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Articular cartilage is a highly specialised connective tissue of diarthrodial joints which

provides a smooth, lubricated surface for joint articulation and plays a crucial role in the

transmission of loads. In vivo cartilage is subjected tomechanical stimuli that are essential

for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage

damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired

loading resistance and progressive degeneration of both the articular cartilage and the

underlying subchondral bone. Since the tissue has limited self-repairing capacity due

its avascular nature, restoration of its mechanical properties is still a major challenge.

Tissue engineering techniques have the potential to heal osteochondral defects using

a combination of stem cells, growth factors, and biomaterials that could produce a

biomechanically functional tissue, representative of native hyaline cartilage. However,

current clinical approaches fail to repair full-thickness defects that include the underlying

subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show

limited capacity to regenerate the damaged tissue due to poor integration with host

cartilage and the failure to retain structural integrity after insertion, resulting in reduced

mechanical function. The aim of this review is to examine the optimal characteristics of

osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially

able to replicate the natural mechanical environment of articular cartilage and their role

in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the

overall mechanical performance of grafts engineered using different technologies.

Keywords: osteochondral defects, tissue engineering, biomaterials, articular cartilage, mechanobiology, stem

cells, mechanical testing

OSTEOCHONDRAL DEFECTS

Osteochondral defects are areas of damage that involve both the articular cartilage and the
underlying subchondral bone and can be caused by ageing, diseases (such as osteoarthritis and
osteochondritis dissecans) or trauma. Osteoarthritis (OA) is a degenerative joint disease that
affects over 250 million people worldwide (Hunter et al., 2014). Prevalence of the disease is
increasing due to an ageing population and, in the US alone, 70 million people over the age of
65 are at risk of developing OA by the year 2030 (Bhatia et al., 2013). OA, originally thought to
be a disease primarily affecting articular cartilage, is now considered to affect all tissues in the
diarthrodial joint, including subchondral bone, ligaments, menisci, joint capsule, and synovial
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membrane (Torres et al., 2006; Hunter et al., 2009; Lo et al., 2009;
Krasnokutsky et al., 2011). As well as changes to the chondrocytes
and the cartilage matrix, osteoarthritis is characterised by
structural changes such as joint space narrowing, osteophyte
formation and subchondral sclerosis that cause pain and joint
immobilisation. Subtle changes to subchondral bone can be
observed early, though the precise chronology of how these
changes affect the OA process remains to be uncovered and
the role of the subchondral bone in initiating and advancing
disease progression is now receiving greater attention (Li
et al., 2013). The crosstalk between subchondral bone and
articular cartilage is complex and can induce biomechanical
and biochemical changes in the overlying cartilage (Hu et al.,
2020). The more obvious effect of changes to subchondral bone
can be seen in conditions such as osteonecrosis, osteosclerosis,
and Osteochondritis Dissecans (OCD). In osteonecrosis, and
osteosclerosis imbalances in the bone remodelling process causes
changes in bone turnover, mineralization, and subchondral
bone volume, reducing overall bone density. This alters the
biomechanical environment of the osteochondral unit and causes
strain changes in the overlying cartilage during loading that may
lead to pathological changes. OCD is a pathologic condition
that affects subchondral bone formation resulting in subchondral
bone fragments that disrupt the overlying articular surface.
The exact causes of OCD are still unknown, yet repetitive
microtrauma, abnormal endochondral ossification, and genetic
factors are thought to play a role in its development (Grimm et al.,
2014). Primarily, repetitive overloading or trauma is thought
to disrupt the blood supply resulting in osteonecrosis. This in
turn, may induce microcracks in the subchondral bone plate
and underlying bone, resulting in fragmentation of bone and
cartilage, causing inflammation, and joint pain. Another example
is where cartilage loss adjacent to subchondral bone marrow
lesions is common and is probably associated with changes in the
modulation of this crosstalk (Hunter et al., 2009).

Articular cartilage is a viscoelastic tissue that provides a
smooth and lubricated surface for joint movement, which also
plays a key role in the absorption and dissipation of loads to the
underlying subchondral bone. Healthy articular cartilage is an
avascular, a-neural and a-lymphatic tissue, composed mainly of
a proteoglycan rich extracellular matrix (ECM), type II collagen
and chondrocytes. Mechanical properties of articular cartilage
largely depend on ECM composition and organisation, however,
mechanical stimulation is essential for cartilage development
as well as maintaining cartilage homeostasis (Sanchez-Adams
et al., 2014; Prein et al., 2016). Nevertheless, it has been
demonstrated that excessive loading, either as single acute event
or repetitive stresses, induces the expression of degradative
enzymes such as metallopeptidase with a thrombospondin type 1
motif 5 (ADAMTS5) andmatrixmetalloproteinase-13 (MMP13),
affecting matrix composition and hence playing a pivotal role
in pathogenesis (Nakagawa et al., 2012; Buckwalter et al., 2013;
Houard et al., 2013; Chang et al., 2019). Both OA (particularly
post-traumatic osteoarthritis: PTOA) and OCD are associated
with high-impact sports and abnormal loading/ joint injury,
and therefore tend to affect highly stressed joints such as the
knee and elbow. Since mechanical loading plays such a vital

role in the initiation and progression of osteochondral defects
and associated conditions, a deeper understanding of cartilage-
bone mechanics is essential for developing better diagnosis and
treatment methods.

This review will focus on the biomaterials able to replicate
the natural mechanical environment of articular cartilage and
the effect of mechanical cues resulting from the use of
these scaffolds in directing and enhancing chondrogenesis.
Importantly, osteochondral implants must be able to withstand
the mechanical environment in the joint, which is responsible for
these mechanical cues and that they are tested during their initial
development with this environment in mind.

THE MECHANICAL ENVIRONMENT OF
NATURAL CARTILAGE

Articular cartilage can be subdivided into four distinct zones: the
superficial zone, the middle zone, the deep zone and the calcified
zone (Figure 1A). Each zone exhibits a particular arrangement
and organisation of chondrocytes and ECM proteins, mainly
collagen type II (Col II) and proteoglycans, determining the
tensile strength, flexibility and load-bearing ability of cartilage
(Baumann et al., 2019). Since articular cartilage is a non-uniform
structure, it presents challenges when trying to determine strain
patterns and relative stiffness. This is due to variation in the
orientation of collagen fibres, proteoglycan distribution, and
molecular/ion content throughout the depth of native cartilage,
which is a function of the anatomical location within the joint,
and the type of loading applied.

The superficial zone represents the 10–20% of articular
cartilage and contains flattened chondrocytes. In the superficial
zone, thin collagen fibres (mainly collagen type II and IX) are
tightly packed and aligned parallel to the articular surface to
protect deeper layers from shear stress (Sophia Fox et al., 2009;
Correa and Lietman, 2017). Moreover, the parallel arrangement
of collagen provides tensile stiffness and strength providing the
tissue with high mechanical stability. This thin layer acts as a
barrier regulating not only the diffusion transport of nutrients
and oxygen to the underlying cartilage structures but also the
ingress and egress of large biomolecules (Leddy et al., 2008).
Lubricin, which is responsible for reducing surface friction,
is produced by chondrocytes only in this zone (Correa and
Lietman, 2017). The middle zone represents 40–60% of the
articular cartilage and is characterised by sparsely distributed
rounded chondrocytes and a proteoglycan rich ECM (consisting
mainly of aggrecan) (Fisher et al., 2019). Within the middle zone,
collagen type II has thicker fibres and is obliquely distributed.
The deep zone is characterised by the highest proteoglycan
content and the lowest water concentration. Collagen fibres are
thick and run perpendicular to the articular surface (Baumann
et al., 2019). Chondrocytes are parallel to the collagen fibres
and arranged in columns. Due to the high content of negatively
charged proteoglycans, the deep zone is responsible for providing
the greatest compressive resistance to articular cartilage (Gilbert
and Blain, 2018). The deep zone is reported to have the highest
stiffness, along with the superficial zone, corresponding to
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FIGURE 1 | Zonal architecture of articular cartilage and viscoelastic behaviour following compression. (A) Articular cartilage can be subdivided into 4 distinct zones:

The superficial zone, the middle zone, the deep zone and the zone of calcified cartilage. Collagen fibre orientation in the extracellular matrix (ECM) and distribution of

chondrocytes varies within each zone. (B) The ECM consists of a liquid phase (the interstitial fluid) and a solid phase composed of a type II collagen network

interwoven with proteoglycans (predominantly aggrecan). The negative charge on the keratin sulphate and chondroitin sulphate glycosaminoglycans (GAGs) attracts

positive ions that creates an osmotic pressure and retains water in the collagen network. When a compressive load is applied fluid flows out of the ECM in a

time-dependent manner and similarly, when the load is removed, fluid is drawn back into the matrix restoring its original shape.

