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Integrin transmembrane proteins conduct mechanotransduction at the cell–extracellular
matrix (ECM) interface. This process is central to cellular homeostasis and therefore
is particularly important when designing instructive biomaterials and organoid culture
systems. Previous studies suggest that fine-tuning the ECM composition and
mechanical properties can improve organoid development. Toward the bigger goal
of fully functional organoid development, we hypothesize that resolving the dynamics
of ECM–integrin interactions will be highly instructive. To this end, we developed a
mathematical model that enabled us to simulate three main interactions, namely integrin
activation, ligand binding, and integrin clustering. Different from previously published
computational models, we account for the binding of more than one type of ligand to
the integrin. This competition between ligands defines the fate of the system. We have
demonstrated that an increase in the initial concentration of ligands does not ensure
an increase in the steady state concentration of ligand-bound integrins. The ligand with
higher binding rate occupies more integrins at the steady state than does the competing
ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this
model can be used to develop instructive cell culture systems.

Keywords: integrin, ligand competition, computational model, extracellular matrix, ordinary differential equation

INTRODUCTION

The extracellular matrix (ECM) is a mesh of fibrous proteins that forms the basis of the tissue
architecture and structurally supports the cells. The translation of biophysical cues provided by
the ECM into biochemical signals by the cells is a process called mechanotransduction. For
cells, mechanotransduction is central to maintaining homeostasis in many biological processes
like proliferation, migration, differentiation, and apoptosis (Miller et al., 2020). It is known, for
example, that the composition and mechanical properties of the extracellular environment in
which mesenchymal stem cells are grown influences whether they differentiate into adipocytes,
osteoblasts, or chondrocytes (Assis-Ribas et al., 2018). When mechanotransduction is disturbed, it
results in aberrant cell behavior and thus impaired tissue function (Handorf et al., 2015).

Focal adhesions are multiprotein complexes where this mechanotransduction process is
orchestrated. The main players in focal adhesions, responsible for physical interactions with the
ECM, are integrins. Each integrin consists of non-covalently associated α and β subunits. To date,
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24 unique integrins have been found in humans, which are
combinations of 18 different α and eight different β subunits
(Hynes, 2002; Barczyk et al., 2010). Each integrin heterodimer
is able to recognize and bind to a defined set of ECM
ligands via its ectodomain (Hynes, 2002; Humphries et al.,
2006). Different ligand-bound integrins can further form clusters
amongst each other via non-covalent links between α and
β subunits. Approximately 50 integrins can cluster together
(Changede et al., 2015). This way, integrins create physical anchor
points between the extracellular space and the cytoskeleton
and initiate the focal adhesion formation. Cytosolic ligands
are recruited to cytoplasmic tails of integrin molecules, and
mechanosensitive signaling is activated in the cell via the focal
adhesions (Hynes, 2002).

Due to the broad range of cellular response activated via
integrin-mediated signaling, integrins have been targets for tissue
engineering applications. Recent developments in methods that
make use of stem cells and targeted differentiation protocols, such
as in organoid development, demonstrated the importance of a
detailed understanding of mechanotransduction and particularly
integrin–ECM interactions. So called “designer matrices” that are
decorated with integrin-binding partners and that are adaptive
in terms of their mechanical properties have been shown to
enhance intestinal organoid culture survival and proliferation
(Gjorevski et al., 2016). Similarly, by mimicking the physiological
environment of early stages of embryonic development in cell
culture, the formation of human pluripotent stem cell–derived
kidney organoids could be enhanced (Garreta et al., 2019).

Maintaining the appropriate ECM composition is critical
for kidney organoid development. For example, Geuens et al.
(2020a) reported an unwanted increase in specific ECM proteins
when cell culture times were prolonged in an attempt to
increase kidney organoid maturation. They performed a tandem
mass spectrometry analysis to compare the ECM composition
of kidney organoids that were cultured for 18 and 25 days.
Older kidney organoid ECM was rich in collagens (specifically
COL1A1, COL2A1, and COL6A1) and fibronectin, which are
hallmarks of tissue fibrosis, compared to day 18 ECM. The
analysis also showed an increase in αSMA — a myofibroblast
marker — in older kidney organoids, that further indicated
tissue fibrosis. Following this analysis, they encapsulated
the kidney organoids in a soft hydrogel system, which
prevented the unwanted ECM deposition, perhaps by better
mimicking the natural environment in kidney development
(Geuens et al., 2020a).

The effect of the abnormal accumulation of particular ECM
proteins on cell phenotype is worth exploring for the future of
organoid culture systems. The initial presence and the changes in
the amounts of ECM proteins are sensed first by the integrins, the
direct interaction partners of these proteins. Therefore, a detailed
analysis and understanding of the effects of abnormal ligand
deposition and ligand competition on integrin–ligand dynamics
can help us understand the decision-making processes of the cells
in response to the changes in ECM conditions (Garreta et al.,
2019; Miller et al., 2020; Geuens et al., 2020b).

The high number of potential integrin–ligand pairs make
it difficult to test and document the effects experimentally.

Therefore, computational modeling provides a unique
opportunity for exploring the integrin–ligand binding
process and its subsequent effects. There exists a number of
computational models that explain different processes in the
integrin-related pathways. In particular, Hudson et al. (2017)
studied the binding of fibronectin and von Willebrand Factor
A (vWA) to integrin αvβ3 as well as binding of collagen to
α1β1 using an ordinary differential equation (ODE) model;
they reported an increase in ligand-bound integrin at the
steady state when there is an increase in the concentration of
ligands. However, they simulate the integrin–ligand binding
exclusively for each ligand, which overlooks the fact that the
ligands of the same integrin are in a competition to bind when
present at the same time. To fill this knowledge gap and identify
potential patterns in integrin–ligand binding that occur due to
the competition between multiple ligands for the same integrin,
we developed an ODE model. Our model consists of three
reaction levels: (1) integrin activation, (2) ligand binding, and (3)
ligand-bound integrin clustering (Figure 1). Using this model,
we explore the changes in ligand-binding kinetics when the
amount of ECM ligands changes over time, as in the case of
kidney organoid cultures.

