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Monitoring of environmental contaminants serves a vital role in proactive environmental
management and pollution control. Research efforts have been centered on the
development of robust whole-cell biosensors in recent years. However, data acquisition,
multiple contaminants detection and biosafety issues limit the on-site application of
such biosensors. Microfluidic system exhibits great potential to face these challenges
via coupling biosensors. Here, we prospect a novel microfluidic based whole-cell
biosensor (MWCB) for multiplexing monitoring of diverse contaminants, and design
strategies to further increase the specificity, sensitivity and accuracy, reduce signal delay
and expand shelf life of the proposed MWCB for on-site environmental applications.
The development of MWCB demands multidisciplinary cooperation, and the sensing
platforms are highly promising for real-world contaminants monitoring.

Keywords: synthetic biology, environmental monitoring, microfluidic system, artificial intelligence,
sensing module

INTRODUCTION

Increasing discharge of multitudinous contaminants into environments has caused detrimental
impacts on the ecosystem and human health. Detecting and monitoring the distribution of
contaminants is fundamental for decision making and environmental management. Sensors are
considered as the most valuable tools for direct, fast, and on-site monitoring (Justino et al., 2015).
In contrast to traditional physical and chemical sensors for contaminants detection, biosensors
have superiorities in relatively accurate and reliable real-time detection, decreased consumption
of hazardous chemicals and reagents, and cost efficiency for manufacture (Mohamed, 2020).
Each biosensor is composed of a biomolecule recognition element (e.g., enzyme, antibody, or cell
receptor) and a bio-transducer or an electronic unit for signal and data acquisition. A wide variety of
biosensors have been developed based on the transduction principles (e.g., optical, electrochemical,
colorimetric, and piezoelectrical), whose operation mechanisms and environmental applications
have been extensively reviewed and compared (Long et al., 2013; Marrazza, 2014; Mehrotra, 2016;
Arduini et al., 2017; Pashchenko et al., 2018). Among them, the colorimetric biosensors can
rapidly respond to the target contaminants and are usually directly visible without external signal
transducing equipment, hence simplifying the data acquisition process and demonstrated great
potential for on-site applications.

Whole-cell biosensors have attracted increasing attention currently due to their superiorities
than the enzyme or antibody based biosensors, which suffer from expensive macromolecules
isolation cost, limited detection capacity, and short usage lifetime (Daunert et al., 2000;
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Gui et al., 2017). The sensing modules in the whole-cell
biosensors can quantitatively detect a series of contaminants via
expressing different signal intensities. With the development of
synthetic biology, many sensing modules have been excavated
for individual detection of environmental contaminants, from
inorganics (e.g., heavy metals including Cu, Ag, Zn, Pb, Co, Cd,
Hg, As, and Ni) (Jia et al., 2019; Mendoza et al., 2020; Wang D.
et al., 2020) to organics (e.g., alkanes, aromatic hydrocarbons,
and antibiotics) (Sun et al., 2017; Rebets et al., 2018; Ma et al.,
2020). The colorimetric whole-cell biosensors are also developed
using the reporter genes, like lacZ (coding β-galactosidase), crtA
and crtI (coding carotenoid synthesis) (Yoshida et al., 2008),
and RFP (coding coral red fluorescence proteins) (Chong and
Ching, 2016). However, several scientific gaps (e.g., precise data
acquisition, multiple contaminants detection, signal delay and
biosafety issues, and shield life of the product) limit the on-site
application of whole-cell biosensors.

Originated for chemically and biologically analytical
measurements, the microfluidic system is emerging for high-
throughput molecular screening and diagnostics (Volpatti and
Yetisen, 2014; Cao et al., 2020). Recent researches demonstrated
that integrating the cellular biosensors into microfluidic systems
could directly display the target contaminants levels through
expressing colorimetric reporters and was proven successful
for monitoring heavy metals (i.e., arsenic) in water (Volpetti
et al., 2017; Lu et al., 2019; Wan et al., 2019b). Such deployment
enabled direct and easy data retrieving through visual inspection
by USB microscopes and cell phones (Wan et al., 2019b). Further,
the used device could be brought back to lab for sterilization to
prevent the discharge of bacterial materials, resolving potential
biosafety issues.

