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The long non-coding RNA (lncRNA)–protein interaction plays an important role in

the post-transcriptional gene regulation, such as RNA splicing, translation, signaling,

and the development of complex diseases. The related research on the prediction

of lncRNA–protein interaction relationship is beneficial in the excavation and the

discovery of the mechanism of lncRNA function and action occurrence, which are

important. Traditional experimental methods for detecting lncRNA–protein interactions

are expensive and time-consuming. Therefore, computational methods provide many

effective strategies to deal with this problem. In recent years, most computational

methods only use the information of the lncRNA–lncRNA or the protein–protein similarity

and cannot fully capture all features to identify their interactions. In this paper, we

propose a novel computational model for the lncRNA–protein prediction on the basis

of machine learning methods. First, a feature method is proposed for representing the

information of the network topological properties of lncRNA and protein interactions. The

basic composition feature information and evolutionary information based on protein,

the lncRNA sequence feature information, and the lncRNA expression profile information

are extracted. Finally, the above feature information is fused, and the optimized feature

vector is used with the recursive feature elimination algorithm. The optimized feature

vectors are input to the support vector machine (SVM) model. Experimental results show

that the proposed method has good effectiveness and accuracy in the lncRNA–protein

interaction prediction.

Keywords: feature representation, mutual information, structure analysis, support vector machine, lncRNA protein

interactions

INTRODUCTION

Long non-coding RNA (lncRNA)–protein interactions play an important role in the post-
transcriptional gene regulation, polyadenylation, splicing, and translation, and predicting lncRNA–
protein interactions helps to understand lncRNA-related activities (Mittal et al., 2009; Ray et al.,
2013). With the rapid advancement of high-throughput technologies and the rapid increase
of lncRNA and protein sequence data, predicting lncRNA–protein interactions by traditional
biological experimental approaches, such as RNA-pulldown, RNA immunoprecipitation, and
other biological experiments, is expensive and time-consuming. In recent years, computational
methods, especially machine learning methods, have been widely used in the field of
bioinformatics. For example, Link prediction paradigms have been used to predict drug targets
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(Munir et al., 2019; Srivastava et al., 2019; Zeng et al., 2019,
2020; Ru et al., 2020; Wang et al., 2020), enhancer promoter
interactions (Hong et al., 2019; Cai et al., 2020a), disease genes
(Zeng et al., 2017a; Ji et al., 2019; Kuang et al., 2019; Wang
et al., 2019; Peng et al., 2020), link prediction (Xiao et al., 2018,
2019, 2020), circular RNAs (Zeng et al., 2017b; Xiao et al., 2019),
microRNAs (miRNAs) (Xiao et al., 2018, 2020; Zeng et al., 2018;
Hajieghrari et al., 2019; Jeyaram et al., 2019; Zhang X. et al., 2019),
and peptide recognition (Bai et al., 2019; Cai et al., 2020b; Fu
et al., 2020; Zhang and Zou, 2020). In addition, computational
intelligence such as evolutionary algorithms (Song et al., 2020a,b)
and unsupervised learning (Lambrou et al., 2019; Noureen et al.,
2019; Zhang L. et al., 2019; Zou et al., 2020) can be applied
to the field of bioinformatics. Given the efficient performance
of machine learning methods in predicting lncRNA–protein
interactions, the number of researchers considering machine
learning methods as the first choice for predicting lncRNA–
protein interactions have been increasing.

The general process of machine learning methods for
predicting lncRNA–protein interactions is as follows. First, raw
lncRNA and protein data are mined and analyzed separately to
extract the characteristic information of lncRNA and protein.
Algorithms are then designed to compute the lncRNA–protein
interactions and obtain their relationships. Finally, prediction
results are verified and can be used to guide biological
experiments in reverse, which can reduce the cost of biological
experiments and improve the efficiency of research. Currently,
machine learning-based methods for predicting lncRNA–protein
interactions can be divided into two main categories.