MATERIALS AND METHODS

Ordinary Differential Equation Model
We used the Tellurium Python environment (Choi et al., 2018) to
generate and the libRoadRunner library (Somogyi et al., 2015) to
simulate the ligand competition model. The python code for the
model and simulations as well as the SBML file for the model and

FIGURE 1 | An overview of the ligand-competition model reactions. i is the
inactive integrin, I is activated integrin, IL1 is L1-bound integrin, IL2 is
L2-bound integrin, IL1− IL1, IL2− IL2, and IL1− IL2 are three species of
clustered integrins with different ligand compositions. k1–k8 are reaction rate
constants and their values are given in Table 1. Ordinary differential equations
representing the reactions are given in the “Materials and Methods” section.
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the simulation results in csv format can be found in our GitHub
repository1.

The mass-action kinetics scheme of the integrin–ligand
competition model is given in Figure 1; here we present the
differential equations for the model (Eqs 1–9): where i denotes the
concentration of inactive integrins, I is the concentration of active
integrins, IL1 and IL2 are the concentrations of L1- and L2-bound
integrins, respectively. C1, C2, and C3 are the concentrations of
three distinct types of integrin clusters composed of IL1− IL1,
IL2− IL2, and IL1− IL2, respectively. k1− k8 are the reaction
rate constants of the reversible reactions in the model (Figure 1)
and their values are given in Table 1.

di
dt
= −k1× i+ k2 × I (1)

dI
dt
= k1 × i − k2 × I − k3× I × L1+ k4× IL1− k5× I

×L2+ k6× IL2 (2)

dIL1
dt

= k3× I × L1− k4× IL1− 2×
(
k7× IL12

− k8 × C1
)

−k7× IL1 × IL2+ k8× C3 (3)

dIL2
dt

= k5× I × L2− k6× IL2− 2×
(
k7× IL22

− k8× C2
)

−k7× IL1× IL2+ k8× C3 (4)

dC1
dt
= k7× IL12

− k8× C1 (5)

dC2
dt
= k7 × IL22

− k8× C2 (6)

dC3
dt
= k7× IL1× IL2− k8 × C3 (7)

dL1
dt
= −k3 × I × L1+ k4× IL1 (8)

dL2
dt
= −k5 × I × L2+ k6× IL2 (9)

The inspiration for this model was a prior integrin–ligand
binding model presented by Hudson et al. (2017). However, their
model included only one type of ligand available at a time for one
integrin type. We have modified this model to account for the
competition of multiple ligands binding to the same integrin. We
have also added an integrin activation step, before the initiation
of ligand binding. This was to accommodate the conformational
change (from bent to extended) of the integrin ectodomain,
required for the ligand binding site to become available (Takagi
and Springer, 2002; Zhu et al., 2008; Li and Springer, 2017). The

1https://github.com/zeynepkaragoz/Ligand_competition_model

TABLE 1 | Parameters used in the ODE model, their values and references.

Model
parameter

Explanation Value References

k1 Integrin αvβ3 activation 5 × 106 1/(nM × s) Yu et al., 2017

k2 Integrin αvβ3

inactivation
1.0 × 108 1/s Yu et al., 2017

k3 Fibronectin (L1) – αvβ3

binding
1.6 × 108 1/(nM × s) Hudson et al.,

2017

k4 Fibronectin (L1) – αvβ3

unbinding
3.5 × 10−1 1/s Hudson et al.,

2017

k5 vWA (L2) – αvβ3 binding 1.6 × 104 1/(nM × s) Hudson et al.,
2017

k6 vWA (L2) – αvβ3

unbinding
2.3 × 10−2 1/s Hudson et al.,

2017

k7 Integrin cluster
formation

1.6 × 108 1/(nM × s) Yu et al., 2017

k8 Integrin cluster
dissociation

0.5 × 107 1/s Yu et al., 2017

i Integrin αvβ3 0.05 nM Hudson et al.,
2017

rate of the activation step was calculated by Yu et al. (2017)
using the energy required for the bent-to-extended conformation
change (Huang et al., 2012; Yu et al., 2017). It should be noted
that we do not make the distinction between the next two possible
conformations (extended-closed and extended-open) after the
ligand is bound to the integrin (Zhu et al., 2008; Li and Springer,
2017), as the switch between these two states is highly related to
the integrin cytoplasmic tails binding to cytoskeleton, which is
out of the scope of this study. Since there are two types of ligand-
bound integrins in our model (IL1 and IL2), we also make the
distinction of three possible integrin clusters (C1, C2, and C3).
However, we assumed the cluster association/dissociation rate
constants (k7 and k8, respectively) for distinct cluster types are
the same, simply because the molecules that are interacting, the
integrins, are of the same type for each cluster.