However, applications of the existing microfluidic systems
are still limited by one-pollutant-per-time monitoring capability
with a narrow spectrum of detectable contaminants. The
complexity of waterborne contaminants urges the development
of multiple-target detection/monitoring tools with high
preciseness. Synthetic biology tools can help to create a strain
that integrates multiple sensing modules to identify the presence
of multiple contaminants (Xia et al., 2019). However, it is
facing difficulties in avoiding crosstalk between each module
and extending the cellular genetic capacity. Assimilated to a
signal unit or an integrated circuit of a chip, an engineered
cellular biosensor is a processing device in the microfluidic
system. Through designing the distribution of each cellular
biosensor and modulating the performance toward specific
contaminants, accurate quantification of multiple contaminants
can theoretically be achieved.

Therefore, we propose the integrated microfluidic based
whole-cell biosensor (MWCB) system to achieve simultaneous
identification and quantification of contaminants. Further,
we prospect strategies to improve its feasibility in the field
by addressing issues regarding selectivity, sensitivity and
accuracy, signal delay of the analysis, and product shield life.
The manufacture of a MWCB demands multidisciplinary
cooperation, and its on-site applications will advance
our understanding on the distribution of contaminants
in the future.

FABRICATING MWCB TO DISPLAY
MULTIPLE CONTAMINANTS LEVELS

The scheme of a microfluidic system is displayed in Figure 1A.
The microfluidic system typically contains three parts: (1)
sampling injection, (2) partitioning, and (3) reaction units. The
design of the microfluidic system, especially the distribution
of reaction parts, varied for different usages. Expanding the
amounts of partitioning can simultaneously trigger multiple
reactions for analysis. To encapsulate the microfluidic device,
photolithographic or 3D printing techniques can be employed
(Mayer et al., 2019).

Diverse inorganic (e.g., glass, silicon, and ceramics), polymeric
(e.g., elastomers and thermoplastics), and emerging paper
(e.g., cellulose) based materials can be used to fabricate
microfluidic devices, depending on the required function,
degree of the integration and applications (Nge et al., 2013).
Previously studied microfluidic based biosensors majorly used
the elastomer polydimethylsiloxane (PDMS) as the substrate
(Volpetti et al., 2017; Wan et al., 2019b; Wang J. et al.,
2020). PDMS has many superiorities for the fabrication of
microfluidic biosensors including its reasonable cost, the ability
for achieving rapid and easy prototyping, the capacity of
enabling multiple layers design to create complex fluidics, and
its function for supporting important microfluidic components
(e.g., pneumatic valves and pumps). It is also gas permeable
for cellular studies and optically transparent. However, there
are limitations associated with PDMS like leaching of low-
molecular-weight oligomers, and susceptible to non-specific
adsorption and permeation by hydrophobic molecules (Berthier
et al., 2012). Reaping the benefits from other materials
to form hybrid substrate shows high promise to address
these issues (Wang et al., 2008). In the proposed MWCB,
simultaneous detection of multiple environmental contaminants
demands a high chemical stability of the materials. Hence,
the ideal options are hybrid PDMS or other emerging
alternatives, which should be chemically stable, and appropriate
for complex microfluidic design (e.g., supporting valves),
cellular survive (e.g., gas permeable), and sensing (e.g.,
optically transparent).

