs
were 200. To avoid overfitting, L2 normalization (Van Laarhoven,
2017) and dropout regularization (Srivastava et al., 2014)
were utilized. The methods were running on GPUs (NVIDIA
Company GTX 1080ti).

Transfer learning and deep learning share something in
common in parameter settings, but are different in training: deep
learning starts from scratch, whereas transfer learning uses a pre-
trained model. Because the pre-trained model was not trained by
ImageNet, it did not need to initialize parameters. As stated in
Yosinski et al. (2014), the first three layers were frozen because
the layers that extracted the features were general. The other
parameters were fine-tuned. In the implementation process, the
structure must follow AlexNet then load AlexNet model weight.
The fully connected layer activation function was changed to
sigmoid. The optimization function was SGD. The loss function
was binary_crossentropy, and the learning rate was 1e-4, and
epochs were 200. In this study, methods used to avoid overfitting
were L2 normalization and dropout regularization. The dropout
was set to 0.5. Finally, transfer learning retrained onGPUwas like
deep learning.

The explanation of the internal relationship between the input
data and label prediction has always been a vital issue (Lipton,
2018) in the CNN-based classification tasks. In this study, a
classification heat-map was used to improve the interpretability
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of the model (Lee et al., 2019). This experiment contained three
steps. First, the model was used to display the last convolutional
layer feature-map. Then, the feature-map was converted into a
heat-map. Last, raw data and heat-map were superimposed into
a new image.

RESULTS

Classification Performance
In this study, three kinds of features were employed in
eight machine learning methods, respectively. Table 1 displays
the performance indicators of all methods for CRC LNM
classification, including accuracy (ACC), area under the curve
(AUC), sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Based on the ACC and
AUC values, the optimal features set of each machine learning
method for CRC LNM classification was defined. As shown
in Figures 2, 3, LR achieved the best performance using the
GLH and GLCM features sets. NB obtained the highest ACC
and AUC values for the SIFT features set. Deep learning
and transfer learning had significantly better performance than
machine learning methods in CRC LNM classification. Although
deep learning and transfer learning did not use global and local

features sets, the ACC and AUC values of these two methods
were still better thanmachine learningmethods (Table 1). Hence,
transfer learning was identified as the best method for CRC LNM
classification in this study.

Lesion Classification Heat-Map
Although CNN has enabled unprecedented breakthroughs in
computer vision tasks, interpretability remains unclear (Lipton,
2018). Therefore, to present a classification heat-map (Lee et al.,
2019), the interpretability of the CNN model was improved.
The classification heat-map identified discriminative regions
(Selvaraju et al., 2017). As shown in Figure 4, the last convolution
layer features heat-map was superimposed on the original MRI
so that the location of the actual LN could be compared to the
region highlighted by the model (Lee et al., 2019). Red regions
represent class information, whereas the others correspond to
class evidence.

DISCUSSION

First, as shown by the comparison of machine learning results,
one method could yield different results if the selected features
differed, and different methods would have different results

TABLE 1 | Performance results of all methods for CRC LNM.

ACC AUC Sensitivity Specificity PPV NPV

AB+GLH 0.6369 0.6357 0.6753 0.6431 0.6910 0.5805

AB+GLCM 0.6458 0.6449 0.6431 0.6491 0.6880 0.6018

AB+SIFT 0.6280 0.6270 0.6267 0.6295 0.6706 0.5836

DT+GLH 0.4598 0.4588 0.4728 0.4441 0.5073 0.4103

DT+GLCM 0.4866 0.4859 0.4972 0.4745 0.5190 0.4529

DT+SIFT 0.4955 0.4950 0.5057 0.4844 0.5190 0.4711

KNN+GLH 0.5967 0.5900 0.5650 0.7458 0.7125 0.2675

KNN+GLCM 0.5818 0.5752 0.5562 0.7 0.7051 0.2553

KNN+SIFT 0.6280 0.6222 0.5886 0.7687 0.7009 0.3435

LR+GLH 0.6429 0.6416 0.6359 0.6519 0.7026 0.5805

LR+GLCM 0.6815 0.6802 0.6684 0.6990 0.7464 0.6140

LR+SIFT 0.6250 0.6242 0.6253 0.6246 0.6618 0.5866

MLP+GLH 0.5402 0.5395 0.5472 0.5321 0.5743 0.5046

MLP+GLCM 0.5759 0.5748 0.5780 0.5733 0.6268 0.5228

MLP+SIFT 0.5744 0.5738 0.5803 0.5678 0.6006 0.5471

NB+GLH 0.6354 0.6331 0.6184 0.6628 0.7464 0.5198

NB+GLCM 0.6637 0.6623 0.6527 0.6782 0.7289 0.5957

NB+SIFT 0.6518 0.6500 0.6373 0.6727 0.7376 0.5623

SGD+GLH 0.6101 0.6089 0.6181 0.6128 0.6742 0.5532

SGD+GLCM 0.5372 0.5375 0.5488 0.5262 0.5248 0.5502

SGD+SIFT 0.5833 0.5838 0.5981 0.5698 0.5598 0.6079

SVM+GLH 0.4896 0.4924 0.5000 0.4836 0.3586 0.6261

SVM+GLCM 0.5208 0.5247 0.5500 0.5076 0.3382 0.7112

SVM+SIFT 0.5327 0.5359 0.5617 0.5172 0.3848 0.6869

LeNet 0.6577 0.7305 0.6535 0.6535 0.6535 0.6535

AlexNet 0.6716 0.7696 0.6708 0.6711 0.6714 0.6706

AlexNet pre-trained model 0.7583 0.7941 0.8004 0.7997 0.7992 0.8009
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FIGURE 2 | Accuracy of all classification methods.