(1) Construction of prediction models on the basis of lncRNA
and protein features. The feature information of lncRNA and
protein can be extracted using feature extraction methods based
on sequence information, structure, and various physicochemical
properties, which are fused to construct feature vectors.
Feature vectors are fed into machine learning classification
algorithms to construct prediction models for lncRNA–protein
interaction relationships. Bellucci et al. (2011) have proposed the
catRAPID model for predicting lncRNA–protein interactions,
which combines the protein molecular secondary structure and
the position information and extracts and inputs more than
100 dimensions of feature information from protein and non-
coding RNA into the random forest (RF) and the support vector
machine (SVM) to train the prediction model. Muppirala et al.
(2011) have developed the RPISeq method, which utilizes only
lncRNA and protein sequence information and uses SVM and
RF classifiers to construct a model for the prediction of lncRNA–
protein association interactions. Wang et al. (2013) have applied
the plain Bayesian to construct prediction models for predicting
lncRNA–protein interactions on the basis of the study of Lu et al.
(2013) have proposed a method called the lncPro, which extracts
amino acid and nucleotide sequence information and applies the
Fisher’s linear discriminant method to construct the prediction
model. Subsequently, Suresh et al. (2015) have proposed the RPI–
Pred method, which extracts the sequence and the structural
feature information of lncRNAs and proteins and the high-
order 3D structural features of proteins to construct prediction
models. However, the low conserved nature of lncRNA sequences

makes the prediction algorithm based on lncRNA and protein
feature information perform poorly in terms of accuracy and the
prediction efficiency and needs to be enhanced.

(2) Heterogeneous network-based prediction model. Given
the development of related experimental techniques and
the accumulation of research results in the field of lncRNA,
many lncRNA–protein interaction relationships have been
experimentally confirmed, and researchers have successively
proposed many network-based prediction algorithms to
study the interaction relationships between lncRNAs and
proteins. Li et al. (2015) have constructed lncRNA and protein
similarity networks and combined the existing lncRNA and
protein interaction data to predict unknown lncRNA–protein
interaction relationships and proposed a heterogeneous
network-based method called the LPIHN. The LPIHN method
predicts unknown lncRNA–protein interaction relationships by
constructing a heterogeneous network with the restart random
walk (RWR) implemented on the constructed network to
predict novel lncRNA–protein associations. Ge et al. (2016) have
introduced a network dichotomy method called the LPBNI.
This method performs a resource allocation procedure in the
lncRNA–protein dichotomous network to evaluate candidate
proteins for each lncRNA for the prediction of interaction
deletions. Hu et al. (2017) have proposed a semisupervised
method called the LPI–ETSLP, which reveals lncRNA–protein
correlations and does not require negative samples. On the one
hand, the number of known action–relationship pairs is sparse
compared with the huge number of lncRNAs and proteins and
directly affects the network construction and the performance
of the network link prediction. On the other hand, lncRNAs or
proteins with only one action–relationship in which the data
behave as isolated nodes in the network and most algorithms
based on network link prediction cannot effectively predict
isolated nodes.

Based on the above analysis, this paper proposes amultifeature
information fusion method based on lncRNA and protein
sequence features and heterogeneous network topological
features to predict lncRNA and protein interaction relationships.
First, a novel feature extraction method based on the topological
feature information of lncRNA and protein heterogeneous
networks is proposed to extract the topological network features
of lncRNA and protein, lncRNA sequence mutual information,
the basic statistical information of lncRNA sequence bases
and lncRNA expression profile features, and the evolutionary
information and the composition–transition–distribution (CTD)
feature information of protein sequences. Then, the above
features are fused, and the fused feature information are input
into the SVM to train and construct the lncRNA–protein
prediction model.