In the MWCB, each whole-cell biosensor will be specifically
spotted and confined (or immobilized) into one reaction
unit using a microarray robot, representing each signal
processing unit. Two choices can be adopted to separate each
signal processing unit including (1) applying valves in the
microchannels (Volpetti et al., 2017) and (2) developing multiple
layers microfluidic device and placing the signal processing
units on the lower layer. During the detection process, a water
sample can be injected and then partitioned to the reaction
units. After incubation, the colorimetric signals, proportional to
the type and concentration of the contaminant in the samples,
can be generated. Each row targets an individual contaminant,
and detection of different contaminants are integrated into the
MWCB. The increased concentration of the contaminant can
be reflected by the increased number of detectable signals (i.e.,
signals that reach or exceed the visible threshold, ON-signals)
in each row. As shown in Figure 1B, the contaminants can be
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FIGURE 1 | The proposed microfluidic based whole cell biosensor (MWCB). (A) Scheme describing the microfluidic system composing of (1) Sampling injection, (2)
Partitioning, and (3) Reaction units. (B) MWCB for detecting types and levels of multiple contaminants, simultaneously. (C) Strategies for improving specificity and
sensitivity and decreasing signal delay in synthetic cells of each signal processing unit.

differentiated by corresponding colored dots in each column,
whereas their measured concentrations can be reflected in the
horizontal scale. In this scenario, from the left to the right,
the signal processing units in each row adopt the gradient
decreased signal amplifications toward the target contaminant
(Figure 1B). The range of the target contaminant level is
determined and displayed based on the number of the ON-signals
without the measurements of signal levels, which is beneficial
for field applications. To achieve accurate and simultaneous
determination of the contaminants and their levels, specificity,
sensitivity and accuracy, and signal delay issues of the MWCB
should be addressed. The strategies are demonstrated in the
following sections.

SPECIFICITY FOR ACHIEVING
MONITORING OF MULTIPLE
ENVIRONMENTAL CONTAMINANTS

To date, biosensors exhibit a wider application for heavy metals
detection than organics due to their relatively higher selectivity

(Gui et al., 2017). There are also existing synthetic tools used
to further enhance the selectivity toward heavy metals, like
mutating the binding pockets, and then employing the multi-
input systems based on Boolean logic gates (Bereza-Malcolm
et al., 2015). For example, the non-specific allosteric transcription
ZraR modules could detect both Zn and Pb, while ZntR modules
could detect Zn and Cd. Implementing AND logic for these
factors could thus significantly enhance the selectivity for Zn
detection (Wang et al., 2013).

The structural analogs of organic contaminants increase
the difficulty in their environmental monitoring. Organic
contaminants with the similar chemical structure can be
monitored simultaneously. For example, tetracyclines can
be monitored using the cellular biosensor of TetR-TetA
regulatory-promoter system instead of specific tetracycline
(Chen et al., 2017). However, sensing modules for detecting
emerging contaminants, such as pharmaceuticals and personal
care products (PPCP) and micro-/nano-plastics derived
compounds, are limited. The importance of contaminant
monitoring calls for research efforts in developing practical
and effective cellular sensing modules to tailor MWCB for
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on-site monitoring of environmental contaminants with
diverse classes.

IMPROVEMENT OF MONITORING
SENSITIVITY AND ACCURACY

The signal processing units in the currently proposed MWCB
have ON-signal in response to the input dose higher than
the visual threshold. To improve the sensitivity, lowering the
detection limit toward each contaminant is indispensable. Two
strategies have been developed to expand the signal dynamic
range. The first one employs the hybrid σ70-based promoters
to magnify the signal through promoter engineering (Wan
et al., 2019a); whereas the second applies multi-layered cascaded
transcriptional amplifiers (Figure 1C) for ultra-sensing. Such
amplifier was reported with up to 5,000-fold magnification for
arsenic detection with an arsenic input lower than 1.6 ppb (Wan
et al., 2019b). Integrating both strategies for each signal unit
design in MWCB may further expand the sensitivity to increase
its applicability.

Based on the research on integrating cellular biosensors
into the microfluidic system by Wan et al. (2019b), we put
forward an analytical strategy with improved accuracy. In our
MWCB system, the gradient decreased amplification in each
line is used to sense an increased input dose. Theoretically,
infinitely expanding the types and amounts of amplifications to
sense each contaminant for diverse dynamic range can improve
the accuracy. However, it is a great challenge for synthetic
biology due to the incredibly heavy workload. Here, we propose
to proportionally mix strains with different amplifications to
develop multitudinous signal processing units. For example,
there are two amplifiers with the ability to magnify signals by 5
and 10 folds, respectively. Through proportional combinations,
the signal can be amplified by any time between 5 and 10,
theoretically. Further, Artificial Intelligence (AI) technologies
(e.g., machine learning and deep learning) can be promising in
simulating the experimental procedures and provide optimized
solutions for amplification selections and proportions of cellular
mixtures (Ding et al., 2020).