We used the binding rate constants of fibronectin and vWA to
integrin αvβ3 as the L1 and L2 binding rate constants (Table 1).
We chose to model integrin αvβ3 because of its relevance in
kidney fibrosis (Henderson et al., 2013; Conroy et al., 2016;
Bülow and Boor, 2019). Similarly, we chose fibronectin as the first
ligand (L1) as its expression is related to fibrosis (Eddy, 1996;
Genovese et al., 2014) and it is a relatively well characterized
ligand of integrin αvβ3 (Humphries et al., 2006). We used vWA
as the second αvβ3-binding ligand (L2) of which we derived
the binding rate constant from a previous model (Hudson
et al., 2017). Overall, we intended to demonstrate the simplest
possible case of ligand competition where a low affinity and
a high affinity ligand compete for binding to the integrin. L1
represents a high affinity ligand, whereas L2 represents a medium
to low affinity ligand for integrin αvβ3 (Irvine et al., 2002). This
setup is relevant for natural cell-ECM interactions as well as
for cells on synthetic substrates as one of the most widely used
integrin-targeting peptide sequences RGD has varying affinities
in different conformations (i.e., higher affinity when cyclic form
vs lower affinity when in linear form; Xiao and Truskey, 1996;
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Verrier et al., 2002; Sankaran et al., 2017). When provided with
the necessary parameter set, our model can be used to simulate
the interactions of other integrin–ligand pairs or even other
receptor–ligand pairs which have similar activation-binding-
clustering chemistry.

Design of in silico Experiments
Using the ODE system described above, we performed a set
of in silico experiments, aimed at characterizing the effects of
increased ECM ligand concentration on integrin binding in a
cell culture system. Initial molar concentrations for fibronectin
(0.18 nM) and vWA (0.33 nM) were taken from Hudson et al.
while we used the fold changes reported by Geuens et al. (2020a)
between days 18 and 25 for these two ligands (2.5-fold and
1.5-fold for fibronectin and vWA) in kidney organoid culture.
This way we obtained the test condition 1 “Different Initial
Conditions, Different Fold Change” in Table 2 and Figure 2.

In further in silico experiments, we set the initial
concentrations of the two ligands equal (condition 2, Table 2 and
Figure 2) and varied the fold change values (Equal, Different,
or High Fold Change for L2 only) between days 18 and 25 to
test their effect on the system (conditions 3 and 4, Table 2 and
Figure 2). Finally, we set the binding rates of the two ligands to
be equal and used the initial concentration of test condition 1
once more to see the effect of binding rate constants independent
of the effect of initial ligand concentrations and fold changes
(condition 5, Table 2 and Figure 2). A schematic representation
of all the tests is given in Figure 2.

RESULTS

Using our ODE-based model (Eqs 1–9) and interactions
described above (Figure 1), we performed simulations using

TABLE 2 | Conditions (1–5) with initial concentration values for competing ligands,
for each experiment [different or equal initial conditions (IC); different, equal or high
fold change (FC) between experiment days; different or equal binding rates (BR)
for ligands] and for each time point (Day 18 and 25).

Test condition Experiment
time

L1 L2

1 Different initial conditions, Different fold
change

Day 18 0.18 nM 0.33 nM

Day 25 0.46 nM 0.50 nM

2 Equal initial conditions, Different fold
change

Day 18 0.33 nM 0.33 nM

Day 25 0.84 nM 0.50 nM

3 Equal initial conditions, Equal fold
change

Day 18 0.33 nM 0.33 nM

Day 25 0.84 nM 0.84 nM

4 Equal initial conditions, High fold
change for L2

Day 18 0.33 nM 0.33 nM

Day 25 0.84 nM 2.97 nM

5 Different initial conditions, Equal binding
rates (k3 = k5 = 1.6 × 108 1/nM × s,
k4 = k6 = 3.5 × 10−1 1/s)

Day 18 0.18 nM 0.33 nM

Day 25 0.46 nM 0.50 nM

reaction rate constants from the literature (Table 1) and initial
conditions changing according to Table 2 and Figure 2. The
binding rate constant between integrin αvβ3 and fibronectin is
104 times higher than that of integrin αvβ3 and vWA (Hudson
et al., 2017). Therefore, in our model, L1 is the ligand with higher
binding affinity while L2 has lower binding affinity for the same
integrin. Although we use binding rate constants of fibronectin
and vWA in this study, the computational model is generic and

FIGURE 2 | Schematic representation of experimental conditions that were
tested using the ODE model of ligand competition. Conditions are numbered
from 1 to 5 and this numbering is also used in the figures and results.
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can be adapted for other integrin–ligand pairs by changing the
corresponding parameter values.

The initial conditions for the integrin and both ligands at
day 18 were set from Hudson et al. (2017). The day 25 initial
conditions for the two ligands were determined using the results
of the kidney organoid ECM proteomics analysis (Table 2). It
should be noted that in all in silico tests that are described in
the following sections, the inactive integrin concentration (i) and
active integrin concentration (I) reached a steady state value of
almost zero. This means that all integrins in the system were
found as either bound to a ligand and/or clustered with other
ligand-bound integrins (Supplementary Figure 1).

The Ligand With a Higher Binding Rate
Dominates the Integrin Binding
Competition
First, we looked at how integrin–ligand binding dynamics
change under conditions similar to the kidney organoid culture
experiments. The proteomics analysis revealed that there was
a 2.5– and 1.5–fold increase in the amount of fibronectin and
vWA, respectively, between days 18 and 25 in the ECM. In
our model, we simulated this scenario as condition 1, using the
initial concentrations given in Table 2. The steady-state value was
higher at day 25 than day 18 for L1-bound integrins (increase in
the 10−6th order, Figure 3A-1, and Supplementary Figure 2A).
The L2-bound integrin concentration, however, decreased at day
25 compared to day 18 (Figure 3B-1).