MATERIALS AND METHODS

Framework of the Proposed Method
In this paper, we propose a multi-information fusion-based
lncRNA–protein association prediction model consisting of
three main phases, namely, (1) dataset preparation, (2) feature
extraction and optimization, and (3) model training and
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prediction. In the dataset preparation, candidate lncRNA and
protein sequences and their interaction data are usually collected
from validated databases and related literature. Good training
and test sets are usually required to build a high-quality
prediction model. The training set is used for model training, and
the test set is used to verify the transferability and the reliability
of the training model. In the feature extraction and optimization,
lncRNA and protein topological network features are proposed,
and the protein sequence, Position Specific Scoring Matrix
(PSSM), lncRNA sequence, and lncRNA expression spectrum
features are extracted. Feature vectors are usually optimized by
removing some irrelevant features to improve the performance
of the feature information. In the model training and prediction,
the SVM is used to train the input training set, and the grid search
provides SVM training parameters for the construction of the
training model. The prediction is performed on the given set of
prediction vectors. The overall framework of the entire lncRNA–
protein association prediction model is shown in Figure 1.

Datasets
With the development of high-throughput sequencing
technologies, many public databases are available for scientists
to study lncRNA–protein interactions. The NPInter database
includes experimentally validated information on interactions
between non-coding RNAs and other biomolecules (e.g.,
proteins, RNAs, and genomic DNA). The NONCODE
(Liu et al., 2005) database is a comprehensive annotation
database covering all types of non-coding RNAs except
tRNAs and rRNAs. The NONCODE4.0 database contains
141,353 lncRNA sequence data, covering the lncRNA
sequence data required in this paper. The UniProt database
(Consortium, 2018) can provide the protein sequence data
required in this paper. Through the abovementioned public
databases, the datasets required to study lncRNA–protein
interactions can be obtained and may help in the conduct of
the study.

The acquisition and the preprocessing of datasets usually
consist of two main steps, i.e., candidate data collection and
invalid data rejection. (1) Candidate data collection, human
lncRNA, and its association term data are extracted from the
NPInter V2.0 database (Yuan et al., 2013; Hao et al., 2016),
and 4,870 pairs of experimentally identified lncRNA–protein
interaction datasets, which include 1,114 lncRNAs and 96
proteins, are obtained. Then, the lncRNA sequence information
is obtained from the NONCODE 4.0 database, and the protein
sequence information is obtained from the UniProt database. (2)
Eliminate invalid data; since a few lncRNA sequence data are
not available in some candidate datasets, proteins and lncRNAs
with unavailable sequence information should be removed. In
addition, some lncRNAs that only interact or are related to one
protein or proteins that only interact or are related to one lncRNA
have usually low correlation and potentially noisy information.
Therefore, such data are excluded.

A dataset containing 4,158 lncRNA–protein interactions
(including 990 lncRNAs and 27 proteins) is constructed in this
paper through the above data processing steps.

Features Extraction
In this paper, five types of feature information, namely, lncRNA–
protein network topology features, protein evolution information
(Shao et al., 2020), protein sequence features (Liu et al.,
2019), lncRNA sequence features, and lncRNA expression profile
feature information, are extracted for the lncRNA–protein
association prediction.

lncRNA–Protein Network Topology Features
The lncRNA–protein network can be regarded as a
heterogeneous undirected graph. Suppose that the lncRNA–
protein network containsN lncRNAs andM proteins and that the
sets of lncRNAs and proteins are denoted by L and P, respectively,
then L =

{

l1, l2, l3, . . . , lN
}

, and P =
{

p1, p2, p3, . . . , pM
}

.
The set of edges E of this bipartite graph is denoted by
E =

{

eij | li ∈ L, pj ∈ P, eij = eji
}

.
If any node li and pj have an interaction, then eij = 1,

and vice versa eij = 0. The interaction feature Lij between any
lncRNA node li and protein node pj is denoted as the set of
edge values of node li and all other protein nodes except node
pj, i.e., eij /∈ Lij,Lij =

{

ei1 , eij−1 , eij+1 , . . . , eiM
}

. Similarly, the
interaction feature Pji between any protein node pj and protein
node li is denoted as the set of edge values of node pj and all
other lncRNAs nodes except node lj. Then, eji /∈ Pji,Pji =
{

ej1 , ej i−1 , ej i+1 , . . . , ejN
}

.
The lncRNA–protein network topology is characterized as:

LPNetij = Lij ∪ Pji, i = 1, . . . ,N, j = 1, . . . ,M. (1)

As a result, we can obtain 1,015-dimensional network features.

