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Background: Kinematic analysis facilitates interpreting the extent and mechanisms
of motor restoration after stroke. This study was aimed to explore the kinematic
components of finger-to-nose test obtained from principal component analysis
(PCA) and the associations with upper extremity (UE) motor function in subacute
stroke survivors.

Methods: Thirty-seven individuals with subacute stroke and twenty healthy adults
participated in the study. Six kinematic metrics during finger-to-nose task (FNT) were
utilized to perform PCA. Clinical assessments for stroke participants included the Fugl-
Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT),
and Modified Barthel Index (MBI).

Results: Three principal components (PC) accounting for 91.3% variance were included
in multivariable regression models. PC1 (48.8%) was dominated by mean velocity,
peak velocity, number of movement units (NMU) and normalized integrated jerk (NIJ).
PC2 (31.1%) described percentage of time to peak velocity and movement time. PC3
(11.4%) profiled percentage of time to peak velocity. The variance explained by principal
component regression in FMA-UE (R2 = 0.71) were higher than ARAT (R2 = 0.59) and
MBI (R2 = 0.29) for stroke individuals.

Conclusion: Kinematic components during finger-to-nose test identified by PCA are
associated with UE motor function in subacute stroke. PCA reveals the intrinsic
association among kinematic metrics, which may add value to UE assessment and
future intervention targeted for kinematic components for stroke individuals.

Clinical Trial Registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn/)
on 17 October 2019, identifier: ChiCTR1900026656.
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INTRODUCTION

Stroke is the leading cause of disability worldwide, and upper
extremity (UE) motor impairment is one of the most relevant
functions affected in stroke (Langhorne et al., 2009; GBD, 2019).
The impairment results in poor motor control and exerts a
negative impact on UE functional capacity and activities of
daily living (ADL). To optimize UE recovery after stroke, it is
essential to select multilevel outcome measure for interpretation
of motor recovery and clinical decision-making (Winstein et al.,
2016; Villepinte et al., 2020). According to the International
Classification of Functioning, Disability and Health (ICF)
(WHO, 2001), there have been extensive validated UE scales
on body function and activity, among which the Fugl-Meyer
Assessment of Upper Extremity (FMA-UE), Action Research
Arm Test (ARAT), and Modified Barthel Index (MBI) are
commonly utilized in clinical practice (Santisteban et al., 2016).
However, these ordinal rating scales may carry the potential
for examiner bias and lack sensitivity to quantify small but
potentially impacting change over time (Lang et al., 2013).

Kinematic analysis facilitates interpreting the extent and
mechanisms of motor restoration, and it has been increasingly
applied in neurological research (Balasubramanian et al.,
2012). Although kinematic approaches are objective, sensitive
and quantitative, their associations with clinical measures
have not been fully studied (Schwarz et al., 2019). In
previous studies of kinematic metrics, multivariable regression
models are often employed to explain clinical outcomes. Due
to the prerequisites of statistical models, such approaches
were unable to include high collinear but potentially useful
variables. In the case of collinearity, kinematic metrics of
lower correlation with dependent variables were removed
from the models (Alt Murphy et al., 2012; van Dokkum
et al., 2014; Hussain et al., 2019). However, variables in
the models measured only limited aspect of UE motor
function, hardly to explain heterogeneity in clinical presentations
and the intrinsic correlations among kinematic variables
during motor recovery (Tran et al., 2018; Schwarz et al.,
2019).

Principal component analysis (PCA) is a dimensionality
reduction technique to retain the most variance of dataset
without the need to exclude highly correlated variables (Zhang
and Castelló, 2017). Since principal components (PCs) are
the linear combinations of original variables, dataset can be
represented as several statistically independent PCs (Ringnér,
2008). To our knowledge, kinematics studies using PCA
regression models have focused on the distal hand. In a recent
study, representative features of manual dexterity were extracted
by a PCA-based logistic regression method (Lin et al., 2019).
The model had shown to increase performance in identifying the
severity of hand dysfunction in stroke participants. In another
study of participants with mild stroke, three PCs in combination,
including grip force scaling, motor coordination and speed of
movement could predict manipulation skills measured by Jebsen
Taylor Hand Function Test (Allgöwer and Hermsdörfer, 2017).
PCA is also widely implemented in other clinical researches such
as identification of patient phenotypes and prognosis prediction,

but is rarely used in UE kinematics (Ibrahim et al., 2014;
Badhiwala et al., 2018).