Second, to test the effect of the differences in initial
conditions of the ligands (L1 = 0.18 nM and L2 = 0.33 nM)
on our observations, we ran simulations with equal initial
concentrations (0.33 nM) for L1 and L2 on day 18 and applied
the same fold changes (Figures 3A-2,B-2). Similar results were
found for L1-bound integrin, whereas L2-bound integrin had an
even lower steady-state concentration (Day 18: 2.98 × 10−6 nM,
Day 25: 1.77 × 10−6 nM, and Figure 3B-2) compared to those
from Different IC simulations (Day 18: 5.46× 10−6 nM, Day 25:
3.24× 10−6 nM, and Figure 3B-1).

Third, we tested whether an equal fold change (2.5 for
both L1 and L2, Figures 3A-2,B-3) between days 18 and 25
affected the ligand competition. The steady state for L1-bound
integrin did not change compared to previous test (Figure 3A-
3 and Supplementary Figures 2B,C). However, we observed an
increase in the steady state of L2-bound integrins on day 25
(2.98× 10−6 nM, Figure 3B-3) compared to that under Different
FC conditions (1.77 × 10−6 nM, Figure 3B-2). This hinted that
the fold change can affect the ligand competition in favor of L2.

Next, we simulated a 9-fold change [which was the
maximum fold-change observed in kidney organoid ECM mass
spectrometry experiments by Geuens et al. (2020a)] between
days 18 and 25 (Figure 2 condition 4) for L2. This simulation
was done to reflect the effect of a higher fold of the ligand
with the lower integrin binding rate on the system. We saw
that with a 9-fold increase in the L2 amount on day 25, the
steady-state concentration of L2-bound integrin was higher
than on day 18 (Figure 3B-4) while the L1-bound integrin
concentration pattern decreased, in the range of 10−6 nM, when

compared to previous tests (Figure 3A-4 and Supplementary
Figure 2D). Mathematically, the decrease in L1-bound integrin
compensated for the increase in the steady-state concentration of
L2-bound integrin.

The main observation from simulating test conditions 1 to 4
was that the integrins bound to L1 have increased in number by
increasing the ligand concentration at day 25 compared to day
18, but integrins bound to L2 have not always increased at day
25 with increasing ligand concentration. Only in test condition 4,
with a 9-fold increase in the L2 amount on day 25, we saw that
steady state concentration of L2-bound integrins on day 25 was
higher than that of day 18.

To further investigate the turning point for the fold change
in L2, where the L2-bound integrin steady-state concentration
at day 25 exceeds that of day 18, we ran a parameter scan
of the model. For this, we varied the IC for L2 (keeping the
IC for L1 at its day 25 concentration which is 0.84 nM) and
compared the L2-bound integrin steady state at day 25 to that
of day 18 (Figure 4). We ran simulations using 10 different
initial concentrations for L2 that started from 0.5 nM (1.5-fold
increase) and gradually increased to 2.97 nM (9-fold increase).
Results showed that, under these parameter settings, the L2-
bound integrin concentration at day 25 exceeded that at day 18
only when the L2 initial concentration was >0.77 nM (2.3–fold
greater; Figure 4).

In all tests so far, integrins were bound to L2, the ligand
with a lower binding rate constant, at a lower concentration
than the integrins were bound to L1, even when the ICs of
the two ligands were equal. This observation implies that the
binding rate constants of the two competing ligands, and not
the initial concentrations, are of decisive importance for the
binding competition.

Thus, we next tested the effect of changing the binding rate
constants for L1 and L2 (Figure 2 and Table 2, condition 5).
When we set the binding and unbinding rate constants of the
two ligands equal [k3 = k5 = 1.6 × 108 1/(nM × s) for binding
and (k4 = k6 = 3.5 × 10−1 1/s for unbinding] and used the same
initial concentrations as in condition 1 (Table 2, L1 = 0.18 nM,
L2 = 0.33 nM at day 18 and L1 = 0.46 nM, L2 = 0.50 nM at
day 25), we observed L1- and L2-bound integrin concentrations
to be similar at the steady state (Figures 3C,D). At day 18,
the steady-state concentrations for L1 and L2 were 0.009 and
0.015 nM, respectively. With day 25 conditions, the steady-state
concentrations of L1- and L2-bound integrins were 0.011 and
0.012 nM, respectively.

The Ligand Binding of Integrin Clusters
Reflects the Results of the Ligand
Competition
Next, we looked at the changes in integrin cluster (L1–L1, L1–
L2, and L2–L2) concentrations over time. With different and
equal initial conditions on day 18 and respective increases on
day 25 (L1: 2.5-fold, L2: 1. 5-, 2. 5-, and 9-fold), the composition
of integrin clusters always reflected the effect of the ligand
competition on integrin–ligand binding (Figure 5). In other
words, there were always more L1-bound, integrin-containing
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FIGURE 3 | (A) L1-bound and (B) L2-bound integrin concentrations over time in experiment days 18 (gray solid line) and 25 (red dotted line) for test conditions 1 to
5. The test conditions are as given in Table 2 and Figure 2: (1) Different IC are 0.18 nM for L1, 0.33 nM for L2; (2) Different FC are 2.5 for L1, 1.5 for L2; (3) Equal IC
is 0.33 nM; Equal FC is 2.5; and (4) High FC for L2 is 9. (C) L1-bound and (D) L2-bound integrin concentration over time for test condition 5 (Different IC and equal
binding rate constants for ligands; k3 = k5 = 1.6 × 108 1/(nM × s), k4 = k6 = 3.5 × 10−1 1/s).
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FIGURE 4 | L2-bound integrin concentration over time with varying initial concentrations of L2 with the initial concentration of L1 kept constant at 0.84 nM. Black
dotted line shows the day 18 steady-state concentration for L2-bound integrins when the initial L1 and L2 concentrations were both 0.33 nM. Comparing the
steady-state concentrations from the line plots to the black dotted line, initial L2 concentrations greater than 0.77 nM result in the steady state of the L2-bound
integrins exceeding that of day 18 (2.98 nM). This corresponds to a fold change of 2.3 between days 18 and 25.

clusters (Figure 5A) at the steady state than L2-bound, integrin-
containing clusters (Figure 5B), or mixed L1–L2-bound integrin
clusters (Figure 5C). This showed that L1 with a higher binding
rate is dominant over L2 in the clustering step.