locations where the collagen fibre density is greatest, whereas
the middle zone is characteristically softer (Schinagl et al., 1997;
Bellucci and Seedhom, 2001). Articular cartilage stiffness has
been reported to range from 0.1 to 6.2 MPa, with variabilities
among studies that depend on sample type and testing setting
(Boschetti et al., 2004; Robinson et al., 2016; Patel et al., 2019;
Zheng et al., 2019; Guimarães et al., 2020). Within the middle
and the deep zone, each chondrocyte is surrounded by a 2–
4µm thick collagen type VI rich pericellular matrix (PCM),
which forms the chondron. The PCM seems to play a functional
role in initiating signal transduction within the cartilage during
load-bearing (Leddy et al., 2008). A study by McLeod et al.
(2013) showed depth-dependent mechanical inhomogeneity of
the elastic moduli of the ECM throughout the cartilage zones,
yet zonal uniformity of the PCM elastic moduli in comparison.
Cartilage stiffness has also shown to decrease with increasing
severity of OA (Kleemann et al., 2005). The calcified zone
is characterised by hypertrophic chondrocytes and has a high
content of collagen type X (Col X). It anchors the collagen
fibrils from the deep zone to the subchondral bone providing
optimal integration and as it is infrequently penetrated by blood
vessels it prevents vascularization of the articular cartilage. The
zone of calcified cartilage also acts as a transitional zone and
is important for reducing stress concentrations at the cartilage-
bone interface (Boushell et al., 2017). The subchondral bone

plate starts at the tidemark separating calcified and non-calcified
cartilage. It is a supportive structure that consists of calcified
cartilage and underlying subchondral bone that allows the build-
up of hydrostatic pressure (Hwang et al., 2008). Damage to
the integrity of the subchondral bone affects the generation of
hydrostatic pressures and the repair of osteochondral defects
often fails to recognise the importance of the subchondral
bone plate. In its natural environment, cartilage is subject to
a variety of different types of mechanical forces, including
tension, compression, shear stress, and torsion. Physiological
load on articular cartilage ranges from 5 to 8 MPa during
walking and can reach up to 18 MPa when undergoing other
activities such as rising from a chair (Clements et al., 2001).
Due to the impermeable nature of the calcified cartilage and the
low hydraulic permeability of the subchondral bone plate, the
resistance to fluid flow within the cartilage results in the build-up
of hydrostatic pressures (Hwang et al., 2008). Articular cartilage
is resistant to these loads due, in part, to its viscoelastic behaviour
resulting from the inter-relationship between the proteoglycan
aggregates of the ECM (often referred to as the solid phase),
and the interstitial fluid or liquid phase. The negatively charged
carboxyl and sulphate groups of the proteoglycans attracts
positive ions and creates an osmotic pressure, restrained by
the tensile properties of the type II collagen network, which
provides the cartilage with its compressive stiffness (Ateshian
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et al., 2004).When a constant force is applied, the interstitial fluid
pressure increases, forcing fluid out of the porous ECM in a time-
dependent manner, creating frictional drag until equilibrium
is reached. This frictional drag is inversely proportional to its
permeability (Mak, 1986) and gives the cartilage its viscoelastic
creep and stress-relaxation characteristics during compression
(Mow et al., 1980; Halonen et al., 2014). When strain is kept
constant, stress on the tissue increases until it reaches a peak
which, due to redistribution of fluid within the cartilage, relaxes
over time until equilibrium is reached. Similarly, when the
load is removed, fluid flows back into the matrix allowing the
cartilage to return to its original state, hence giving the tissue its
mechanical properties and ability to withstand compressive loads
(Figure 1B). Structural and biochemical variations relating to
degenerative changes following injury or pathological conditions
such as OA, alters the fluid flow dynamics throughout the tissue
and can further affect load-bearing and compressive capability.

Cartilage was originally described as a biphasic material by
Mow et al. (1980), composed of the liquid and solid phases as
previously described. However, the model was adapted into a
triphasic material by Lai et al. (1991) to include the mechano-
electrochemical behaviour of monovalent ions and later the
model accounted for the polyvalent ions in the interstitial fluid
as forces acting as part of a separate liquid or ion phase (Gu
et al., 1998). Although the triphasic model is a more recent
theory that encompasses a structurally more accurate description
of the composition of articular cartilage, the biphasic model
highlights the importance of osmotic and hydrostatic pressure
within the cartilage and how the tissue resists both compressive
and tensile forces (Ateshian et al., 2004). It should be noted
that any successful osteochondral implant has to accommodate
these forces.

The Effect of Physiological Loading,
Overuse, and Disuse on Articular Cartilage
The high and complex range of physiological loads applied
to cartilage are critical for maintaining healthy joint function.
Mechanical loading, in the form of moderate exercise, is one
of the most important factors for maintaining a homeostatic
environment and balancing the anabolic and catabolic response
of chondrocytes for ECM synthesis and degradation. Numerous
studies have shown reduction in pro-inflammatory cytokines (IL-
1B, IL-6 TNF-α), inflammatory mediators (COX-2, PGE2 and
NO) (Chowdhury et al., 2001; Fu et al., 2019) and reduction in
matrix-degrading enzymes (MMPs and ADAMTSs) in response
to dynamic compression (Sun et al., 2012). In vitro studies also
confirm anti-inflammatory effects of loading, with an increase
in both gene expression, synthesis of type II collagen, aggrecan
production (Buschmann et al., 1999; Waldman et al., 2006;
Iseki et al., 2019) and stimulation of chondrocyte growth,
differentiation, and proliferation. It is also important to note that
chondrocytes from different regions of cartilage constitutively
express mRNA for cartilage structural proteins in different
baseline levels and respond differently to mechanical loading,
suggesting that isolating chondrocytes from a non-load-bearing

area might significantly affect the quality of the synthesised ECM
(Bevill et al., 2009; Briant et al., 2015).

Although there is a genetic predisposition to the development
of OA, loading plays a contributory role. Physiological loading
is important for maintaining joint homeostasis (Figure 2),
whilst abnormal loading caused by obesity, immobilisation, joint
instability, overuse, or trauma can cause cartilage degradation
and are the main risk factors linked to the development of
OA (Arden and Nevitt, 2006). Overloading of the joint, either
as a single impact load or cyclic loading causes increased
catabolism, chondrocyte necrosis and apoptosis and damage to
the collagen network in a dose-dependent manner (Chen et al.,
2001; Clements et al., 2004; Hosseini et al., 2014). Most studies
report a critical threshold with chondrocyte apoptosis, GAG
loss and increased production of inflammatory cytokines above
this threshold load (Clements et al., 2001; D’Lima et al., 2001).
Kerin et al. (1998) indicated that loads above 10 MPa can result
in apoptosis. In comparison, using bovine explants, Loening
et al. (2000) showed that chondrocyte apoptosis can occur at
4.5 MPa as an earlier response to injury which is later followed
by degradation of the collagen network at 7–12 MPa (Loening
et al., 2000). On the other hand reduced mobility, which is
associated with low loading conditions results in upregulation
of MMPS, softening and a reduction in proteoglycan content
and cartilage thinning (Jurvelin et al., 1986; Vanwanseele et al.,
2002; Leong et al., 2011). Impaired joint loading significantly
affects articular cartilage ECM composition and as consequence
cartilage becomes thinner with reduced ability to absorb
loads and shocks resulting in excessive load transmission to
the underlying subchondral bone. Abnormal mechanical load
can induce bone marrow oedema and subchondral sclerosis
(Beckwée et al., 2015; Eriksen, 2015; Donell, 2019).

Articular cartilage is not only sensitive to the type of force
applied and the magnitude of load but also to the duration,
direction, and frequency of loading (Komeili et al., 2019). Párraga
Quiroga et al. (2017) showed that higher strain rates cause more
damage to the collagen network, while lower strain rates cause
more damage to the non-fibrillar matrix components and that
overall cartilage damage is both load and rate dependent. A
study by Sadeghi et al. (2015) showed increases in crack length
and surface damage with increasing loading frequency above a
normal level of 1Hz. There may also be variation in the material
properties of the articular cartilage, in that weight-bearing areas
may bemore functionally prepared for loading compared to non-
weight-bearing areas, and that non-weight-bearing areas may
be more susceptible to damage and fibrillation when subject to
the same tribological stresses (Moore and Burris, 2015). These
factors highlight variability and therefore difficulty for a standard
osteochondral graft material to be able to replicate native cartilage
in different regions and locations within the same joint, let
alone variability between different joints and that under different
loading conditions.

Variations in Strain and Stiffness
In native osteochondral tissue under normal loading conditions,
cartilage can experience strains of 2–9% and can reach up
to 20–30% during vigorous activity, whereas the underlying
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FIGURE 2 | Schematic representation of the effect of physiological, overloading, and reduced loading on articular cartilage. Physiological loading is essential for

maintaining cartilage homeostasis regulating ECM synthesis and chondrocytes proliferation. Overloading, caused by trauma, obesity and joint instability, reduces

collagen, and aggrecan content inducing chondrocytes apoptosis. Reduced loading increase matrix degradation leading to cartilage thinning and softening.

bone experiences strains of <1% (Sanchez-Adams et al., 2014;
Steinmetz et al., 2015). In addition, calcified cartilage is ∼100
times stiffer than hyaline cartilage and 10 times less stiff than
underlying subchondral bone and this transitional zone plays a
crucial role in the transmission of loads between these regions
(Mente and Lewis, 1994; Madi et al., 2020).