Protein Evolutionary Feature Information
The protein evolutionary feature information is extracted
using our previously proposed K-PSSM-composition method
(Fu et al., 2018). The K-PSSM-composition feature extraction
method is derived from the PSSM-composition feature extraction
method. The PSSM-composition, which is proposed by Sharma
et al. (2015), is used to extract protein sequence features
for the prediction of the protein subcellular localization. The
PSSM-composition feature extraction method can mine the
evolutionary information of protein sequences but loses the
mutual information between 20 amino acid residues and the
local information of protein sequences. For this reason, we
propose the K-PSSM-composition feature method to alleviate
the above problems. In this paper, we have applied the
K-PSSM-composition method to extract features from the
obtained protein sequence data for the collection of the protein
evolutionary feature information. The K-PSSM-composition
feature is calculated as shown below.

K−PSSM−composition

=
[

PSSM−com(1), . . . , PSSM−com(λ)
]

1×(400∗k) (2)

Here, λ = 1, . . .K; PSSM_com(λ) denotes the submatrix features,
the calculation of which is shown in Equation (3)

PSSM−com(λ) =
[

FA, FR, . . . , Fϕ
]

1×400
(3)
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FIGURE 1 | The overall framework of the proposed method for lncRNA–protein interactions.

Here, ϕ denotes the 20 amino acid residues {A, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, Y}. Fϕ represents the row sum of
amino acid residues in the sub-PSSMmatrix. In this study, k= 1;
thus, we obtain a total of 400 dimensional features.

Protein Sequence Feature Information
In this paper, we have used the CTD (Cai et al., 2003) to extract
protein sequence features, which represent the distribution
patterns of specific structural or physicochemical properties
in a protein or peptide sequence. Twenty amino acids are
divided into three groups on the basis of different amino acid
properties and represented by three feature descriptors, namely,
composition (C), transition (T), and distribution (D). C denotes
the percentage frequency of a specific set of amino acid properties
in the calculated protein sequence, T depicts the percentage
frequency of amino acids characterizing a specific property
followed by another property, and D denotes the amino acid
fragment describing a specific property of the whole protein
sequence. Thirteen physicochemical properties have been used
to calculate CTD features. Here, we use the iFeature (Chen
et al., 2018) to set default parameters to extract CTD feature
information and obtained a total of 504 dimensional features.

lncRNA Sequence Features
The extracted lncRNA sequence feature information contains
two categories, namely, the lncRNA sequence mutual and the
base compositional feature information. The lncRNA sequence
mutual information is extracted using our previously proposed
PSFMI feature extraction method (Fu et al., 2019) by using
the entropy and the mutual information to calculate the
interdependence between two bases on a given lncRNA sequence.
Specifically, the 3- and the 2-gram mutual information (MI)
are calculated as the characteristic information of a given
lncRNA sequence.

In this study, we used entropy and MI to calculate the
interdependence between bases on a given lncRNA sequence.
Specifically, the 3-gram MI and the 2-gram MI were calculated
separately as the characteristic information of the given
lncRNA sequences. The procedure of the 3-gram triplet mutual
information calculation is shown in Equation (4).

MI(x, y, z) = MI(x, y)−MI(x, y|z) (4)

Here x, y, and z denote three bases that are consecutively adjacent
to each other, and the equations for the calculation of MI(x, y)
and conditional mutual information MI(x, y|z) are as follows.