The aim of this study was to explore the kinematic
components of finger-to-nose task (FNT) obtained from PCA
and the associations with upper extremity motor function in
subacute stroke survivors. Furthermore, we hypothesized that
kinematic metrics reflected movement strategy, smoothness and
velocity during the FNT; hence, the models were considered to
measure aspects of motor impairment (FMA-UE), and explain
more variance than activity assessments (ARAT and MBI).

MATERIALS AND METHODS

Participants
A total of 37 individuals with subacute stroke (28 men,
aged 49.78 ± 10.26 years) and 20 healthy adults (12 men,
aged 52.62 ± 10.23 years) were recruited in the study. The
inclusion criteria for subacute stroke individuals were: (1)
Clinical diagnosis of unilateral, first-ever subacute stroke verified
by brain imaging (MRI or CT). (2) Aged between 18 and 80
years. (3) Showing motor impairment (FMA-UE < 66). (4)
Mini-Mental State Examination score ≥ 22 and compliance with
the assessments. (5) No complicating medical history such as
visual, cardiac or pulmonary disorders. Exclusion criteria were
other musculoskeletal or neurological conditions that affect arm
function. Control participants were 18–80 years old, and had no
neurological or orthopedic disorders (Johansson et al., 2017). All
participants in this study were right-handed as determined by
the Edinburgh Handedness Inventory (Verdino and Dingman,
1998). Data were extracted from the cohort of a clinical study
in the Department of Rehabilitation Medicine. We followed
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) checklist for cross-sectional studies
(Vandenbroucke et al., 2007).

Clinical Assessments
Clinical assessments for stroke participants included the FMA-
UE, ARAT, and MBI. The FMA-UE is a reliable and validated
measure of motor impairment after stroke. The FMA-UE consists
of 33 items (scores ranging from 0 to 66) and higher scores
indicate less upper limb impairment (See et al., 2013). The ARAT
was used to evaluate functional ability and dexterity of the paretic
upper limb. It consists of 19 items (scores ranging from 0 to
57) and higher scores indicate greater arm functional capacity
(Yozbatiran et al., 2008). The level of independence in basic
activities of living was assessed with the translated version of
MBI. The MBI consists of 10 items (scores ranging from 0
to 100), and higher scores indicate greater ADL independence
(Leung et al., 2007).

Kinematic Testing Protocol
The kinematic test was accomplished by a portable
Inertial Measurement Unit system (IMU, Noraxon USA
Inc.). Each IMU sensor contained a coordinate system to
measure accelerations and three-dimensional orientations at
a sampling frequency of 100 Hz. The IMU system showed
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excellent reliability, accuracy and precision in quantifying
kinematic testing protocol (Öhberg and Bäcklund, 2019; Park
and Lee, 2020). According to a rigid upper body model, four
sensors were placed on body segments (head, upper arm,
forearm and hand). The system was calibrated before the
kinematic testing protocol was implemented. To improve the
measurement quality, the device automatically filtered raw data
using Kalman filter algorithm.

Participants sat in a height-adjustable chair with their hips
and knees flexed to 90◦. Positions were not restrained, and
compensatory movements were allowed when necessary (Li et al.,
2015). Upper extremity maintained in the neutral position, with
elbow extension and palm downward initially. The standardized
procedure for the finger-to-nose test was introduced by the same
researcher, and then was imitated by the participants for three
times before the test. On a verbal command, the participants
performed FNT as quickly and as accurately as possible, and then
returned to the initial posture. Stroke individuals performed the
test with the affected arm and the healthy adults performed with
the non-dominant arm. The tests were recorded for five times, but
a mean of three middle trials was used in statistical calculations
(Alt Murphy et al., 2012; Schiefelbein et al., 2019).

Kinematic Analysis
Kinematic analysis focused on UE end-point performance during
the going phase of finger-to-nose test. Data recorded in the IMU
software were exported to single.csv files, then were imported
to and extracted through a semi-automated custom written
program in MATLAB (The MathWorks, Natick, Massachusetts,
United States) for kinematic analysis. Onset and end of
movements were defined using a velocity threshold of 50 mm/s
(Menegoni et al., 2009; Schiefelbein et al., 2019). UE kinematic
metrics were calculated through the anatomical coordinate
system and joint rotation recommended by the International
Society Biomechanical (ISB) (Wu et al., 2005). In this study,
six kinematic metrics were utilized: movement time (MT),
mean velocity (VM), peak velocity (VP), percentage of time to
peak velocity (TVP%), number of movement units (NMU) and
normalized integrated jerk (NIJ) (Nordin et al., 2014).