Strain distribution patterns vary depending on the type of
loading, with more uniform strains during dynamic loading than
static loading conditions and tension-compression non-linearity
also causes variations in tensile stiffness (Huang et al., 2005;
Komeili et al., 2019). Since cartilage is anisotropic material, the
tensile moduli varies depending on the direction of testing and
shows increased stiffness parallel to the local split-line patterns
which also varies throughout the cartilage depth (Kempson et al.,
1973). Variations have also been reported between anatomical
locations within the joint, and differences in tensile modulus have
been observed between high and low weight-bearing regions.
For example, Wong and Sah (2010) showed regional variations
in tibial and femoral cartilage, with more axial strain present
in tibial cartilage during joint articulation. Several studies have
also reported that in tibial and femoral knee condyle, higher
strains are present on the medial side compared to the lateral
compartment which provides an explanation for differences in
mechanical stiffness and is related to contact biomechanics at
these sites (Liu et al., 2010; Cotofana et al., 2011; Coleman et al.,
2013; Halonen et al., 2014).

Asymmetric strain patterns of natural cartilage create
numerous challenges for tissue engineers when analysing
strain distribution throughout the cartilage and for replicating
this mechanical environment in vitro in order to enhance

the maturation of the tissue engineered construct. However,
mechanical stimulation has successfully proven to enhance the
properties of tissue engineered osteochondral grafts which will
be discussed in more detail in this review. It is important to
note that in vivo the complex interplay of other supportive
tissues such as the menisci, tendons and ligaments (Halonen
et al., 2014) which may also be compromised by trauma
and OA.

CURRENT CLINICAL THERAPIES

Due to its avascular nature, the lack of abundant nutrients and
low cell density, cartilage has limited regenerative capacity (Lo
Monaco et al., 2018; Medvedeva et al., 2018). The treatment
modality for repairing osteochondral injuries is dependent on
the depth and area of the defect. Several clinical treatments are
available to treat osteochondral defects such as microfracture
(marrow stimulation), and the use of osteochondral autografts
and allografts (Nukavarapu and Dorcemus, 2013; Freitag et al.,
2017; Mathis et al., 2018). Microfracture is a surgical technique
used to treat chondral defects, it involves perforating the
subchondral bone with tiny holes allowing bone marrow
mesenchymal stem cells and biomolecules to infiltrate the defect
(Erggelet and Vavken, 2016). However, this often promotes
the formation of mechanically inferior fibrocartilage with little
evidence of type II collagen deposition (Redondo et al., 2018). For
the treatment of larger osteochondral defects, where subchondral
bone damage is seen tissue grafts of both cartilage and bone
may be used. Osteochondral autograft transfer and mosaicplasty,
have been used to treat full-thickness defects up to 4 cm2.
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During this procedure, chondral defects are replaced with plugs
of the patient’s own healthy articular cartilage and bone that are
harvested from non-weight-bearing areas and transferred to pre-
drilled holes at the defect site (Rowland et al., 2019). The outcome
depends on age, sex and size of the lesion. In the case of large
lesions, up to 8–9 cm2, multiple plugs can be used but with
a risk of significant donor site morbidity (Richter et al., 2016;
Kato et al., 2018). Unlike autograft, allografts use full-thickness
cartilage that can be harvested from locations that correlate with
the defects to be filled allowing more precise matching of the size
and contour of the articular surface (Assenmacher et al., 2016;
Haber et al., 2019). Even though allografts can be performed as
a single staged procedure and have shown good survival rate
in short to medium term (5–10 years), long term follow-up has
shown considerable reoperation (30.2%) and high failure rates
(18.2%) over time (Familiari et al., 2018). Moreover, allografts are
limited by the lack of tissue supply, low cell viability due to graft
storage and possible immunorejection (Yang et al., 2017; Mathis
et al., 2018).

Among the current clinical therapies, multi-layered cell-free
scaffolds have been considered and are currently under pre-
clinical and clinical evaluation. TruFit CB (Smith and Nephew)
is a synthetic plug designed to be used with microfracture
in order to improve the mechanical stability of the defect.
Initial studies showed positive results with the regeneration of
cartilage in a goat model, however, clinical studies revealed
that 70% of patients required reoperation and the plug failed
specifically in restoring the subchondral bone (Williams and
Gamradt, 2008; Joshi et al., 2012). The bone-layer of TruFit
CB is made of PGA and calcium phosphate, two materials
that degrade quickly post-implantation and mechanical failure
has resulted in the plug being withdrawn from the market
(Fraser et al., 2016; Tseng et al., 2020). D’Ambrosi et al. (2019),
investigated the clinical and radiological efficacy of MaioRegen,
a try-layered collagen-based scaffold, in restoring osteochondral
knee defects. Despite the promising satisfactory and reliable
results at mid-term follow-up, this systematic review revealed
that, in terms of clinical improvement at follow-up, MaioRegen
is not superior to conservative treatment or other cartilage
techniques. Therefore, there is still an unmet need for an optimal
biomaterial system that favours simultaneous bone and cartilage
regeneration. Although current clinical approaches can reduce
pain and improve the quality of a patient’s life, none of them has
routinely achieved complete healing of the osteochondral lesion.
Non-biological man-made materials can be used to partially
replace the joint (e.g., unicompartmental knee replacement) or
when the whole joint is severely affected it is likely that a
total joint replacement (TJR) will be required as an end-stage
intervention. In the elderly TJR is a successful end stage treatment
for OA however, younger patients have a significantly higher
risk of undergoing revision due to implant limited lifespan (25
years), periprosthetic joint infection or aseptic mechanical failure
(Meehan et al., 2014; Stambough et al., 2014; Bayliss et al., 2017;
Evans et al., 2019). To overcome these limitations, in the last
two decades, research has focused on tissue engineering (TE)
as a possible solution for osteochondral regeneration and repair
of cartilage.

TISSUE ENGINEERING APPROACHES

The most common tissue engineering approach involves the
use of a biocompatible scaffold, cells (e.g., stem cells) and/or
a combination of bioactive molecules such as growth factors
and cytokines. Autologous chondrocyte implantation (ACI) is
a procedure for the regeneration of cartilage introduced by
Brittberg et al. (1994), where autologous chondrocytes are
isolated from a non-load-bearing site of the cartilage, expanded
in vitro for 4–6 weeks and subsequently injected under a
periosteal flap that is sutured onto the cartilage positioned over
the defect (Könst et al., 2012). Although this technique has
been used for two decades with successful surgical outcomes,
the main issue is that two operations are required, one to
obtain the cells, using arthroscopy and the other usually an
open procedure to implant the cells (Minas et al., 2014; Mistry
et al., 2017; Zikria et al., 2019). Matrix-induced autologous
chondrocytes implantation (MACI) was originally developed to
improve the biological performance of autologous chondrocytes
cells and simplify surgical procedures (Andriolo et al., 2020).
As with ACI, chondrocytes are isolated from a non-load-
bearing area and cultured in vitro, however, this approach
aims to deliver autologous chondrocytes in a biopolymer
membrane. MACI R© is also the name of a commercially
available membrane of porcine collagen type I/III (Genzyme,
United States). Several types of membranes and scaffolds have
been developed for MACI procedures such as Novocart R©3D
(TETEC Tissue Engineering Technologies AG, Germany)
a collagen-chondroitin-sulphate based membrane, CaRes R©–
Cartilage Regeneration System (Arthro-Kinetics, Germany) a
collagen type I matrix and Cartipatch R© (Tissue Bank of France,
France) a monolayer agarose-alginate hydrogel (Vilela et al.,
2018). However, MACI failed to prevent fibrocartilaginous
healing and the integration of the scaffold into host hyaline
cartilage is still unsatisfactory due to the intrinsic features of
fully differentiated chondrocytes with their poor capability of
tissue remodelling. Moreover, MACI still requires a two-step
surgery, cartilage biopsy and cell cultivation, thus increasing
the total cost (Behrens et al., 2006; Zikria et al., 2019). To
further improve ACI outcomes and obtain a more reliable tissue
repair, third generation of ACI has been developed, in which
autologous chondrocytes are cultured in 3D to form spherical
aggregates with a self-synthesised extracellular matrix. Spheroids
of human autologous matrix-associated chondrocytes (Spherox)
is an advanced tissue medicinal product with European
Medicines Agency (EMA) market approval for the treatment
of osteochondral defects up to 10 cm² (Niemeyer et al., 2020).
However, due to differences in cartilage phenotype isolating
chondrocytes from a non-load-bearing area might significantly
affect the quality of the synthesised ECM (Bevill et al., 2009;
Briant et al., 2015).