MI(x, y|z) = H(x|z)−H(x|y, z) (5)

MI(x, y) = p(x, y)∗ log(
p(x, y)

p(x)∗p(y)
) (6)

MI(x, y) = MI(y, x) (7)

Where H(x|z) and H(x|y, z) are calculated as follows:

H(x) = p(x)∗ log(p(x)) (8)

H(x|z) = −
p(x, z)

p(z)
log(

p(x, z)

p(z)
) (9)

H(x|y, z) = −
p(x, y, z)

p(y, z)
log(

p(x, y, z)

p(y, z)
) (10)

Where p(x) denotes the frequency of occurrence of base x in the
lncRNA sequence, p(x, y) denotes the frequency of occurrence of
2 grams of bases x and y in the lncRNA sequence, and p(x, y, z)
denotes the frequency of occurrence of 3 grams of bases x, y, and
z in the lncRNA sequence. The values of p(x), p(x, y), and p(x, y,
z) can be calculated by Equations (11)–(13) as follows.
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TABLE 1 | Parameter description in the SVM-RFE + CBR method.

Parameter Value Describe

kerType 2 Kernel type, see libsvm. linear: 0; rbf:2

rfeC 16 Parameter C in SVM training

rfeG 0.0078 Parameter g in SVM training

useCBR True Whether or not use CBR

Rth 0.9 Corrcoef threshold for highly corr features

p(x) =
Nx + ε

L
(11)

p(x, y) =
Nxy + ε

L− 1
(12)

p(x, y, z) =
Nxyz + ε

L− 2
(13)

Here, Nx denotes the number of bases x that appear in the
pre-miRNA sequence and L is the length of the given lncRNA
sequence. The ε in Equations (11–13), denoting a very small
positive real number, is used to avoid using 0 as the denominator.

For the lncRNA base composition feature information, given
any lncRNA sequence, we have calculated the percentage of
4 nucleotide (i.e., A, C, G, and T) and 16 dinucleotide
(e.g., AA, AG, and AC) types in each lncRNA sequence
separately and obtained 20-dimensional feature vectors. The
lncRNA sequence mutual information and the lncRNA base
composition feature information have 19 and 16 dimensions,
respectively. Thus, the total number of lncRNA sequence feature
dimensions is 35; i.e., the dimensionality of the feature vector is
35 dimensions.

lncRNA Expression Profile Features
In this paper, we have obtained the lncRNA expression profile
information from the NONCODE4.0 database, which contains
170,601 lncRNA expression profile data. The expression profiles
describe the expression of lncRNAs in 24 types of human tissues
or cells. Thus, the lncRNA expression profile features contain
24-dimensional feature vectors.

By the above analysis, we can extract a total of 1,978 (1,015 +
400+ 504+ 35+ 24) dimensional features obtained.

Feature Optimization
The feature space of lncRNA–protein interactions consists of five
features, namely, lncRNA–protein network topology, lncRNA
sequence, lncRNA expression profile, protein CTD information,
and protein sequence evolution information features. Compared
with individual features, the fusion of multiple features
can capture increased sequence information, which leads to
improved prediction performance. However, the fusion of
multiple features produces a high-dimensional redundant feature
and may lead to problems, such as excessive training time and
bias in performance. Therefore, in this paper, we have used the
SVMRecursive Feature Elimination (SVM-RFE) and Correlation
Bias Reduction (CBR) (Yan and Zhang, 2015) to optimize the
feature set.

The SVM-RFE algorithm proposed by Tolosi and Lengauer
(2011) has been successfully applied to many system biology
problems. The CBR algorithm has been used to reduce potential
biases in linear and non-linear SVM-RFE. In this study, we use
the algorithm SVM-RFE + CBR (Yan and Zhang, 2015), which
consists of a combination of SVM-RFE and CBR, to optimize the
feature vectors. The specific process is as follows: first, all features
are ranked using SVM-RFE + CBR (Yan and Zhang, 2015) to
select a set of features with the top score; second, the selected
features are reorganized into new, ordered features; and finally,
these new features are fed into the predictive classifier to generate
a training model. Thus, we can obtain the ranked list of features
through the SVM-RFE and CBR and select a set of top-ranked
feature information to enable the optimal selection of features.