When the two cluster species that contain L2-bound integrins
were compared, we saw that the mixed L1–L2–bound integrin
clusters were higher in concentration at the steady state than L2–
L2–bound integrin clusters (Figures 5B,C) at all times. When day
25 results were compared to day 18, we saw the same pattern as
for individual ligand-bound integrin species, namely:

1) L1-bound clusters had slightly higher steady state at day 25
than day 18;

2) The L2-bound, integrin-containing clusters had lower
steady state concentrations at day 25 than day 18 unless
the fold change of the ligand between two experiments
exceeded 2.3-fold.

Similar to the results of ligand-bound integrins when the
same binding-unbinding rates were used for both ligands, clusters
with only L2-bound integrins were highest in concentration
(0.007 nM), followed by L1–L2–bound mixed integrin clusters
(0.004 nM) and L1–L1–bound integrin clusters (0.002 nM;
Figures 5D–F) on day 18. On day 25, with the same settings,
the concentrations of the three different integrin clusters were
similar: L1–L1 cluster = 0.004, L2–L2 cluster = 0.005, and L1–L2
cluster = 0.004 nM (Figures 5D–F).

Local Sensitivity Analysis
Finally, we studied the sensitivity of each molecular species in the
ligand competition model to changes in model parameters. We
performed a local sensitivity analysis by increasing or decreasing
by 20%, one of the model parameters at a time. We tested
the individual effect of each of the eight binding rate constants
(k1–k8), the initial concentrations of integrins (i) and the two
competing ligands (L1, L2) on the steady state of each molecular
species in the model. We used these steady-state values for each
molecular species to calculate a parameter sensitivity value using
the following formula:

Parameter Sensitivity =

∣∣SS (k+1k
)
− SS(k)

∣∣
SS(k)

/
1k
k

SS(k) represents the steady-state concentration when there is
no change to the model parameter (i.e., the standard model
outcome), SS

(
k+1k

)
represents the steady-state concentration

when the parameter value was increased by 20% of the base
value. Therefore, 1k

k was 20% for our analysis. The effect of
decreasing the parameter values by 20% was calculated in the
same way, replacing SS

(
k+1k

)
with SS

(
k−1k

)
. The results

of this sensitivity analysis are given in Figure 6.
In general, the sensitivity pattern for a decrease in parameter

values was the same as for an increase. Similar to the previous
tests, L1-bound integrins, and L1–L1–bound integrin clusters
were the least affected by changes in model parameters. In
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FIGURE 5 | (A–C) Concentrations of ligand-bound integrin clusters L1–L1 (left column, A-1 to A-4), L2–L2 (middle column, B-1 to B-4), and L1–L2 (right column,
C-1 to C-4) over time at days 18 (gray solid line) and 25 (red dotted line) for all test conditions (1–5). (D–F) Integrin cluster concentration over time for condition 5
(Different IC (L1 = 0.18 nM, L2 = 0.33 nM) and equal binding rate constants (k3 = k5 = 1.6 × 108 1/nM × s, k4 = k6 = 3.5 × 10-1 1/s) for ligands).

contrast to the L1-bound integrin concentration, the steady-state,
L2-bound integrin concentration was not only influenced by the
L2 binding and unbinding rate constants (k5 and k6), but also by
the L1 binding and unbinding rate constants (k3 and k4) as well
as the initial L1 concentration. It is noteworthy that the L2-bound

integrin concentration was affected by the changes in the initial
amount of L1 and not by the L2 increase or decrease.

The L2–L2–bound integrin cluster was the most sensitive
molecular species in the model (Figure 6). We observed that
parameter changes that affected L2-bound integrins affected
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FIGURE 6 | Local sensitivity analysis of the integrin ligand competition model. Parameter sensitivity values on the y-axis indicate how a 20% increase (left) or
decrease (right) in each parameter [rate constants for integrin activation-inactivation (k1–k2), L1 binding-unbinding (k3–k4), L2 binding unbinding (k5–k6), integrin
cluster formation-dissociation (k7–k8), and initial concentrations of integrins (i) and the two ligands (L1 and L2)] affects the steady state of each molecular species in
the model (from top to bottom: inactive and active integrins, L1-bound integrins, L2-bound integrins, L1-L 1-, L2–L 2-, and L1–L2-bound integrin clusters).
Parameter sensitivity of >1 (red horizontal lines) indicates that the steady state of a molecular species is highly dependent on changes in parameter values, and
values < 1 indicates a lower sensitivity to changes in parameter values.

also the L2–L2–bound integrin clusters but in a more dramatic
way: the steady state of L2–L2–bound integrin cluster was
more than twice as sensitive to the 20% decrease in L1 initial
concentration than that of the L2-bound integrin. A similar
pattern was observed for the 20% increase in k4 (L1 unbinding)
and k5 (L2 binding) as well as for the 20% decrease in
k3 (L1 binding) and k6 (L2 unbinding). Interestingly, the
mixed L1–L2–bound integrin clusters showed a very similar
sensitivity pattern to L2-bound integrins, which is different
from that of L2–L2-bound integrin clusters. These observations
can be explained by the quadratic dependency of L2–L2-bound

integrin clusters to L2-bound integrins (detailed in the section
“Discussion”).