MT is an objective and quantitative variable frequently used
to reflect movement performance, which was defined as the time
taken during the going phase of the test. To define VP, the
maximum tangential velocity of the index finger was calculated
during each movement segment; and VM was defined as the
average tangential velocity. TVP% is the proportion of time
spent during the start of the movement until the peak velocity.
The number of velocity peaks characterize NMU over a cut-off
value corresponding to the 10% of VP. When multiple velocity
peaks occur, the movement is composed of several smaller,
corrective sub movements. NIJ was utilized to assess movement
smoothness, which was calculated using the jerk normalized by
MT and length of the task (Johansson et al., 2017; Rodrigues et al.,
2017),

NIJ =

√
MT5

2× length2 ×
∑

jerk(t)2

where jerk is the third derivate of the endpoint displacement and
length is the shortest distance between the start and end positions
of the index finger.

Statistical Analysis
Statistical analyses were performed on SPSS version 22.0 and
R statistical software. A two-sided p-value of less than 0.05
was set as statistical significance. Categorical variables were
compared through Chi squared test, and quantitative variables
were compared through one-way ANOVA. The Shapiro-Wilk test
was employed to evaluate the normal distribution of quantitative
data. The Pearson’s correlation coefficients were conducted
between the kinematic variables and clinical assessments. The
limit for multicollinearity between independent variables was set
at 0.7 for Correlation Coefficients.

Data were scaled into a matrix at first because the mean
and variance may differ greatly across the variables. Data
matrix was calculated using the PCA function of R software.
Then the matrix underwent eigenvalue decomposition to obtain
its eigenvectors with corresponding eigenvalues. Eigenvector
represented the contribution of each kinematic variable to the
principal component, and was visualized by the Correlation
Circle. Eigenvalue represented the amount of variance explained
by the PCs. The model utilized the least number of PCs to
achieve≥90% of the total variance explained. Finally, the original
data set was transformed via the eigenvectors as weighting
coefficients to obtain principal component scores (Kassambara,
2017). Wilcoxon rank-sum tests were conducted to detect
subgroup differences in principal component loadings in age
(<50 vs. ≥50), paretic side, type of stroke for stroke participants,
and between the groups. Kruskal-Wallis tests were performed to
assess the differences in stroke severity (FMA-UE scores 0–22,
23–47, 48–64). The obtained PCs were included as independent
variables in multivariable regression to investigate the association
between kinematic metrics and clinical assessments. Probability
for entry in backward regression was set at 0.05 and removal at
0.10. Adjusted R2 values with p-values, unstandardized coefficient
(β), and unique partial correlation coefficients were used to
estimate the contribution of each PC to the model.

RESULTS

Demographics and Clinical
Characteristics
Demographics and clinical characteristics of the participants were
presented in Table 1. In this study, individuals with subacute
stroke had a moderate UE impairment, with an average FMA
scores of 36.22 ± 17.69 and ARAT scores of 23.97 ± 17.38.
No statistical difference was observed in age, gender, Body
Mass Index and TVP% between healthy participants and stroke
individuals. The healthy participants performed the task with
higher speed (VP, VM), less time (MT), and better smooth
profiles (NMU and NIJ) than the stroke individuals (P < 0.001).
Multicollinearity was found between MT and NIJ, as well as
among VM, VP and NMU. Significant correlations were found
between FMA-UE and VP (r = 0.81), VM (r = 0.85), and NMU
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TABLE 1 | Demographics and Clinical Characteristics.