In the SVM-RFE + CBR method, we used the following
parameters: kerType, rfeC, rfeG, useCBR, Rth. The values and
descriptions of these parameters are shown in Table 1. The
rest of the required parameters use the default settings of the
SVM-RFE+ CBR method.

Classification Algorithm
In this paper, we choose SVM as the classifier to build
the prediction model. Specifically, the open source Library
of Support Vector Machines (LIBSVM) is used for model
training and construction. The LIBSVM toolbox can be
downloaded for free at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
We integrated the toolbox in the Matrix Laboratory (MATLAB)
workspace to build predictive models. The specific form of
the kernel function has a large impact on the performance
of the SVM. The Gaussian radial basis kernel function (RBF)
has good results for non-linear classification and is widely
used for bioinformatics classification; therefore, we choose
RBF as the kernel function for SVM. A grid search based
on five-fold cross-validation was applied to optimize the
SVM parameters γ and the penalty parameter C. The grid
search yielded the optimal C = 256 and γ = 0.002 set as
their values.

Measurements
Several measures were used to evaluate the performance of the
lncRNA–protein interaction predictionmethod comprehensively
(Jin et al., 2019; Manavalan et al., 2019; Manayalan et al., 2019; Su
et al., 2019a,b, 2020a,b; Qiang et al., 2020). The receiver operating
characteristic curve was based on specificity and sensitivity. The
area under the receiver operator characteristic curve (AUC)
and the area under precision-recall curve (AUPR) were used as
evaluation metrics (Wei et al., 2014, 2017a,b; Tang et al., 2020).
The AUC provided a measure of classifier performance. A high
AUC value indicated improved performance of the classifier.
However, for class imbalance problems, the AUPR penalizes false
positives in the evaluation and is more suitable than the AUC.
In addition, the Matthew correlation coefficient (MCC) was used
to assess the prediction performance. The MCC considered true
and false and positive and negative and was usually a balanced
measure that could be used even if these classes had different
sizes. Sensitivity (SE), specificity (SP), precision (PR), accuracy
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TABLE 2 | Performance of different feature subsets on the benchmark dataset.

Methods ACC (%) SE (%) SP (%) MCC F1 score (%) AUC (%) AUPR (%)

LDNet 90.56 77.94 97.14 0.603 64.36 89.32 71.10

Pro 85.87 69.19 98.65 0.290 26.61 57.33 27.92

lRNA 84.47 52.91 99.77 0.067 2.83 52.29 20.34

lRNA + Pro 86.17 68.11 98.22 0.323 31.79 79.11 47.94

lRNA + LDNet 90.81 78.69 97.20 0.615 65.52 90.99 73.75

CTD + LDNet 90.62 78.25 97.18 0.606 64.62 89.02 71.32

The best values are shown in boldface.

TABLE 3 | Comparison of performance with different excellent algorithms.

Methods ACC (%) F1 score (%) AUC (%) AUPR (%)

IRWNRLPI 90.09 65.16 91.50 71.38

LPI–ETSLP 88.34 59.78 88.76 64.38

RWR 95.36 36.03 83.32 28.93

LPBNI 95.81 38.68 85.86 33.06

RPISeq–RF 46.62 14.81 39.49 6.31

RPISeq–SVM 48.23 14.93 39.87 6.98

Our method 90.82 65.91 90.97 74.39

The best values are shown in boldface.

(ACC), and MCC are defined as follows.