We should also note that both the steady state of inactive
and active integrins did not show significant sensitivity to the
changes in the initial concentration of inactive integrins (i) but
were sensitive to the changes in L1 initial concentration (L1;
Figure 6). This is expected given that the amount of ligands
in the system is in excess compared to integrin concentration
(i = 0.05 nM, L1 = 0.18 nm, and L2 = 0.33 nM) to mimic
the biology of receptor–ligand binding (Wanant and Quon, 2000;
Hudson et al., 2017). The excess ligand concentrations ensure
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that with the original reaction rate constants and in all the
test scenarios, the unbound integrins in the system (both active
and inactive) reach a steady-state concentration close to zero
and are found as ligand-bound (Supplementary Figure 1). The
parameter sensitivity patterns of inactive and active integrins
show that the imbalance between integrin–ligand amounts is
maintained by L1, the ligand with higher binding affinity. It is
the L1 initial concentration and its ligand binding-unbinding
constants (k3, k4) that affect the steady-state concentrations of
inactive and active integrins in the parameter sensitivity analysis,
while the L2 initial concentration and its binding rates (k5, k6)
are not determinants (Figure 6).

In line with this, when we set the initial integrin concentration
to be higher (1 nM) than the total initial ligand concentration
(0.51 nM), we observed a major shift in the parameter sensitivity
patterns (Supplementary Figure 3). When the integrins were
in excess compared to ligands, the steady states of the integrin
molecules in the system were highly dependent on the initial
integrin concentration (Supplementary Figure 3) instead of on
the binding-unbinding constants when the ligands were in excess.
This is expected as all ligands will be bound to the receptors
in a system where there are more receptors than ligands. The
amounts of ligand-bound receptors therefore correlate with the
initial ligand concentrations.

DISCUSSION

Here we present an ODE model that can be used to explore
the ligand-binding kinetics of integrins. The computational
model involves three main biological reactions: (1) integrin
activation, (2) integrin–ligand binding, and (3) ligand-bound
integrin clustering (Figure 1). At each step, the model allows us to
track the concentration of each model species over time. Different
from previously published models of integrin–ligand binding
(Macdonald et al., 2008; Hudson et al., 2017; Yu et al., 2017), we
included two ligands that have the ability to bind to the same type
of integrin, which allowed us to monitor the competition between
these two ligands.

The first outcome of the different tests we performed using
the ODE model was that all integrins were activated, bound
to a ligand, and that a subset of these ligand-bound integrins
were clustered (Supplementary Figure 1). Biologically, integrin
activation happens in two ways: outside-in and inside-out.
Outside–in activation is triggered by the interactions between
integrins and ECM ligands while inside-out activation is triggered
by the binding of talin to cytoplasmic tails of integrin molecule
(Shams et al., 2017). Talin is a protein that harbors multiple
binding sites for other signaling molecules and the actin
cytoskeleton (Miller et al., 2020). Both these activation processes
are not very well resolved but it is known that they influence one
another (Shams et al., 2017). The activation step in our model is
not specific to either of the above activation mechanisms.

Our parameter sensitivity results indicated that the rates
of integrin activation/inactivation did not have a significant
impact on the steady-state concentrations of molecular species
involved in reactions like ligand binding or integrin clustering

(Figure 6). We can speculate that in a model that includes
multiple interaction partners of integrins which affect the integrin
activation or reactions of downstream signaling pathways which
are dependent on the integrin activation, the integrin activation
step would play a significant role in the model. It is known that
for example, talin-mediated integrin activation is dynamically
regulated by several potential mechanisms (Calderwood, 2004)
such as talin proteolysis (Yan et al., 2001) and competition
between other proteins that bind to integrin from its cytosolic
tails (Bouvard et al., 2003). Yet the exact mechanisms of action
and their relative significance are not resolved (Calderwood,
2004). Exploring these mechanisms and their effects on
ligand binding and integrin clustering could be one potential
extension to our model.

We used the results from a proteomics analysis of kidney
organoid ECM when defining the ligand concentrations in
our model simulations. Under these “experimental conditions,”
we observed that the steady-state concentration of L1-bound
integrins was higher than the L2-bound integrins concentration
(0.021 nM vs 6.393 × 10−6 nM, Figures 3A-1,B-1), even
though the initial concentration of the L2 ligand is greater
than L1 on day 25 (0.50 vs 0.46 nM, Table 2). We observed
this pattern even when we systematically changed the initial
concentrations of the two ligands and the concentration fold
changes between days 18 and 25.

In their ODE model, Hudson et al. (2017) also reported an
increase in the ligand-bound integrin amount whenever there
was in increase in the ligand concentration. However, their model
included only one type of ligand binding to integrin at a time.
When we account for ligand competition, we observed that an
increase in ligand concentration did not ensure more ligand-
bound integrins if the competing ligand has a higher binding
rate (Figure 3). For the standard parameter settings, only fold
changes greater than 2.3 led to an increase in L2-bound integrin
amounts (for 0.84 nM L1 at day 25, Figure 4). However, even
with high fold changes (9-fold compared to 2.5-fold), L1-bound
integrins were always more abundant than L2-bound integrins at
the steady state.