Characteristics Stroke group
(n = 37)

Control group
(n = 20)

P-value

Age (years) 49.78 ± 10.26 52.62 ± 10.23 0.318

Gender (M/F) 28/9 12/8 0.319

Body mass index
(kg/m2)

24.43 ± 2.60 23.48 ± 2.64 0.195

MT (s) 1.09 ± 0.31 0.62 ± 0.12 P < 0.001*

VP(m/s) 1.61 ± 0.92 4.04 ± 0.67 P < 0.001*

VM (m/s) 0.78 ± 0.44 2.19 ± 0.39 P < 0.001*

TVP% (%) 42.23 ± 11.30 46.74 ± 5.16 0.156

NMU 2.56 ± 1.25 1.14 ± 0.28 P < 0.001*

NIJ 2.86 ± 1.98 0.54 ± 0.18 P < 0.001*

Days between onset
and enrollment

106.30 ± 65.46 – –

Type of stroke
(ischemic/hemorrhagic)

26/11 – –

Paretic side (left/right) 22/15 – –

MMSE (range 0–30) 27.16 ± 2.41 – –

FMA-UE (range 0–66) 36.22 ± 17.69 – –

ARAT (range 0–57) 23.97 ± 17.38 – –

MBI (range 0–100) 72.30 ± 22.20 – –

Values are presented as means ± standard deviation or as otherwise indicated.
MT, movement time; VP, peak velocity; VM, mean velocity; TVP%, percentage of
time to peak velocity; NMU, number of movement units; NIJ, normalized integrated
jerk; MMSE, Mini-Mental State Examination; FMA-UE, Fugl-Meyer Assessment for
Upper Extremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index.
*P < 0.05.

(r = − 0.65). ARAT showed significant correlation with VP
(r = 0.76), VM (r = 0.8), and NMU (r = − 0.59). MBI showed
significant correlation with VP (r = 0.55), VM (r = 0.58), and
NMU (r = − 0.45). MT, TVP% and NIJ were not significantly
associated with the clinical assessments (Figure 1).

Principal Component Analysis
As shown in the Scree Plot (Figure 2A), based on eigenvalue
decomposition of the kinematic metrics, the principal
components for stroke participants were arranged in the
descending order. The first three PCs explained 91.3% variance
of the dataset. The quality or proportion of representation
of the kinematic variables to the PCs were presented in the
squared coordinates (Figure 2B). PC1 accounting for 48.8%
of the variance was characterized by velocity profiles (VM,
VP) and smoothness profiles (NMU, NIJ). PC2 accounting
for 31.1% of the variance reflected movement planning
(TVP%) and movement time (MT) of stroke survivors. PC3
accounting for 11.4% of the variance mainly described movement
planning (TVP%).

The z-scores of each kinematic metric in accounting for the
variance of the principal components for the stroke group and
control group were demonstrated in the principal component
loadings (Supplementary Figures 1–7 and Supplementary
Tables 1, 2). No subgroup differences were found in principal
component loadings concerning age, paretic side and type
of stroke for stroke participants (Supplementary Figures 8–
10). Stroke severity measured by the FMA-UE was found

to be associated with the principal component loadings
(Supplementary Figure 11 and Supplementary Tables 3–5).
Besides, correlation circles demonstrated the similarity in loading
weights among correlated kinematic variables in the respective
PCs (Figures 2C,D). Positively correlated kinematic variables
were grouped together and negatively correlated variables were
positioned on opposite quadrants of the plot. PC1 was positively
associated with the velocity variables (VM, VP) and negatively
associated with the smoothness variables (NMU, NIJ). PC2 was
positively associated with the TVP% and negatively associated
with the MT. PC3 was positively associated with all the
kinematic variables.

Association With Clinical Assessments
The first three PCs were included in the multivariable regression
models with clinical assessments as the dependent variables,
including the FMA-UE, ARAT, and MBI. The results and
equations of principal component regressions were presented
in Table 2 (P < 0.001). PC1 was positively correlated with
the clinical assessments and PC2 was negatively correlated.
PC3 was positively correlated with the FMA-UE. The backward
multiple regression indicated that principal components could
explain the most variance in the assessment of motor impairment
measured by the FMA-UE. The principal components together
explained 71% of the total variance, which demonstrated a unique
contribution of 55, 9, and 7%, respectively. In the model of
ARAT, the PC1 and PC2 showed significant contribution to the
model and explained 59% of the variance, accounting for 51 and
8%, respectively. In the model of MBI, PC1 and PC2 showed
significant contribution to the model and explained 29% of the
variance, accounting for 22 and 7%, respectively.

DISCUSSION

Conventional multivariable analyses of kinematic data have to
meet the criteria of statistical approaches. Potential meaningful
variables may be excluded due to high-mathematical collinearity.
In this study, the associations between six FNT kinematic
variables and UE motor function were explored through PCA
for individuals after subacute stroke. Our results showed that
the first three principal components explaining 91.3% variance
were significantly associated with the clinical assessments for
the stroke individuals. The variance explained by principal
component regression in FMA-UE (R2 = 0.71) were higher than
ARAT (R2 = 0.59) and MBI (R2 = 0.29).