SE =
TP

TP + FN
(14)

SP =
TN

TN + FP
(15)

PR =
TP

TP + FP
(16)

F1− score = 2×
SE× PR

SE+ PR
(17)

ACC =
TP + TN

TP + FP + TN + FN
(18)

MCC =
TP × TN − FP × FN

√
(TP + FN)(TN + FP)(TP + FP)(TN + FN)

(19)

TP, TN, FP, and FN indicate the number of true positives, true
negatives, false positives, and false negatives, respectively.

RESULTS AND DISCUSSION

Analysis of the Effect of Different Feature
Information Subsets on the Experimental
Performance
The effect of different feature subsets on the experimental
performance was analyzed to evaluate the effect of different
feature information on the lncRNA–protein prediction
performance. We compared each feature subset and their
two-by-two combinations on the benchmark dataset separately.

The lncRNA sequence and the lncRNA expression profile
features had feature vector dimensions of 35 and 24, respectively.
These features were combined for the dimensionality of the
lncRNA feature information be 59 and named as lRNA features
for convenience. The CTD features of protein sequences were 273
dimensions, and the K-PSSM-composition features of protein
evolutionary information were 400 dimensions. The CTD and
K-PSSM-composition features were combined and named as Pro
features. Thus, the Pro features of proteins were 673 dimensions.
The lncRNA–protein topological network features were named
LDNet features, and their total feature dimension was 1,015
dimensions. Therefore, six subsets of features [i.e., lRNA, Pro,
and LDNet and their two-by-two combinations (i.e., lRNA+ Pro,
lRNA + LDNet, and Pro + LDNet)] were obtained. To evaluate
the effect and the importance of each feature subset on the
prediction results, this paper uses the SVM classifier to train the
prediction model, and the grid search algorithm was employed
to adjust the parameters of the SVM so that each feature subset
achieves the best accuracy in the same threshold range. Five-fold
cross-validation tests were conducted on these six feature subsets.
Experimental results are shown in Table 2.

The experimental results of the six feature subsets constructed
in this paper by five-fold cross-validation tests are shown in
Table 2. The ACC, SE, MCC, F score, AUC, and AUPR values
of LDNet features were 90.56, 77.94, 0.603, 64.36, 89.32, and
71.10%, respectively, and higher than those of lRNA and Pro
features. For the F1 score, AUC, and AUPR metrics, the LDNet
features were higher by 37.75, 31.99, and 43.18%, respectively,
than the Pro features, which ranked second in these three feature
subsets. Therefore, the LDNet features performed the best in the
separate experiments for the three feature subsets of LDNet, Pro,
and lRNA, which indicated that the LDNet was the best for the
lncRNA–protein association prediction because the LDNet was
the largest and far exceeded the two other feature subsets.

The ACC, SE, MCC, F score, AUC, and AUPR values for
lRNA + LDNet features were 90.81, 78.69, 0.615, 65.52, 90.99,
and 73.75%, respectively, and were the maximum values in

these six feature subsets (Table 1). The values of these metrics
for Pro + LDNet and lRNA + LDNet feature subsets were
close. The F1 score, AUC, and AUPR values for the lRNA +
Pro feature subset were 31.79, 79.11, and 47.94%, respectively,
which were lower than the first two combined features and even
lower than the LDNet feature subset. Therefore, the lRNA +
LDNet features performed best in predicting lncRNA–protein
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FIGURE 2 | ROC curves for five-fold cross-validation tests of the benchmark dataset.

FIGURE 3 | AUPR curves for five-fold cross-validation tests of the benchmark dataset.

interactions. Among lRNA and LDNet features, the LDNet
was the main decisive feature subset, which also indicated
that the lncRNA and protein network topology-based features
proposed in this paper had the greatest effect on the prediction
performance. In addition, the performance of each feature subset
in the two-by-two combination was better than the feature
performance value of each feature subset individually.