We can explain this observation, where an increase in (initial)
ligand concentration results in a reduction of its integrin-bound,
steady-state value, using the ODE system given in Eqs 1–9. When
at steady state, all ODE equations should be equal to zero because
there is no time-dependent change in the concentrations of any
of the molecular species. Using the steady state solutions of Eqs
8, 9, we can get to the following dependencies between ligand-
bound integrin concentrations at the steady state (IL1s and IL2s)
and ligand concentrations at the steady state (L1s and L2s);

k3× Is × L1s = k4 × IL1s (10)

IL1s =
k3× Is × L1s

k4
(11)

k5× Is× L2s = k6 × IL2s (12)

IL2s =
k5× Is× L2s

k6
(13)
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IL1s
IL2s

=
k3 × k6× L1s
k4× k5× L2s

(14)

In our system, k3 = 1.6 × 108 1/(nM × s) and k4 = 3.5 × 10−1

1/s while k5 = 1.6 × 104 1/(nM × s) and k6 = 2.3 × 10−2 1/s.
When plugged in to Eq. 14, these rate constants provide IL1s
to be 660 times IL2s. The difference between the steady-state
concentrations of the ligands, however, is not high enough to
compensate for the big difference in rate constants, resulting in
a big difference between steady-state concentrations of the two
types of ligand-bound integrins. This also explains the differences
in the sensitivity patterns of ligand-bound integrin species. The
steady state of integrins bound to L1 with a higher binding rate
constant (IL1) is less affected by the small perturbations in model
parameters compared to L2-bound integrins (IL2; Figure 6),
because k3

k4 is big enough to compensate for a 20% change. From
these results, we can conclude that in case of ligand competition
for a receptor, the highest ratio — either the ratio of binding
rate constants or the ratio of initial ligand concentrations — has
the dominating effect on the steady-state concentrations of the
ligand-bound receptors.

When the binding and unbinding rate constants of the two
ligands are set to be equal (i.e., k3 = k4 and k5 = k6), we
can see from Eqs 11, 13 that the difference between steady-
state concentrations of the ligand-bound integrins (IL1s and
IL2s) solely depend on the difference between the steady-state
concentrations of the two competing ligands (L1s and L2s).
Since we assume mass conservation in the system, the following
equations hold true for the total amount of ligands in the system
at the steady state:

L1 = L1s+ 2 × C1s+ C3s+ IL1s (15)

L2 = L2s+ 2× C2s+ C3s+ IL2s (16)

L1 and L2 represent the initial (and total) ligand concentrations
in the system. As all the rate constants for forward and reverse
reactions become equal for the scenario where the two ligands
have equal binding rate constants, we can safely assume that the
ligand concentrations at the steady state correlate with the initial
ligand concentrations.

Using Eqs 14–16, we can explain what we observe in
Figures 3C,D, i.e., for day 18 initial conditions of the two
ligands with equal binding rates, the ratio of the steady-
state concentration of L1-bound integrins (IL1) to that of
L2-bound integrins (IL2) is 0.59 (0.009 nM/0.015 nM). This
ratio is very similar to the ratio of initial L1 amount to
initial L2 amount, which is 0.54 (0.18 nM/0.33 nM). When
we look at the day 25 steady-state concentrations, we find the
IL1/IL2 ratio to be 0.93 (0.011 nM/0.012 nM) and an initial
ligand concentration ratio of 0.92. Therefore, the initial ligand
concentrations, when the binding rate constants are equal, are
informative for predicting the steady-state concentrations of
ligand-bound integrins. In other words, with equal binding rates,
the ligand with the highest initial condition will result in the
highest integrin-bound, steady-state concentration and “win”
the ligand competition. This observation is also in line with

the literature. In another partial differential equation model of
competitive receptor–ligand binding, the competing ligands both
had binding affinities in the picomolar range and the steady-
state concentrations of receptors bound to either of the ligand
were directly correlated with the initial ligand concentrations
(Mac Gabhann and Popel, 2004).

These explanations of the relationship between the binding
affinities of competing ligands and the final amount of ligand-
bound integrins can be the mathematical explanation of the
experimental finding in which RGD peptides with different
stereochemistry inhibit the binding of a subset of integrin ligands,
while being ineffective for inhibiting other ligands. For example,
one of the very early studies on cyclic vs linear RGD peptides
reported that the peptides could inhibit vitronectin binding
effectively while falling short on inhibiting fibronectin binding
(Pierschbacher and Ruoslahti, 1987). This was because the
peptide constructs had a larger affinity for the integrins compared
to the affinity of vitronectin for the integrins while fibronectin
still had the highest affinity for the integrins therefore the peptide
constructs failed to inhibit the adhesion to fibronectin. Ever since,
many others developed integrin targeting peptides with various
binding affinity and selectivity (Wang et al., 2005; Kimura et al.,
2009; Mas-Moruno et al., 2011; Piras et al., 2012; Bernhagen
et al., 2017; Ma et al., 2017). Although our computational results
do not point out to a solution on how to improve the affinity
of a ligand toward an integrin, we provide here a method
for calculating the effect of having a higher affinity ligand on
the binding of other competing ligands. This can be used to
estimate the affinity that needs to be reached to prevent the
binding of a specific competitive ligand, without having to run
a series of experiments with a large set of ligands, different
concentrations, and/or timing.