FIGURE 3 | Receiver operating characteristic curves of all methods for CRC LNM: (A) ML with GLH and CNN, (B) ML with GLCM and CNN, and (C) ML with SIFT

and CNN.
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FIGURE 4 | CRC LN classification heat-map (left – original image; middle – feature heat-map; right – superimposed image).

even if the same features were selected. In Table 1, when each
feature set was used as an input, AB, LR, and NB were better
than the other machine learning methods in terms of both
ACC and AUC. AB is an ensemble of DT from the view of
methodology. AB utilizes multiple weak classifiers which could
learn more information from the input and develop into a strong
classifier when combined. Hence, AB could become a better
classification method based on these weak classifiers. As a linear
classification method, LR gives each input feature a weight factor
which will have impact on the classification result. Based on
the LR methodology, gradient descent iterates were used to find
the right factors. Then, predicted values were obtained, and a
sigmoid function was used for final classification. NB, with the
Bayesian theorem as its foundation, is considered one of the
simplest yet most powerful classificationmethods. ANB classifier
calculates the posterior probability of input features as per the
prior probability, and the input features must be independent
of each other. Other machine learning methods, such as SVM
and DT, performed worse. For instance, SVM is based on the
kernel function which implicitly maps features into a higher-
dimensional feature space and measures the distance between
the feature points. Hence, the choice of the kernel function is
vital. DT is based on a tree structure, which contains nodes and
a directed edge. In general, there is a root node, some internal
nodes and leaf nodes in a DT. The leaf nodes are decision results,
and other nodes represent the features. Therefore, the higher the
feature purity is, the better the classification result is.

In this study, the comparison results revealed that all other
methods employed outperformed the classical machine learning
methods for CRC LNM classification. LeNet and AlexNet are
deep learning methods, and the AlexNet pre-trained model is
a transfer learning model. In deep learning, a CNN is used to
extract features from raw data layer by layer. Comparison of
LeNet and AlexNet showed that the latter had better performance
than the former. The reason is the structure: a deep structure
performs better than a shallow one (Bottou et al., 2007; Montufar
et al., 2014). The number of parameters also played a part
(Tang, 2015): there are more CNN layers in AlexNet which
also has more extracted features than LeNet (Lecun et al., 1998;
Simonyan and Zisserman, 2014). Hence, even though the same
classification function was employed, AlexNet achieves a better
result. Although the problem of parameters was considered, more

parameters meant more data to fit. Therefore, AlexNet needs
more data, and is more likely to result in overfitting than LeNet.
Overfitting hinders medical imaging analysis, and it is often
difficult to collect enough medical images, like CRC LN images.
In this study, the AlexNet pre-trained model solved the problem
of shortage of medical data. As the AlexNet pre-trained model
was trained by ImageNet, it did not need extra data for training
from scratch. Hence, the pre-trained model parameters could be
directly used to train new data with the help of some processing
techniques, such as freezing and fine-tuning parameters. As low-
level features are general, the parameters of these features could
be frozen, and other parameters could be fine-tuned. In transfer
learning, the learning rate is often set smaller than that for
training from scratch. If the learning rate is set high, the model’s
parameters would be updated quickly and affect the original
weight information (Wang, 2018).

As shown in Figure 4, the visualization experiment could
show the model focus region of the input image. The
classification heat-map represents evidence of the CNN model-
based classification and could assist in clinical decision-making
by directly identifying the region of interest (Lee et al., 2019).

Feature extraction has direct impacts on the performance of
the classification method. Figure 5 shows the original data and
the features extracted by all methods. SIFT are features extracted
based on the interest points of the local appearance of the original
data. Themore the points are, themore the features are. However,
there are few points on the CRC LN lesion, whereas some points
are on the edge. There is little classification information. The
GLCM includes multiple-type features. Entropy and angular
second moment features are listed in Figure 5. It is not easy
to distinguish the region of the lesion. GLH represents the
relationship between the occurrence frequency of each gray-level
pixel and the gray level. Gray-level pixels could be observed. The
central area of the CRC LN lesion is more than the edge area.
Nevertheless, GLH does not reflect the features of the central
area. The features of the AlexNet pre-trained model are from
low to high levels. The features of the first two convolutional
layers display the overall contour of the lesion, and others
represent the semantic features of a high level. This is helpful
for classification. Hence, the features extracted by the pre-trained
CNN were better than those extracted by the other methods for
CRC LNM classification.
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FIGURE 5 | Comparison of original data and features: (A) original data, (B) SIFT feature, (C) GLCM feature, (D) GLH feature, and (E) features by AlexNet pre-trained

model extracted from convolutional layers 1–5.

Based on the experiment’s results, the observations are
as follows: (1) The traditional feature extraction methods
are not effective in CRC LNM classification. (2) The pre-
trained model of deep learning has strong transferability.
Deep transfer learning applied to a small medical image
dataset is better than traditional methods, and it does not
need to train the model from scratch. (3) The weights
of the pre-trained model realize better initialization of
the parameters.

CONCLUSION

In conclusion, this study showed that deep transfer learning is
better than deep learning and machine learning mainly because
the pre-trained CNN extracts features are more discriminative
than those extracted by a CNN and artificially-extracted features.
Deep transfer learning has been a popular method for image
classification in recent years, and it was proved to be the best
classification method among all the methods selected in this
study. It could extract underlying features from raw data, does
not need to select features or use raw data as input, and is
less prone to user bias. A pipeline of transfer learning will

be established in future studies, and the optimal deep transfer
learning model for CRC LNM classification will be found.
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