REDUCING SIGNAL DELAY FOR
REAL-TIME MONITORING

Signal delay, representing the time required for generating stable
signals, is a major obstacle in the way of real-time operation
of colorimetric whole-cell biosensors. Signal is produced when
a target contaminant activates the promoter and leads to the
expression of the reporter gene. During this process, three steps
(i.e., contaminants entering the cells, transcription regulating,
and reporter expression) can affect the response time of the
whole-cell biosensors.

Strategies for reducing signal delay, therefore, can focus on
three aspects. The first one is to use membrane-defective species
as the host strain. The microbial outer membrane acts as the
protective barrier against environmental contaminants (Vaara,

1992), causing a restricted transfer of the target compound
into the cytoplasm to active the promoter-reporter modules.
The second strategy is to mutate and optimize transcription
regulators, which is similar to the ones proposed for the
sensitivity improvement. The third strategy is to screen and
select appropriate colorimetric reporter genes to decrease the
response time. The production of the reporter unaffected by
metabolic fluxes in the microorganism should be considered.
These three strategies were verified by Chong and Ching (2016).
They demonstrated that direct evolution and optimization
of the transcription regulator DmpR (coding dimethylphenol
regulatory protein) to induce expression of reporter genes RFP
in the membrane-defective host strain Escherichia coli, could
realize decreased response time and increased detecting limit of
the whole-cell biosensors for four-nitrophenol molecules. These
strategies can be adopted in the MWCB to reduce the signal
delay. Research efforts should be continuously devoted to the
verifications of the proposed strategies.

SHELF LIFE FOR FACILITATING THE
TECHNICAL TRANSFER

The shelf life is defined as the time from factories or labs to a
monitoring site. The shelf life of MWCB, affecting by microbial
storage phase and temperature, should be considered for on-
site applications.

The microbes adopted for biosensing can be stored in liquid or
solid phase, depending on the nature of the microfluidic systems.
For the liquid phase storage, the microbial spores (e.g., Bacillus
subtilis spores) can be stable in sensing for more than 1 month
even at 80◦C (Volpetti et al., 2017). Besides, for microbes that lack
the ability to produce spores (e.g., E. coli), the 10% glycerol can
be used to preserve cells’ viability (Volpetti et al., 2017). Other
protective agents like trehalose, sucrose, polyvinylpyrrolidone,
and polyethylene glycol can also be used for bacterial storage,
which deserve future investigations. For solid phase storage, the
vacuum freezing-drying methods can be used for long term
bacterial storage (Li et al., 2020). Hydrogels, including alginate
beads, agarose, and silica gels, can entrap prokaryotic cells and
keep them hydrated and active for a month (Wan et al., 2019a).

Temperature would affect the shelf life due to its impacts
on the cellular metabolism. The lower temperature (e.g., 4◦C)
may slow down or inhibit microbial metabolism, which leads
to the high bacterial preservation capacity. Prediction of the
bacterial survival can be evaluated using the Arrhenius equation
to generate the appropriate shelf life (De Silvestri et al., 2018).
These methods have shown great potential in the field with
further investigation expected to increase the shelf life of MWCB.

CONCLUSION

For on-site contaminants monitoring, it is promising to
incorporate and optimize synthetic cells into the microfluidic
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system. The proposed MWCB can enable multiplexing
monitoring of diverse contaminants and be further improved
with increased selectivity, sensitivity and accuracy, and
reduced signal response time toward environmental concerning
contaminants. The displayed challenging works will promote
multidisciplinary cooperation, especially for synthetic
biology, materials, mechanical, chemical, digital printing and
informatics, in the future.
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