So far there appears to be little difference in outcomes
of these cell therapies and tissue engineering approaches
when compared with osteochondral autograft transfer system,
mosaicplasty or microfracture surgery. Further, when harvested
in vitro, chondrocytes undergo dedifferentiation exhibiting a
flattened, fibroblast-like morphology. In these conditions they
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produce a higher amount of collagen type I and collagen type
X inducing the formation of fibrocartilage. An advantage of
growing spheroids of chondrocytes isolated from biopsies is that
the cartilage phenotype is better maintained than when cells
are grown on flat tissue culture plastic. However, all of these
approaches fail to fully repair the lesion in severe osteochondral
defects, where both subchondral bone and articular cartilage are
damaged (Davies and Kuiper, 2019). A significant proportion of
research is focusing on the use of stem cells for cartilage repair
since a large number of cells can be obtained from different
sources such as bone marrow, peripheral blood, adipose tissue,
dental pulp, placenta, and the umbilical cord (Tozzi et al.,
2016). However, selectively promoting stem cell differentiation
into appropriate cell lineages in situ is still challenging. An
expanding field of research has demonstrated that mechanical
cues from the environment could drive tissue formation and
maturation, suggesting that combining scaffolds with mechanical
properties that can drive stem cell differentiation could provide a
solution for osteochondral defects where both bone and cartilage
formation is required.

OSTEOCHONDRAL GRAFTS MATERIALS
THAT CAN BE USED TO REPLICATE THE
NATURAL MECHANICAL ENVIRONMENT

The development of an osteochondral implant that replicates the
structure of articular cartilage and subchondral bone remains
challenging for tissue engineers. Material selection plays a pivotal
role in the development of osteochondral grafts as it potentially
contributes to the mechanical properties of the scaffold (Jahr,
2017; Bonani et al., 2018).

Natural Materials
Natural materials such as collagen, chitosan, hyaluronic acid,
silk, and alginate have been extensively used in TE for their
biocompatibility, degradability and bioactivity (Jeuken et al.,
2016; Li et al., 2018b). Natural materials are often used in the form
of hydrogels with a highly hydrated viscoelastic matrix, tunable
swelling behaviour and mechanical properties depending on the
type and degree of crosslinking (Catoira et al., 2019; Mantha
et al., 2019). Moreover, natural materials provide multiple
binding sites for cell-ECM interaction. Multiple scaffolds for
osteochondral TE in the clinical market are mainly composed
of collagen type I (NOVOCART R©3D, MACI R©, CaReS R©,
NeoCart R©, Maioregen R©) (Kon et al., 2009; Crawford et al., 2012;
Petri et al., 2013; Saris et al., 2014; Zak et al., 2014). Collagen
can be extracted from various tissues and sources, for example,
studies have reported that purified collagen can be isolated
from vertebrate (generally rat, bovine, porcine and sheep) skin,
tendon, cartilage and bone as well as from marine invertebrates
(jellyfish, sponges, octopus, squid, cuttlefish, starfish) (Barzideh
et al., 2014; Langasco et al., 2017). Even though collagen type
I does not represent the main component of articular cartilage,
several studies have demonstrated its pro-chondrogenic effects
(Calabrese et al., 2017a,b; Xia et al., 2018). Preference of type
I collagen in TE is largely attributed to its availability, its

general biocompatibility and safety approvals granted by various
agencies; however, high production costs and poor mechanical
properties of pure collagen scaffolds are still major limitations
(Table 1) (Dong and Lv, 2016; Ghodbane and Dunn, 2016).
In comparison, Gelatin is derived by thermal denaturation
of collagen and can be manufactured at a much lower cost
and in larger quantities (Grover et al., 2012). Gelatin shows
low antigenicity, it possesses integrin-binding sites, and it is
completely resorbable in vivo. However, at body temperature
gelatin hydrogels are not stable, limiting their possible use as
a biomaterial. Van Den Bulcke et al. (2000) first described
gelatin methacrylate (GelMA), a chemically modified form
of gelatin that can be stabilised through photo-crosslinking
allowing the formation of a hydrogel that is stable at body
temperature. The modulus of GelMA-based biomaterial can be
controlled by varying the degree of substitution and macromer
concentration (Sadeghi et al., 2017), for example, Gan et al.
(2019) has modified GelMA hydrogels by intercalating oligomers
of dopamine methacrylate obtaining flexible hydrogels with
compressive modulus of 2.5 MPa and shape-recovery ability.
GelMA has also been used in combination with hyaluronic acid
(HA), which forms the backbone of aggrecan and therefore plays
a critical role in maintaining the viscoelastic and mechanical
properties of cartilage (Hemmati-Sadeghi et al., 2018). HA acts
also as a biochemical cue enhancing chondrogenic differentiation
of MSCs, promoting chondrocyte proliferation and preventing
chondrocyte de-differentiation by activating CD 44 (Chen et al.,
2018; Li et al., 2018a; Yamagata et al., 2018). The use of
HA in TE affects matrix deposition by cells, thus enhancing
the dynamic and equilibrium moduli during in vitro culture
(Levett et al., 2014). Recently silk fibroin (SF) has also been
investigated in the context of osteochondral TE due to its
biocompatibility, low immunogenicity, slow degradation rate,
and remarkable mechanical properties (Qi et al., 2017). Silk has
a high tensile strength (around 300–740 MPa) and depending
on the source and production method, it is possible to obtain
elastic moduli ranging from 1 MPa to 17 GPa, making it a
favourable biomaterial not only for cartilage repair but also for
subchondral bone (Koh et al., 2015; Peng et al., 2019). Li J. J.
et al. (2015), developed a bi-layered scaffolds for osteochondral
regeneration using silk fibroin for the cartilage layer and a silk-
coated strontium-hardystonite-gahnite ceramic scaffold for the
bone layer. The silk layer exhibited highly elastic behaviour
showing 91% strain at failure, indicating that the silk scaffold
could stretch to approximately twice its original length before
breakage, which is desirable for the cartilage phase. When
tested under compression the biphasic scaffold approximated
the biomechanical behaviour of osteochondral tissue, as it could
maintain structural integrity under large compressive stresses
while retaining the ability for shape recovery when hydrated, in
addition the stiff bone phase could withstand large compressive
stresses with minimal deformation.

Among natural polysaccharides, both alginate and chitosan
have potential for cartilage repair (Xu et al., 2008; Yao et al.,
2016; Ewa-Choy et al., 2017; Henrionnet et al., 2017; Merlin
Rajesh Lal et al., 2017; Ruvinov et al., 2018; Huang et al., 2019).
Alginate is a biodegradable and biocompatible material, derived
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TABLE 1 | Summary of advantages, disadvantages, and mechanical properties of naturally-derived materials.

Natural

materials

Advantages Disadvantages Mechanical properties References

Collagen type I Low immunogenicity

Degraded in vivo by MMPs

High production cost

Low mechanical properties

Permeability 0.044–0.072

mm4/Ns

Compressive modulus

3.5–3.7 kPa

Ghodbane and Dunn, 2016

Gelatin Manufactured at a lower cost and in large

quantities

Low antigenicity

Resorbable

Not stable at body

temperature

Compressive modulus

0.75–6 kPa

Chen S. et al., 2016

GelMA Stabilised form of gelatin

Photocrosslinkable

Varying the degree of substitution is

possible to vary mechanical properties

UV crosslinking may have a

negative effects on

encapsulated cells

Compressive modulus 2–30

kPa

Sadeghi et al., 2017

Klotz et al., 2016

Hyaluronic acid

(HA)

Enache MSCs chondrogenic differentiation

Maintaining viscoelastic and mechanical

properties in native cartilage

Can be physically and chemically modified

Rapid degradation and poor

mechanical properties

Elastic modulus of modified

HA 1–70 kPa

Chen C. H. et al., 2016; Li

et al., 2018a; Yamagata et al.,

2018

Lee et al., 2018

Trombino et al., 2019

Silk fibroin Biocompatibility

Low immunogenicity

Slow degradation rate

Remarkable mechanical properties

Brittleness and swelling

behaviour limits its

applications in tissue

engineering

High tensile strength 300–700

MPa and elastic modulus

ranging from 1MPa to 17GPa

Koh et al., 2015;

Chen et al., 2018; Peng et al.,

2019

Alginate Biodegradable Biocompatible

Re-differentiate chondrocytes after

monolayer culture Support chondrogenic

phenotype

Tunable mechanical properties

Lack of adhesion ligands Elastic modulus

0.15-0.55MPa

Kaklamani et al., 2014

Chitosan Biocompatibility Biodegradability

Antibacterial properties

Display poor mechanical

properties

0.13–0.199 MPa Thomas et al., 2017

from seaweed that is composed of α-D-mannuronic acid and
β-l-glucuronic acid. Studies have shown that it can support
chondrogenic phenotype promoting a rounded morphology of
isolated chondrocytes and the synthesis of type II collagen and
proteoglycans (Homicz et al., 2003; Caron et al., 2012; Angelozzi
et al., 2017; Aurich et al., 2018). Chondrogenic differentiation of
stem cells isolated from bone marrow, adipose tissues, Wharton’s
Jelly, and dental pulp has been promoted by growing cells within
alginate gels (Huang et al., 2015; Reppel et al., 2015; Ewa-Choy
et al., 2017; Mata et al., 2017; Baba et al., 2018). Although
much lower than the compressive modulus of native cartilage
the mechanical properties of alginate scaffolds can be modified
to give values of 0.15–0.55 MPa using divalent ions (Mg2+, Ca2+,
and Sr2+) (Kaklamani et al., 2014). However, the main limitation
of alginate-based materials is the lack of adhesion ligands that
are essential for cell-attachment and to overcome this, bioactive
components such as collagen may be incorporated (Bian et al.,
2011; Lee and Mooney, 2012; Ganesh et al., 2013).