PC1—Movement Speed and Smoothness
PC1 accounting for 48.8% variance of the data, was largely
dominated by variables that described the movement speed
and smoothness. Speed indexes reflect one’s efficiency and
ease of movement. Similarly, mean and peak speed have been
reported to correlate with upper limb motor impairment in a
previous study (Bosecker et al., 2010). Movement speed depends
on individual’s voluntary effort, ability to control interaction
torques of agonist/antagonist muscles and maintain normal
inter-joint coordination during timed tasks (Nordin et al., 2014).
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FIGURE 1 | Correlations between clinical assessments and kinematic metrics.

Besides, smoothness is related to the temporal organization
or coordination of upper-limb segments since post-stroke
individuals typically present excessive discrete movements
(Balasubramanian et al., 2015).

Correlation analysis showed that movement speed was
negatively associated with NMU (r =−0.70 and−0.74) in stroke
survivors. However, the correlation analysis was inconsistent
with the final equations shown in Table 2 because there may
be intrinsic interactions among variables. A possible explanation
may be the case that movement smoothness was sacrificed for
increased speed in some participants (Swaine and Sullivan, 1993).
However, lower speed cannot ensure increased performance
in smoothness as measured by NIJ. It should be noted that
NIJ showed not significant association with peak velocity. In
addition, measurement of smoothness should be taken with
caution because a single smoothness parameter cannot reflect
the entire recovery process of stroke survivors (Rohrer et al.,
2002). Therefore, smoothness and speed indexes should be in
combination as a major kinematic component (PC1) to depict
only part of UE performance.

PC2 and PC3—Movement Planning and
Time
PC2 accounting for 31.1% variance, was largely dominated by
movement planning and movement time; PC3 accounting for

11.4% of the variance mainly described movement planning.
TVP% reflects movement planning and is defined as the
proportion of time spent from the onset to the peak velocity
(Nordin et al., 2014). MT refers to temporal efficiency to
perform a certain activity or movement, and is expected to
decrease with patient’s recovery (Zollo et al., 2011). Compared
with healthy adults, post-stroke individuals had prolonged
movement duration while the left-shifted velocity peaks were
not statistically significant. In the current study, the clinical
scales showed weak correlations with TVP% and MT, which
were not included in the conventional regression models.
However, PC2 and PC3 increased the performance of regression
models by 7–9%. This is consistent with a study of robot-
based kinematic assessment that movement duration can
add value to estimate FMA-UE (Bosecker et al., 2010). The
results therefore indicated that PC2 and PC3 may contain a
considerable proportion of kinematic information, which should
be taken into account when interpreting and estimating UE
motor function.

In line with our study, these kinematic variables, especially
velocity profiles, have been previously reported to affect UE
motor function after stroke (van Dokkum et al., 2014; Schwarz
et al., 2019). However, the associations between kinematics
and some clinical scales are often weak to moderate and even
controversial (Tran et al., 2018), e.g., NIJ and jerk (Rohrer et al.,
2002; Gulde and Hermsdörfer, 2018), NMU (Rohrer et al., 2002;
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FIGURE 2 | (A) Scree Plot demonstrating the principal components accounting for variances. (B) Squared coordinates demonstrating the proportion of
representation of the kinematic variables to the PCs. (C) Correlation circles demonstrating the similarity in loading weights among correlated kinematic variables in
PC1 and PC2. (D) Correlation circles demonstrating the similarity in loading weights among correlated kinematic variables in PC2 and PC3.

Otaka et al., 2015), and VP (Gilliaux et al., 2014). Collinearity
among these variables, like VM, VP, and NMU, makes it
difficult for conventional multivariate statistical models to
explain heterogeneous population. Our results indicated that
the UE motor function may be associated with multiple
variables contained in the kinematic patterns named principal
components, instead of separate parameters. In addition,
multiple kinematic metrics were weighted and considered as
part of the PCs to estimate clinical scales. The same kinematic
variables contributed differently to each principal components,
suggesting that the intrinsic correlations among variables could
exert influence on UE motor function. Equations acquired
from PCA-based regression are important for understanding UE
motor control during FNT that is often ignored in conventional
statistical models. Moreover, the MBI is a questionnaire for ADL
instead of an observational measure toward UE motor function.
Hence, individuals could have used compensatory behaviors
or actually the less affected arm to improve the score, which
may be hardly illustrated by the present kinematic assessment
(Hsieh et al., 2007).