Comparison With Existing Approaches
We selected the following six excellent methods for experimental
comparison on the benchmark dataset to compare the
performance of our proposed method with existing excellent
methods. These six methods included IRWNRLPI (Zhao et al.,

2018), LPI–ETSLP (Hu et al., 2017), RWR (Kohler et al., 2008),
LPBNI (Li et al., 2015), RPISeq–RF (Muppirala et al., 2011), and
RPISeq–SVM (Muppirala et al., 2011). The RPISeq–RF and the
RPISeq–SVM models are prediction methods that extract and
input lncRNA and protein features into RF or SVM predictors,
whereas the IRWNRLPI, LPI–ETSLP, RWR, LPBNI, and
RPISeq–RF algorithms are prediction methods that are based
on heterogeneous networks constructed from lncRNAs and
proteins. On the benchmark dataset, a five-fold cross-validation

test was performed separately, and four evaluation metrics,

namely, ACC, F1 score, AUC, and AUPR, were selected to
evaluate the performance of different algorithms. Experimental
results are shown in Table 3.
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The experimental results of each evaluation index for
predicting lncRNA–protein interactions are listed in Table 3.
First, we compared the values of AUPR, which were 64.38%
(LPI–ETSLP), 28.93% (RWR), 33.06% (LPBNI), 6.31% (RPISeq–
RF), 6.98% (RPISeq–SVM), and 71.38% (IRWNRLPI) lower than
74.39% in our method and indicated that our method predicted
reliable results.

The AUC value of our method was 90.97%, which ranked
the second among all methods, and was close to the first
ranked IRWNRLPI (91.50%) method and 2.21% higher than
the third ranked LPI–ETSLP method. These results showed that
our method had very good prediction performance. We plotted
the curves of AUPR and ROC for the five-fold cross-validation
tests to demonstrate the AUPR and the AUC values, respectively
(Figures 2, 3).

Next, we further analyzed the ACC and the F1 score values of
these prediction models. The ACC of our method was 90.96%
smaller than those of RWR (95.36%) and LPBNI (95.81) but
better than that of IRWNRLPI (90.09%) because of very few
experimentally validated lncRNA–protein interactions, which
were far less than the unknown lncRNA–protein association
relationships in the benchmark dataset. Therefore, the use of F1
score values to evaluate the performance of different methods
than the ACC evaluation was reasonable. The F1 score value
of our method was 65.91%, which was the highest among all
methods and higher than those of the RWR (36.03%) and
the LPBNI (38.68%). Therefore, the combined results of all
experiments further demonstrated the good performance of our
method in predicting lncRNA–protein associations. Notably, the
four evaluation metrics (AUC, AUPR, ACC, and F1 score) of
our method, which constructed prediction models on the basis
of lncRNA and protein features, were more remarkable than
RPISeq–RF and RPISeq–SVM.

CONCLUSIONS

lncRNAs are involved in the regulation of gene expression
at the transcriptional level, epigenetics, and other life activity
processes by interacting with RNA-binding proteins. Therefore,
related research on the prediction of lncRNA–protein interaction

relationship is beneficial in the excavation and the discovery of
the mechanism of lncRNA function and action occurrence.

In this paper, a computational model for lncRNA–protein
interaction relationship prediction based on the multisource
information fusion is proposed. A method for representing the
topological feature information of the network of lncRNA–
protein interactions is proposed. Subsequently, protein
evolutionary information, protein CTD sequence information
features, lncRNA sequence mutual information features, and
lncRNA expression profile information are extracted, and the
recursive feature elimination algorithm is used to optimize
feature vectors. The obtained optimized feature vectors are fed
into SVM to predict lncRNA–protein interactions. Our proposed
method is experimentally compared with six excellent lncRNA–
protein prediction algorithms by using five-fold cross-validation
tests on benchmark datasets, and experimental results show
that our proposed method achieves the best performance values
in AUPR and F1 score, illustrating the effectiveness and the
accuracy of the proposed method in lncRNA–protein association
prediction methods.
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