Another natural polymer employed is chitosan, derived from
partial deacetylation of chitin, used in TE for its biocompatibility,
in vivo degradation and antibacterial properties (Cheung et al.,
2015; Varun et al., 2017; Huang et al., 2019). Chitosan hydrogels
have been shown to support the proliferation of chondrocytes
and MSCs in vitro and to improve the deposition of cartilaginous
ECM both in vitro and in vivo (Griffon et al., 2006; Elder et al.,

2013; Faikrua et al., 2013; Sheehy et al., 2015; Huang et al.,
2019; Scalzone et al., 2019). However, since chitosan display
poor mechanical properties, crosslinking or combination with
other materials is required to optimise the elastic modulus for
osteochondral TE (Muzzarelli et al., 2015; De Mori et al., 2019;
Kusmono and Abdurrahim, 2019; Scalzone et al., 2019). Thomas
et al. (2017) tuned the stiffness of chitosan-hydrogels by blending
increasing concentrations of hyaluronic acid dialdehyde and
the degree of crosslinking to obtain hydrogels with a Young’s
modulus of 0.13 MPa and 0.199 MPa. However, a reinforced
chitosan-based scaffold failed to regenerate bone and cartilage in
vivo suggesting that the crosslinking treatment may have affected
its overall degradation (Roffi et al., 2019). Therefore, a careful
balance between the mechanical properties and degradation rate
should be considered when designing osteochondral scaffolds
using this material.

Synthetic Materials
Synthetic materials are attractive substitutes for load-bearing
tissues, since the mechanical properties can be tailored by
altering the molecular weight and/or via the use of different
processing methods (Grigore, 2017). Synthetic polymers,
including poly(ethylene glycol) (PEG), polylactide (PLA) and its
derivatives poly(L-lactide) (PLLA) and poly(lactic-co-glycolic
acid) (PLGA), polyglycolic acid (PGA), poly(ε-caprolactone)
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TABLE 2 | Summary of advantages, disadvantages, and mechanical properties of synthetic materials.

Synthetic

materials

Advantages Disadvantages Mechanical properties References

PEG High solubility in water Hydrophilicity

Biocompatibility

Inertness

Non-immunogenicity

Lack of specific binding motifs

for cell attachment

Equilibrium modulus 0.01–2.46 MPa

Hydraulic permeability 10–13–10–16

m2/Pa

Tensile modulus 0.02–3.5 MPa

Nguyen et al., 2012

Zhu, 2010

PGA Biocompatible

Bioresorbable

Loses its mechanical integrity

between 2–4 weeks in vivo

Tensile modulus 7 GPa Woodard and Grunlan, 2018;

Gorth and Webster, 2011

PLA PLA is more hydrophobic compared to

PGA, leading to a slower hydrolysis rate.

Lack of specific binding motifs

for cell attachment

Tensile modulus 3 GPa

Tensile strength 50–70 MPa

Narayanan et al., 2016

Samavedi et al., 2013

PLGA Modulation of Young’s modulus and

degradation rate, Sustained mechanical

integrity after implantation

Lack of specific binding motifs

for cell attachment

Compression storage modulus

3.2–4.6 MPa

Baker et al., 2009

Gentile et al., 2014

PVA Biodegradable Biocompatible

Adjustable mechanical properties

Lack of specific binding motifs

for cell attachment

Tensile strength 1–17 MPa

Elastic modulus 0.0012–0.85 MPa

Low friction coefficients (µ) 0.02–0.05

Lin et al., 2017

Teixeira et al., 2019

Sánchez-Téllez et al., 2017

PCL Adjustable mechanical strength

Possibility to produce hydrogel, porous

scaffold, electrospun nanofibers

Lack of specific binding motifs

for cell attachment

Compressive modulus 6.63–56.46

MPa

Tensile Modulus 6.03–46.04 MPa

Olubamiji et al., 2016

(PCL) and poly(vinyl alcohol) (PVA), are used to form hydrogels,
porous scaffolds and nanofibrous scaffolds (Sánchez-Téllez
et al., 2017; Yang et al., 2017; Castilho et al., 2018; Dai et al.,
2018; Kudva et al., 2018; Critchley et al., 2020). The main
disadvantage of these materials is the lack of specific binding
motifs for cell attachment, but this can be improved through
functionalization or by combining with more bioactive materials.
PEG hydrogels have been used in TE due to their high solubility
in water, hydrophilicity, biocompatibility, inertness, and non-
immunogenicity (Table 2). They have also shown to maintain
cell viability and promote chondrogenic ECM synthesis (Bryant
and Anseth, 2002). By varying the molecular weight and the
concentration of PEG precursors, Nguyen et al. (2012) obtained
hydrogels with equilibrium modulus (0.01–2.46 MPa), hydraulic
permeability [ranging from 10−13 to 10−16 (m2/Pa s)] and
tensile modulus (0.02–3.5 MPa) similar to articular cartilage.
Steinmetz et al. (2015) also developed amulti-layer PEG hydrogel
resembling the zonal organisation of the osteochondral tissue.
Although the compressive modulus did not match that of the
native cartilage and bone when subject to mechanical loading,
the strain distribution pattern was similar to osteochondral
tissue with higher strain in the cartilage-like layer. When 7.5%
apparent strains were applied to the hydrogel the local strains
in the cartilage-like layer and in the bone-like layer were 15 and
2% respectively.

PGA exerts high tensile modulus (7 GPa) but due to its
relatively hydrophilic nature and instability in aqueous solution
loses its mechanical integrity between two and four weeks in
vivo (Gunatillake and Adhikari, 2003; Gorth and Webster, 2011;
Woodard and Grunlan, 2018). PLA exists in several isoforms
and the presence of one extra methyl group makes it more
hydrophobic compared to PGA, leading to a slower hydrolysis
rate. PLA possesses a high tensile modulus (3 GPa) and strength
(50–70 MPa) (Gorth and Webster, 2011; Samavedi et al., 2013).

PLGA can be synthesised using a different ratio of PGA and
PLA that allows modulation of both Young’s modulus and the
degradation rate which can be, from a few weeks up to months,
resulting in sustained mechanical integrity after implantation
(Félix Lanao et al., 2013; Samavedi et al., 2013; Gentile et al.,
2014). PVA is a biodegradable and biocompatible polymer,
from which hydrogels can be prepared at different polymer
concentrations to obtain tensile strengths in the cartilage range
of 1–17 MPa as well as an elastic modulus up to 0.85 MPa
(Karimi and Navidbakhsh, 2014; Lin et al., 2017; Teixeira et al.,
2019). PVA hydrogels exhibit limited swelling when tested at
osmotic pressures similar to that of articular cartilage, which is
desirable for soft tissue engineering to preserve the initial size
and shape and to prevent interfacial debonding (Holloway et al.,
2011; Oliveira et al., 2019). A non-biodegradable PVA based
hydrogel (Cartiva R©) exerts biphasic behaviour similar to normal
articular cartilage under compression and it is currently under
clinical trial for first metatarsophalangeal joint hemiarthroplasty
(Brandao et al., 2020).

PCL is an FDA approved biodegradable aliphatic linear
polyester and it is one of the most investigated polymers for
tissue engineering applications due to its adjustable mechanical
strength. PCL can be used to produce porous scaffolds as
well as electrospun nanofibers (Zhu et al., 2014; Panadero
et al., 2016). Visser et al. (2015) incorporated PCL microfibers
into GelMA obtaining reinforced hydrogels with mechanical
properties similar to articular cartilage. Castilho et al. (2019)
also used PCL to successfully develop a bi-layered construct that
mimics the zonal structure as well as the functional properties
of native cartilage. This construct incorporated a thin superficial
tangential layer, mimicking the collagen organisation in the
superficial layer of the cartilage, that improved the load-bearing
properties of the micro-fibre reinforced hydrogel with a peak
modulus of 473 kPa under unconfined compression as well as
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FIGURE 3 | Schematic representation of the mechanical cues affecting stem cell differentiation down the chondrogenic lineage. MSCs are mechanosensitive in

response to ECM stiffness, dynamic loading, and hydrostatic pressures which activates various signalling pathways necessary to drive differentiation down the

chondrocytic lineage.

exhibiting relaxation rates similar to those for native cartilage
(Castilho et al., 2019). Controlling the mechanical properties of
scaffolds for osteochondral TE is essential, not only to maintain
structural integrity and withstand high mechanical loading in
vivo, but also to provide environmental mechanical cues to
selectively guide stem cell differentiation into the appropriate
osteochondral phenotypes.

MECHANICAL CUES AFFECTING STEM
CELL DIFFERENTIATION

MSC commitment to the chondrocytic lineage is governed by
TGF-β and WNT/ß-catenin signalling (Usami et al., 2016).
In particular, the activation of TGF-β/SMAD2/3 pathways is
essential for the intracellular phosphorylation of Smad2 and
Smad3, which then translocate to the nucleus to activate and
stabilise the transcription factor Sex determining region Y (SRY)
Box 9 (SOX9), that is the master regulator of chondrogenesis
(Furumatsu et al., 2009; Coricor and Serra, 2016; Pfeifer
et al., 2019). SOX9, along with SOX5 and SOX6 expression
is required during embryonic development as well as in post-
natal maintenance of articular cartilage regulating expression of
ECM molecules, such as collagen (mainly types II, IX, XI) and
proteoglycans (aggrecan, decorin).