As expected, due the same clustering rates k7–k8 for all
cluster-types, the steady-state composition of ligand-bound
integrin clusters (IL1–IL1, IL2–IL2, and IL1–IL2, Figure 1) was
in correlation with the steady-state concentrations of single,
ligand-bound integrins (Figures 3, 5). L1-bound, integrin-
containing clusters were in abundance when compared to L2-
bound, integrin-containing clusters, except when the binding rate
constants were set to be equal for both ligands (Figures 5C,D).
We can also explain this observation analytically by setting Eqs
11–13 to zero to calculate the steady state of the three integrin
cluster species. Then we obtain the following equations:

C1s =
k7 × IL1s2

k8
(17)

C2s =
k7 × IL2s2

k8
(18)

C3s =
k7 × IL1s × IL2s

k8
(19)

where C1s, C2s, and C3s denote the steady-state concentrations
of the three integrin cluster species composed of IL1–IL1,
IL2–IL2, and IL1–IL2, respectively. Eqs 17–19 reveal that the
steady-state concentrations of all integrin clusters correlate with
the steady-state concentrations of the ligand-bound integrin
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concentrations that they contain. Because of the quadratic term
in Eq 18, the steady state of IL2–IL2 clusters (C2) is much
more sensitive to small perturbations in model parameters than
the steady state of L2-bound integrins (Figure 6). In contrast,
the relatively high steady state value of L1-bound integrins
balances the steady state of IL1-containing clusters (C1 and C3),
therefore their sensitivity patterns are similar that of IL1 and IL2,
respectively (Figure 6).

We should note that the integrin clusters in our model were
composed only of two ligand-bound integrins, whereas in reality
this number can be much higher. Previous models of integrin
clustering suggest that as the ligand-binding rates increase, the
size of integrin clusters decrease, possibly due to the decreased
diffusion rate of ligand-bound integrins (Cheng et al., 2020).
Neither the exact number of possible integrins in a cluster nor
the effect of the composition of integrin clusters is known. Since
it is known that at focal adhesion points, more than one type
of integrin can cluster together and they have different roles in
the cluster (Roca-Cusachs et al., 2009), it would be interesting to
explore the downstream effects of having different ligand-bound
integrins clustered together.

For the sake of simplicity and interpretability of the ligand
competition, we assumed the spatial distribution of molecules
to be homogenous in this model. Therefore, we used an ODE
model and assumed the free ligands are always available to
active integrins, independent of their spatial location. However,
previous models with a focus on integrin clustering have
suggested a limit to the distance between ECM ligands for the
integrin clustering to occur (Jamali et al., 2013; Yu et al., 2017).
Therefore, future models should focus on including the space
dimension to integrin–ligand binding and clustering models,
considering ligand spacing.

In natural tissues, there can be more than two ligands
competing to bind to the same integrin. Therefore, our model is
a simplified version of the real scenario. Nevertheless, we have
shown that even with this simplified ligand-competition model,
we can acquire more fundamental understanding of integrin–
ligand binding. For example, we have shown that the vWA-bound
integrins (IL2) are much lower in concentration than fibronectin-
bound integrins (IL1) when the two ligands are allowed to bind
simultaneously, in contrast to the model results of Hudson et al.
(2017). In addition, our model suggests that with an increasing
number of ligands competing for the same integrin, the final
distribution of ligand-bound integrins will correlate with the
distribution of their binding affinities. When we added a third
ligand to our system (L3), with a binding affinity even higher
than L1, we observed that the number of L3-bound integrins were
higher than both L1- and L2-bound integrins (Supplementary
Figure 4). Whereas L1-bound integrins were still more abundant
than L2-bound integrins (Supplementary Figure 4).

It would be interesting to expand the current model with
different integrin types, to reflect the level of complexity of
interactions at the cell–ECM interface. However, this would
increase the number of parameters in the model and to date,
binding rates for all integrin–ligand pairs are not known. Such
future work should focus on obtaining binding rate constants
specific to different integrin–ligand pairs. Surface plasmon

resonance (Yan et al., 2001; Kim et al., 2005; Elosegui-Artola
et al., 2014) or single molecule dynamic force spectroscopy
(Taubenberger et al., 2007) are suitable techniques for this
purpose. The current model focuses on the short-term behavior,
neglecting ligand production and downstream signaling. As such,
another interesting avenue to expand the ligand-competition
model could be to include downstream cytosolic events from
the ligand-bound integrins that alters the cell behavior. In the
end, this would lead to the prediction of cell behavior using the
information on the ECM composition.

In summary, with our model, we conclude that the control
over the concentrations of ECM ligands would not be enough
to have control over their integrin binding in case there is
a significant difference between the binding rates of different
ECM ligands. More specifically, our results show that, for
the low-affinity ligand, not only its ligand binding-unbinding
rates are important, but also the ligand binding-unbinding
rates and initial concentration of the competing ligand with
a faster binding rate (Figure 6). In light of this information,
the increased production of ligands with higher binding affinity
would disable lower-affinity ligands from binding to integrins.
In cases where biochemical cues from slower binding ligands
are needed for the healthy development of cells in culture,
their development would be disrupted. This could be the root
cause, for example, of persistent challenges in functional kidney
organoid development field such as off-target cell populations,
lack of vascularization and insufficient maturation introduced in
prior sections (Nishinakamura, 2019; Geuens et al., 2020b).

To overcome such effect, either the binding of faster binding
ligands needs to be impaired by blocking agents, or the cellular
production of faster binding ligands needs to be prevented using
molecular biology techniques. Alternatively, synthetic integrin
ligands with controlled affinity could be used to selectively
prevent binding of naturally produced ECM proteins. Of course,
these preventive strategies require a thorough understanding
of the integrin function, cellular signaling and decision-
making affected by ligand-integrin interactions. Experimental
biology going hand-in-hand with computational biology can
answer many unknowns in the understanding of integrins
(Karagöz et al., 2021).

As such, this study shows that computational models can
be informative to get a better understanding of the effects of
ECM composition on the cell behavior and to develop cell
culture conditions that would favor desired cell phenotypes.
Moreover, since our model fundamentally explains a reaction
system, in which there are two ligands available to bind to their
receptor, the obtained relations and influential factors describing
ligand competition are generic and applicable to other receptor–
ligand interactions.
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