Our results showed that FNT kinematics could explain
more variances in aspects of motor impairment as measured
by FMA-UE, than activity assessments as measured by ARAT
and MBI. According to our best knowledge, there was no
previous report on principal component regression for end-
point kinematics of gross movement obtained in subacute stroke
survivors. In studies using multivariable linear regression, various
task settings were implemented to investigate the variances of
clinical scores explained by kinematics. Similarly, the FMA-
UE was well explained by trunk displacement and shoulder
flexion (51%) for the pointing task, and by trunk displacement
alone (52%) for the reach-to-grasp task (Subramanian et al.,
2010). In a drinking task, movement smoothness and trunk
displacement together explain 67% of the total variance in
functional assessment (ARAT), while trunk displacement alone
explained 20% of the variance in motor impairment (FMA-UE)
(Alt Murphy et al., 2012). The associations between kinematic
variables and the capacity activity were relatively low in our
study, suggesting that the kinematic testing protocols may be
task-specific to measure different aspects of ICF domains after
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TABLE 2 | Multivariable regression analysis of the principle components against the clinical assessments.

Independent Unstandardized Standard Partial unique P-value of Adjusted R2

variables coefficient β error contributions the variable (model P-value)

Dependent variable: z-score of FMA-UE 0.71 (<0.001*)

PC1 0.44 0.05 55% < 0.001*

PC2 −0.23 0.07 9% 0.002*

PC3 0.34 0.11 7% 0.004*

Equation via inverse transformation:

FMA-UE = 7.24VP + 16.14TVP% + 6.79MT + 14.69VM − 2.74NMU + 0.79NIJ + 3.50

Dependent variable: z-score of ARTA 0.59 (<0.001*)

PC1 0.42 0.06 51% < 0.001*

PC2 −0.21 0.08 8% 0.012*

Equation via inverse transformation:

ARAT = 4.76VP - 20.87TVP% + 2.86MT + 10.11VM − 3.33NMU − 0.57NIJ + 23.75

Dependent variable: z-score of MBI 0.29 (0.001*)

PC1 0.29 0.08 22% 0.001*

PC2 −0.22 0.10 7% 0.044*

Equation via inverse transformation:

MBI = 4.54VP − 26.21TVP% + 5.80MT + 9.39VM − 3.09NMU − 0.14NIJ + 70.62

FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index; PC, principal component; MT, movement time; VP,
peak velocity; VM, mean velocity; TVP%, percentage of time to peak velocity; NMU, number of movement units; NIJ, normalized integrated jerk.
∗P < 0.05.

stroke. In addition, FMA-UE and ARAT were only explained
20 and 13% of the variance in a manual dexterity task with
relatively small workspace (Hussain et al., 2019). The varying
correlations between kinematics and clinical scales indicate that
kinematic tests may likewise measure different ICF domains,
which should be taken into consideration the task selection and
clinical interpretation of kinematic analysis.

LIMITATIONS

One of the limitations of this study is the relatively limited
sample size. Although no subgroup differences were found
in principal component loadings concerning age, paretic side
and type of stroke for stroke participants, the results must be
interpreted with caution when generalizing to a wider range
of populations. Moreover, there are currently no guidelines for
selecting standardized kinematic assessments and the optimal
kinematic metrics. Our results are limited to the similar end-
point movement performance of kinematic test and comparable
variables utilized during the FNT. Future studies should
therefore include much variables (such as the limit of arm
movement), comprehensive tasks at different UE segments
as well as trunk movement and ICF levels (WHO, 2001;
Tran et al., 2018).

CONCLUSION

This study showed that kinematic components during finger-
to-nose test identified through PCA are associated with upper
extremity motor function. PCA-based regression model indicates
that finger-to-nose kinematics reflecting movement strategy,

smoothness and velocity, measure much aspects of motor
impairment than activity assessments. Such machine-learning
method reveals the intrinsic association among kinematic metrics
including velocity, smoothness and movement strategy. Our
findings provide a new perspective on UE clinical assessment
and future rehabilitation targeted for principal components of
kinematic metrics.
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