To differentiate MSCs into chondrocytes the use of growth
factors, such as TGF-β, is usually required. However, its use in
the clinic is limited as it leads to the expression of hypertrophic
markers such as Col X, MMP13 and alkaline phosphatase

(ALP), which will eventually lead to cartilage mineralization.
There is increasing evidence that environmental (such as low
oxygen tension) and mechanical cues control stem cell fate.
In particular (as described in Figure 3), MSCs are highly
mechanosensitive and respond to both passive stimuli such as
stiffness, and dynamic stimulation such as mechanical loading
and hydrostatic pressure that signals through integrins and focal
adhesion (FA) protein complex, transducing physical signals into
biochemical signals.

Regulation of MSCs Differentiation by ECM
Stiffness
In vivo each tissue is characterised by a specific stiffness, which
regulates tissue development and homeostasis by affecting cell
migration, proliferation, morphology, cell phenotype and ECM
protein production (Ehrbar et al., 2011; Handorf et al., 2015;
Hwang et al., 2015; Du et al., 2016; Sun et al., 2017; Xia et al.,
2017; Abbas et al., 2019; Chu et al., 2019; d’Angelo et al., 2019;
Saidova and Vorobjev, 2020). Engler et al. (2006) originally
explored the effect of stiffness on MSCs using polyacrylamide
hydrogels mimicking the native elasticity of brain, muscle and
osteoid. This work demonstrated that stiffness not only affects
MSC morphology showing that the expression of the neurogenic
marker ß tubulin 3 was enhanced on soft substrates and Runx2
on stiff substrates. Interestingly, this work showed that growth
factors tend to be less selective compared to matrix stiffness in
driving lineage specification. MSCs pre-conditioned on a matrix
with a specific stiffness for 3 weeks cannot be reprogrammed,
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TABLE 3 | Summary of the effect of mechanical cues on MSCs differentiation.

EFFECT OF MECHANICAL CUES ON MSCs

Substrate

stiffness

Soft substrates (1–30 kPa) Intermediate substrate (0.1–5MPa) Stiff substrates (5–300 MPa) References

MSCs on soft substrates exhibit a

rounded chondrocyte-like morphology

Higher expression levels of

chondrogenic markers

Unable to withstand mechanical loads

Mechanically competent

Stiffness in the range of native cartilage

MSCs found to express high level of

SOX9 and Col II on substrates stiffness

of 0.8MPa and 4.7MPa

Highly organised cytoskeleton

Spindle-shape morphology

Engler et al., 2006; Park et al.,

2011; Wang et al., 2016;

Olivares-Navarrete et al., 2017

Dynamic

loading

0.15–1.5% compressive strain 1Hz 10% compressive strain 1Hz from

day 0

10% compressive strain 1Hz after 1

week of pre-culture

Dynamic loading, delayed

osteogenesis.

Mineral deposits was diffuse in the

unloaded condition

while under dynamic loading was

concentrated and spatially restricted to

the central region

Compression from day 0 has negative

effects on MSC chondrogenesis

Dynamic culture increase synthesis of

GAG aggrecan, Col II and increase

expression SOX9

Upregulation of

phosphorylated-SMAD2/3

MSCs under static culture MSCs

exhibited higher of hypertrophic

markers

Thorpe et al., 2010; Zhang et al.,

2015; Sawatjui et al., 2018; Aziz

et al., 2019; Cao et al., 2019

Hydrostatic

pressure

Low HP stimulation

100–300 kPa

Physiological HP stimulation in the

cartilage layer

1–10 MPa

High HP

25 MPa

IHP upregulate osteogenic markers

Increase expression of Runx2, ALP and

osteopontin

HP applied continuously it negatively

affects SOX9, Coll II and aggrecan gene

expression

IHP positively affects SOX9 and Col II

expression even without external

growth factors and enhances

cartilaginous matrix deposition

Inhibited aggrecan and Col II

Pro-osteoarthritic effects

Correia et al., 2012; Li et al.,

2016; Montagne et al., 2017;

Stavenschi et al., 2018;

Stavenschi and Hoey, 2019

suggesting that modulation of ECMmodulus could be a powerful
tool to drive stem cell differentiation. When cultured on
stiff substrates, MSCs develop a highly organised cytoskeleton
showing a spindle-shape morphology (Table 3). Conversely,
MSCs on soft substrates exhibit a rounded chondrocyte-like
morphology and express higher levels of chondrogenic markers.
Park et al. (2011) compared collagen type II and GAG synthesis
on a soft collagen hydrogel, on plastic coated with a thin layer
of collagen and on polyacrylamide hydrogels with different
stiffnesses (1 and 15 kPa). They showed an increase in expression
of chondrogenic markers both on the soft collagen hydrogel and
on the 1 kPa substrate. The effect of substrate stiffness together
with biochemical cues was investigated by Wang et al. (2016).
They showed that HA enhancedMSC chondrogenesis, evidenced
by upregulated of aggrecan and Col II expression and this effect
was more distinct when cells were grown in soft hydrogels
(3 kPa), while this effect was reversed in the stiff hydrogel
(90 kPa). It is important to note that cartilage stiffness varies
between 0.1 and 6.2 MPa, and soft hydrogels will fail to maintain
their structural integrity after implantation (Wang et al., 2016;
Zheng et al., 2019; Guimarães et al., 2020). Olivares-Navarrete
et al. (2017) compared both cytoskeletal organisation and gene
expression ofMSCs and auricular chondrocytes grown onmethyl
acrylate/methyl methacrylate (MA/MMA) polymer surfaces with
elastic moduli ranging from 0.8 to 310 MPa mimicking the
stiffness of articular cartilage and cortical bone. MSCs appeared
to be elongated on the less stiff surfaces with a higher number of
adhesion plaques on the 4.7 MPa substrate. After 7 days without

exogenous stimuli by cytokines or other factors associated
with cartilage differentiation, the expression of SOX9, Col II,
aggrecan and cartilage oligomeric matrix protein (COMP) in
MSCs showed an increasing trend with decreasing stiffness. This
work showed that mimicking the native elasticity of cartilage
enhances chondrogenic phenotype without exogenous stimuli.
Nevertheless, it is also important to consider that osteochondral
tissue exhibits different stiffness among the different layers, and
an implant displaying a layering or gradient approach with
varying stiffness, might be more effective in reproducing the
native architecture of the tissue as well as selectively promoting
ECM synthesis.

Role of Dynamic Loading in MSCs
During ambulation mechanical load plays an important role
in maintenance and degeneration of articular cartilage affecting
gene expression of Col II, aggrecan, and degenerative enzymes
(MMPs). Interestingly dynamic stimulation also affects MSC
differentiation and the quality of ECM synthesised. A study from
Thorpe et al. (2008) revealed a negative effect of long term
dynamic compression on MSCs cultured in agarose hydrogels.
This study reported that unconfined compression at 10% strain
and 0.5Hz for 1 h/day significantly reduced GAG production
and Col II synthesis compared to static culture. Interestingly,
the application of dynamic compression from day 0 inhibits
chondrogenesis even in the presence of TGF-β3 (Thorpe et al.,
2010). In contrast, the inhibition of chondrogenesis in response
to dynamic compression was not observed if the MSCs were
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first allowed to undergo chondrogenesis. Consistent with these
results, Sawatjui et al. (2018) studied the effect of dynamic
compression of both MSCs and chondrocytes derived from
osteoarthritic joints seeded on silk fibroin scaffold, pre-cultured
for 1 week, and subsequently subjected to compression with
10% dynamic strain at 1Hz, 1 h/day for 2 weeks. This study
showed that dynamic compression significantly enhanced the
synthesis of Col II and aggrecan along with an increase
of compressive modulus. Cao et al. (2019) seeded rabbit
derived MSCs into collagen scaffolds under 10% compressive
sinusoidal strain at 1Hz frequency, for 2 h/day for 21 days.
Starting from the second week of culture, the morphology
of MSCs in the dynamic culture group exhibited a rounded
chondrocyte-like morphology, whereas cells remained spindle
shaped in static culture. Dynamic culture also promoted GAG
synthesis as well as aggrecan, Col II and SOX9 expression
compared to the static culture. Zhang et al. (2015) demonstrated
that delayed dynamic compression positively affected MSC
chondrogenesis through phosphorylated-SMAD2/3 enhancing
matrix deposition and suppressing hypertrophy. Further MSCs
under free swelling condition exhibited higher expression of ERK
(involved in chondrocyte hypertrophy) along with upregulation
of MMP13, Runx2, and Col X. In addition, Gardner et al.
(2017) demonstrated that multiaxial loads on MSC led to
endogenous production and secretion of TGF-β1 as well as
the activation of the secreted latent TGF-β1. Taken together
these data suggest that dynamic load positively affects MSC
chondrogenesis, however, MSCs should first be differentiated
before applying loads. Consequently in vitro differentiation
of stem cells prior to implantation could be critical for
osteochondral tissue engineering.

Hydrostatic Pressure and MSCs
Differentiation
Cartilage ECM is characterised by a high water content and
low permeability, and as a consequence when a load is applied
the resistance of fluid flow generates hydrostatic pressure (HP).
In vivo HP varies between 2 and 10 MPa with peaks of 18
MPa during intense activities such as jumping or running (Elder
and Athanasiou, 2009; Correia et al., 2012). Several studies
have demonstrated that the application of HP on MSCs might
have a pro-chondrogenic effect. Angele et al. (2003) examined
the effects of cyclic hydrostatic pressure on MSCs aggregates
showing a significant increase in GAG and collagen content at
days 14 and 28 compared to the unloaded control. Furthermore,
Miyanishi et al. (2006a) studied MSCs in pellet culture exposed
to intermittent hydrostatic pressure (IHP) and demonstrated
an increase in expression of SOX9, Col II, and aggrecan
with or without the addition of TGF-β3. In a second study
the authors also demonstrated that the magnitude of loading
modulated chondrogenic gene expression and cartilage matrix
protein deposition in MSCs pellets in the presence of TGF-β3
suggesting that the magnitude of the load could enhance MSCs
chondrogenesis (Miyanishi et al., 2006b). In fact, physiological
levels of HP (5MPa) significantly enhance cartilaginous matrix
deposition (Correia et al., 2012; Li et al., 2016). Conversely,

high HP (25 MPa up to 24 h) on the ATDC5 cell line markedly
affecting the expression of matrix remodelling related genes,
apoptosis-related genes and strongly inhibited aggrecan and
Col II, suggesting that excessive loads induce pro-osteoarthritic
effects (Montagne et al., 2017). Interestingly the use of low HP,
in the range of 100–300 kPa, has been demonstrated to direct
MSCs differentiation into the osteogenic lineage upregulating the
expression of Runx2, ALP and osteopontin (Stavenschi et al.,
2018; Stavenschi and Hoey, 2019). Not only the magnitude
of load, but also the length of the stimulation affects matrix
deposition. In fact, it has been shown that when the load is
applied continuously, it negatively affects SOX9, Col II and
aggrecan gene expression (Correia et al., 2012; Li et al., 2016).

One of the major limitations of cartilage tissue engineering
is the formation of fibrocartilage, which has inferior mechanical
properties compared to articular cartilage. HP appears to affect
hypertrophic genes, increasing Col I, Col X and MMP13 (Ogawa
et al., 2009, 2015; Li et al., 2016). Conversely, other studies
revealed decreasing levels of Col I and Col X under IHP
(Vinardell et al., 2012; Saha et al., 2017; Rieder et al., 2018).
Freeman et al. (2017) demonstrated that HP without any external
growth factors resulted in enhanced chondrogenesis along with
reduction in hypertrophic markers. Additionally, when MSCs
were stimulated with HP alone and subsequently induced
to undergo osteogenic differentiation without any external
mechanical stimulation, the production of hypertrophic markers
was reduced compared to those exposed to chondrogenic growth
factors alone. These studies suggested that the application of
intermittent hydrostatic pressure could potentially lead to a stable
differentiation of MSCs into the chondrogenic lineage without
the use of growth factors. However, it is important to note that
the intensity and the frequency of HP applied differ among
studies, suggesting that standardisation is required to obtain
consistent results.

TESTING OSTEOCHONDRAL GRAFT
MATERIALS

The success of osteochondral grafts depends on the restoration
of surfaces representative of native articular cartilage to
provide smooth joint movement during joint articulation.
Implanted grafts also need to be structurally stable to withstand
physiological loading conditions of up to 4–5 times body weight
during walking (Morrison, 1970; Bellucci and Seedhom, 2001)
with peak stresses in the knee ranging from 2 to 10 MPa and
at a loading frequency of approximately 1Hz (Brand, 2005;
Sadeghi et al., 2015). Osteochondral defects cause high contact
stresses at the rim, that vary depending on the size of the defect
causing uneven strain distribution (Brown et al., 1991; Kock
et al., 2008). These abnormal contact stresses and strains at
the defect perimeter cause damage and chondrocyte death that
could impair integration and healing of the graft, leading to
reduced functionality of the joint, or cartilage damage (D’Lima
et al., 2001; Wu et al., 2002). However, contact stresses can
be restored to pre-operative levels, resembling intact cartilage
depending on appropriate fitting, alignment, length and surface
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of the graft (D’Lima et al., 2001; Koh et al., 2004; Kock et al.,
2006, 2008). One of the major issues is that post-implantation
osteochondral implants will be subject to continual cyclic loads,
encompassing a range of shear and tensile forces which will affect
the biological response of the graft and test the integration with
the surrounding native cartilage. However, specific test methods
to demonstrate the performance of these grafts have not yet
been defined.

Standardisation
Osteochondral grafts are classed by the International Standard
Organisation (ISO) as implantable medical devices that as
defined in ISO 13485, 2016, are implanted into the human
body via surgical intervention and are intended to remain in
place after the procedure. ISO 14630:2012 specifies the general
requirements for non-active surgical implants, whereas ISO
21536:2007 is the level 3 standard referring more specifically
to knee joint replacement implants. These standards include
performance, design, materials, evaluation and sterilisation
and the tests needed to demonstrate compliance with these
regulations. More specific standards relating to tissue engineered
cartilage constructs include the quantification of sulfated
glycosaminoglycans (sGAG) (ISO 13019: 2018), and the
evaluation of tissue morphology including collagen fibre
orientation and anisotropy in vivo (ISO/TR 16379:2014) have
also been defined. Despite these biological and clinical evaluation
there are no specific requirements for mechanical testing,
and there is uncertainty as to whether articular cartilage
implants are classified as partial joint replacement implants
and should therefore be subject to mechanical characterisation
(Marchiori et al., 2019).

In contrast, the FDA provides more specific mechanical
testing criteria for the use of tissue engineered cartilage
constructs, which highlights inconsistencies with regard to
global standardisation. The FDA guidance document for
products intended to repair or replace knee cartilage includes
specifications for in vivo animal studies (that will be discussed
later in this review) and various in vitromechanical tests. It states
that “mechanical testing should address the following: the ability
of the implant to withstand expected in vivo static and dynamic
loading (i.e., compression, shear, and tension); analysis of
fixation method (i.e., strength of integration between the product
and surrounding native tissue); and propensity to generate
wear debris.” It is also recommended that static mechanical
behaviour such as the maximum recoverable compressive strain,
the aggregate modulus (HA), the shear modulus (G), and
permeability (κ) as well as the dynamic complex shear modulus
are included. Degradable scaffolds should also include assessment
of failure properties over time and some examples of confined
or unconfined compression and indentation are suggested for
analysing the mechanical properties of implants.

In vitro Compressive Testing (Confined,
Unconfined and Indentation)
The most frequent in vitro test are usually biological assays
to evaluate the biocompatibility (ISO 1099), cytotoxicity (ISO
10993-5), gene expression and matrix deposition (ISO 13019

quantification of sulfated glycosaminoglycans for evaluation of
chondrogenesis) (Keong and Halim, 2009; Li W. et al., 2015).
However, mechanical evaluation of osteochondral scaffolds
are essential to ensure graft stability in the initial period
following implantation (Bowland et al., 2015). As reviewed
by Patel et al. (2019), compression testing is the most
common test performed both on cartilage and tissue engineered
construct. Compression test can be performed using unconfined
and confined compression and indentation (Figure 4). For
unconfined compression testing, the sample is placed between
two impermeable steel plates allowing the Young’s modulus
to be measured directly from the linear portion of the stress-
strain curve produced (Korhonen et al., 2002; Griffin et al.,
2016). For confined compression the sample is either tested
using a porous indenter or placed in a porous chamber
with an impermeable indenter to ensure fluid flow. Confined
compression allows the measurement of both the aggregate
modulus (determined when fluid flow stops) of the specimen as
well as the permeability (Boschetti et al., 2004).While unconfined
and confined compression require the cartilage sample or the
scaffold to be tested within a chamber, indentation allows the
test to be performed on a whole osteochondral specimen (Griffin
et al., 2016; Tozzi et al., 2020). Compression tests can be
performed by applying a strain at a constant rate (ramp), by
applying a strain to a target level and holding the strain constant
(stress-relaxation) or applying a cyclic strain (dynamic) (Scholten
et al., 2011; Vikingsson et al., 2015; Coluccino et al., 2016;
Kundanati et al., 2016). Compression tests can be also load-
controlled, applying a rapid load that is then kept constant,
measuring sample strain over time (Oyen, 2014; Patel et al., 2019).
Both the FDA and International Cartilage Repair Society (ICRS)
recommend both static and dynamic compression tests to assess
the mechanical behaviour of the osteochondral graft. However,
specific guidelines on how to perform each test have not
been agreed, which leads to inconsistent or non-physiologically
relevant data. Cartilage and osteochondral grafts should be tested
under the same conditions, as the strain rate influences the stress-
strain curves, implying that the higher the strain rate the higher
the modulus will be. As reviewed by Patel et al. (2019), 48% of
the studies that analysed cartilage repair constructs under ramp
mechanical testing, were tested to more than 20% strain, more
than double the compressive strain that articular cartilage was
tested to. Considering that the physiological average strain is
10% the data produced using higher strain might not be reliable
(Chan et al., 2016).

In addition to the standard mechanical tests previously
mentioned, implants need to be tested after periods in vivo
(for dynamic and static loading) and under loading conditions
of compression, tension, and shear. Analysis of fixation within
the defect is also required (e.g., mechanical push-out tests to
assess integration) and assessment of the bioreactivity of any
device-generated wear debris.

In vivo Animal Models
In vivo animal models are crucial preliminary studies to
assess the safety and efficacy of newly developed cartilage TE
implants. However, currently there are no exact guidelines
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FIGURE 4 | Standard mechanical tests for assessing osteochondral grafts. Confined compression tests using either an impermeable chamber and porous indenter;

or porous chamber with an impermeable indenter, are useful for defining the aggregate modulus. Unconfined compression tests and indentation tests can determine

the elastic modulus (Young’s modulus).

for the comparison of animal models, assessment of defect
size/location and description of appropriate mechanical tests for
the assessment of implantable devices such as osteochondral
grafts to repair and regenerate articular cartilage. The FDA
recommends using combined animal studies with appropriate
mechanical testing to assess biological response, durability
(using large animal models) and toxicology (U. S. Food Drug
Administration, 2011). In addition, dose response (of bioactive
scaffolds), lesion size and location, appropriate endpoints, and
continual arthroscopic/MRI evaluation should also be taken
into consideration (U. S. Food Drug Administration, 2011).
Nevertheless, despite these recommendations there are no clearly
defined protocols, test criteria, or test parameters for mechanical
testing. It is also acknowledged that there is no optimal animal
model for cartilage repair, which may also lead to variability
between studies.

Small animal models (mouse, rat and rabbit) are mainly used
for “proof of concept” studies as a translational step between
in vitro tests and larger animal/human studies. Rabbit models
have spontaneous intrinsic healing capabilities of cartilage defects
that must be taken into consideration, therefore, they usually
require additional validation in other animal models (Shapiro
et al., 1993). Other variables to consider when choosing the
most appropriate animal model are thickness of cartilage and
joint suitability, skeletal/ cartilage maturity, defect type, size
and location of the defect, availability and post-operative care
(Hurtig et al., 2011). Canine models, like humans, often suffer

from diseases such as OA and OCD which makes them useful
for assessing cartilage regeneration in pathologic conditions
(Chu et al., 2010). Large animal models (goat, sheep, pig and
horse) more closely reflect intended clinical use for assessing
toxicity, integrity and inflammatory responses for both small
and larger defects in load bearing environments. Since cartilage
thickness in equine stifle joints (1.5–2.0mm) is the most similar
to human cartilage thickness (2.2–2.5mm) the horse is the
closest approximation for creating both partial and full thickness
defects for preclinical cartilage repair studies (Frisbie et al., 2006;
McIlwraith et al., 2011). Nevertheless, in most animal models
the loading, thickness and geometry of the joint surface is very
different to that of humans.

Mechanical Push-Out Tests for Assessing
Integration
Mechanical push-out tests are useful pre-clinical studies to
evaluate the maximum forces needed for graft failure and
for assessing integrative repair with host cartilage over time
(Theodoropoulos et al., 2011). A biopsy punch is normally
used to create a cylindrical defect filled with the TE scaffold or
osteochondral graft to be tested. After a culture and/or treatment
period to allow a certain amount of integration with the host
tissue, the inner core is pushed out of the outer ring using a
mechanical push-out rod. The calculated amount of force needed
for displacement (or failure of the graft) allows an assessment of
integrative strength at the interface to be assessed. A recent study
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by Bowland et al. (2020) performed a series of push-in and push-
out tests to assess the mechanical stability of bovine and porcine
osteochondral grafts. Interestingly, the results showed that the
harvesting method (using a trephine drill or chisel) showed no
significant differences in graft stability (Bowland et al., 2020).
However, preparation of the recipient site, the depth of insertion
and dilation had more of an effect, showing that grafts with equal
lengths to the site of insertion were more stable, and that dilation
of grafts reduces the stability particularly in more skeletally
immature tissue (Bowland et al., 2020). This research also
highlights the importance of the underlying subchondral bone
and the interrelationship between these tissues on regeneration
and durability of focal defects consistent with other studies
(Chan et al., 2012).

Whole Joint Simulation Models to Mimic
Joint Articulation
In contrast, in vitro whole joint simulations can be used to
assess the tribological performance of osteochondral grafts,
taking into consideration the interactions and biomechanical
properties of the joint as a whole under physiological loading
conditions. These types of test are relevant for comparing the
efficacy of osteochondral grafts to other surgical interventions
such as scaffolds and cell-based approaches (Bowland et al.,
2018b). Bowland et al. (2018a) used an adapted method from
Liu et al. (2015) using a whole joint simulator with six degrees of
freedom and five controlled axes of motion to mechanically test
grafts. The axial load was force controlled, tibial rotation (1.6–
1.6◦) and flexion/extension (0–21◦) were displacement controlled
at a frequency of 1Hz. Anterior-posterior displacement was
constrained using springs that generated rolling and sliding
motions of the femur against the tibia, and mimicked ligament
function. The medial-lateral axis was fully constrained and
abduction/adduction was under passive motion. The main
finding of this study was that allograft plugs fitted flush with
the defect site to restore the articular surface caused the
least wear and damage on the opposing joint surface after
applying a complex range of motions. Similarly, Nebelung
et al. (2017) combined a whole-knee joint loading device
with MRI imaging to non-invasively assess the structural and
functional responses of human articular osteochondral grafts
in defect sites during in situ compressive loading. Whole joint
simulation models highlight the importance of restoring the
congruence of articular surfaces during an experimental setting
that mimics more closely the physiological environment of joint
articulation. However, the use of cadaveric tissue with diluted
serum replicating the joint’s synovial fluid is a useful approach
but it fails to replicate large numbers of walking cycles due
to limitations regarding the continual sterility and viability of
the tissue.

Shear Stress to Assess Tribology
Chondrocytes in the superficial layer produce lubricin that
maintains low coefficients of friction of joints. Maintaining a low
frictional interface is essential to prevent mechanical wear and
erosion of the articular surface. The application of frictional shear
stress has been shown to cause damage such as cracking and

peeling in cartilage TE constructs, which are not seen in native
cartilage controls (Whitney et al., 2017). Therefore, assessing the
tribology of osteochondral grafts is essential to ensure adequate
integration and longevity. To measure the frictional coefficient,
three different configurations of tribometer can be used: pin-
on-disc, pin-on-plate, or rolling-ball-on-disc. In the first two
settings a pin is glued to the sample and a disc or a plate are in
motion, while for the rolling-ball-on-disc the disc and the ball
can be moved independently. In each configuration a normal
force is applied and a sensor measures the frictional force, the
frictional coefficient can be derived by dividing the frictional
force for the normal force applied. Different types of lubricant
can be used (i.e., PBS or foetal bovine serum) which combined
with the different testing configurations often lead to variable
results, highlighting the need of standardisation procedure to test
both cartilage samples and osteochondral TE constructs. Other
mechanical tests such as frictional shear stress testing can assess
the tribology, pressure distribution and the response to damage
of osteochondral grafts and TE constructs in whole joint models
under a complex range of sliding and torsional motions (Walter
et al., 2013; Bobrowitsch et al., 2014).

CONCLUSIONS

Despite tremendous advances in the field of tissue engineering,
an optimal biomaterial system for osteochondral defects that
is able to direct stem cell differentiation into chondrocytes
for the cartilage and osteoblast for bone without the use of
exogenous stimuli is elusive. Material selection is essential for
creating a graft able to withstand the multiple forces that
cartilage is subject to. Synthetic materials not only provide high
tensile stress and compressive modulus, but they are easily
modified, facilitating the creation of layered scaffolds which is
a requirement for osteochondral grafts. However, the lack of
cellular binding sites require them to be combined with natural
materials, which are highly biocompatible and can provide
biochemical cues for stem cell differentiation. The natural
architecture of cartilage and the impermeable subchondral plate
enhances the development of hydrostatic stress in the cartilage
which promotes and maintains the chondrocytic phenotype,
however few osteochondral implant designs replicate this sub-
chondral barrier.

Although suitable mechanical properties are essential for
ensuring graft stability in vivo, the optimal range of stiffnesses
is yet to be determined. Conflicting results have been reported,
as to whether high stiffness could enhance chondrogenic
differentiation of MSCs or upregulate hypertrophic markers.
The use of dynamic stimulation, such as hydrostatic pressure
or dynamic loading, could promote a stable differentiation of
MSCs into chondrocytes and enhance matrix deposition, thus
preventing the use of TGF-β which lead to the formation of
hypertrophic cartilage.

Mechanical testing of TE constructs in vitro are essential to
ensure graft stability in vivo, however, the lack of standardised
procedures questions the reliability of the published data in
providing an understanding of the long term endurance and
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suitability of osteochondral grafts. In addition, only a small
fraction of studies on cartilage constructs tests all of the
mechanical properties requested from the FDA or the ICRS
and this might, in part, explain why many scaffolds fail when
tested in vivo.
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