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Aim: After neoadjuvant chemotherapy (NACT), tumor shrinkage pattern is a more

reasonable outcome to decide a possible breast-conserving surgery (BCS) than

pathological complete response (pCR). The aim of this article was to establish a machine

learning model combining radiomics features from multiparametric MRI (mpMRI) and

clinicopathologic characteristics, for early prediction of tumor shrinkage pattern prior to

NACT in breast cancer.

Materials and Methods: This study included 199 patients with breast cancer who

successfully completed NACT and underwent following breast surgery. For each patient,

4,198 radiomics features were extracted from the segmented 3D regions of interest (ROI)

in mpMRI sequences such as T1-weighted dynamic contrast-enhanced imaging (T1-

DCE), fat-suppressed T2-weighted imaging (T2WI), and apparent diffusion coefficient

(ADC) map. The feature selection and supervised machine learning algorithms were used

to identify the predictors correlated with tumor shrinkage pattern as follows: (1) reducing

the feature dimension by using ANOVA and the least absolute shrinkage and selection

operator (LASSO) with 10-fold cross-validation, (2) splitting the dataset into a training

dataset and testing dataset, and constructing prediction models using 12 classification

algorithms, and (3) assessing the model performance through an area under the curve

(AUC), accuracy, sensitivity, and specificity. We also compared the most discriminative

model in different molecular subtypes of breast cancer.

Results: The Multilayer Perception (MLP) neural network achieved higher

AUC and accuracy than other classifiers. The radiomics model achieved

a mean AUC of 0.975 (accuracy = 0.912) on the training dataset and
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0.900 (accuracy = 0.828) on the testing dataset with 30-round 6-fold cross-validation.

When incorporating clinicopathologic characteristics, the mean AUC was 0.985

(accuracy = 0.930) on the training dataset and 0.939 (accuracy = 0.870) on the testing

dataset. The model further achieved good AUC on the testing dataset with 30-round

5-fold cross-validation in three molecular subtypes of breast cancer as following: (1)

HR+/HER2–: 0.901 (accuracy = 0.816), (2) HER2+: 0.940 (accuracy = 0.865), and

(3) TN: 0.837 (accuracy = 0.811).

Conclusions: It is feasible that our machine learning model combining radiomics

features and clinical characteristics could provide a potential tool to predict tumor

shrinkage patterns prior to NACT. Our prediction model will be valuable in guiding NACT

and surgical treatment in breast cancer.

Keywords: breast cancer, multi-parametric MRI, neoadjuvant chemotherapy, radiomics, machine learning, tumor

shrinkage pattern

INTRODUCTION

Neoadjuvant chemotherapy (NACT) has been used as the
standard treatment to downstage tumor in inoperable patients
with locally advanced breast cancer, while for operable patients,
it is increasingly being used to reduce tumor size and increase
the possibility of breast-conserving surgery (BCS) (Hennessy
et al., 2005; Mathew et al., 2009; Mougalian et al., 2016). The
2017 St. Gallen International Expert Consensus Conference
showed that NACT had been extensively used in patients with
human epidermal growth factor receptor 2 positive (HER2+) and
triple-negative (TN) breast cancer, especially those with axillary
lymph node metastasis, to improve survivals (Curigliano et al.,
2019). Pathological complete response (pCR), which is defined as
ypT0/is after NACT according to the American Joint Committee
on Cancer (AJCC) TNM Staging Manual, 8th Edition, has been
proven as a good prognostic marker to predict a successful long-
term survival in breast cancer (Kong et al., 2011; Giuliano et al.,
2018). But only about 30% of the patients achieved pCR after
NACT, and the pCR rate varied in different molecular subtypes,
as tumor size and treatment regimen influence the treatment
response (Chen et al., 2014; Cortazar et al., 2014; Goorts et al.,
2017).

After NACT, breast cancer shows different shrinkage patterns
as follows: (a) no residual tumor, (b) no invasive tumor
but residual ductal carcinoma in situs (DCIS), (c) concentric
shrinkage, (d) a main residual invasive focus with surrounding
DCIS, (e) multicentric shrinkage (i.e., more than two invasive

Abbreviations: NACT, neoadjuvant chemotherapy; BCS, breast-conserving

surgery; DCIS, ductal carcinoma in situ; IHC, immunohistochemistry; FISH,

fluorescence in situ hybridization; mpMRI, multiparametric MRI; T1-DCE, T1-

weighted dynamic contrast-enhanced imaging; T2WI, T2-weighted imaging;

ADC, apparent diffusion coefficient; ROI, regions of interest; LASSO, least

absolute shrinkage and selection operator; MLP, Multilayer Perception; HER2,

human epidermal growth factor receptor 2; TN, triple-negative; HR, hormone

receptor; ROC, receiver operating characteristic; AUC, area under the ROC curve;

SLNB, sentinel lymph node biopsy; ALND, axillary lymph node dissection; pCR,

pathological complete response; SD, stable disease; PD, progressive disease; PCCM,

Pearson’s correlation coefficient matrix.

lesions), (f) stable disease (SD), and (g) progressive disease (PD).
The former two patterns are considered as pCR after NACT
while pCR and concentric shrinkage are both considered as
sufficient tumor responses which can benefit from BCS, and
the negative surgical margins are easier to achieve for them.
The mechanism of how some biological factors such as tumor
subtypes influence tumor shrinkage pattern is still unclear.
Earlier studies showed that HER2+ and TN breast cancer had
a higher possibility to achieve a sufficient tumor response than
hormone receptor positive (HR+) but HER2– breast cancer after
NACT. Breast pCR is rarely achieved in HR+/HER2– breast
cancer due to the low chemosensitivity, but such molecular
subtype of cancer can also benefit from BCS (Ballesio et al.,
2017; Eom et al., 2017). The assessment of pCR is insufficient
to determine patients suitable for BCS since tumor concentric
shrinkage is also suitable. Hence, the tumor shrinkage pattern
is a more reasonable marker than pCR to choose candidates for
BCS. Another study has shown that about 10–35% of patients
had a poor response to NACT (SD/PD), which indicates a high
risk of local recurrence after surgery (Li et al., 2020). For these
patients, it is imperative to avoid the associated adverse toxicity
of chemo-drug and overtreatment.

In order to identify the patients who have a sufficient
response to NACT and can benefit from BCS, it is essential
to predict tumor shrinkage pattern prior to treatment. Lobbes
et al. revealed that magnetic resonance imaging (MRI) has
better accuracy in assessing residual tumor after NACT than
physical examination, mammography, and ultrasonography in
patients with breast cancer (Lobbes et al., 2013). The ACRIN
6657/I-SPY Trial has reported that MRI in the early stage of
NACT could provide much helpful information about tumor
pathological response (Hylton et al., 2012). Some studies
have revealed that dynamic contrast-enhanced imaging (DCE)
could distinguish residual tumor from therapy-induced non-
vascularized fibrosis (Pickles et al., 2005; Manton et al., 2006;
Padhani et al., 2006; Loo et al., 2008). The pre-NACT MRI
can be used to assess the extent and morphology of primary
breast cancer and may provide useful information about tumor
shrinkage patterns. However, a meta-analysis reported that
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the MRI data had limited value for the prediction of pCR
with the sensitivity of 64% in breast cancer (Yuan et al.,
2010).

Radiomics is a frontier interdiscipline of medical imaging
and computer field, and it has been used to extract much
quantitative information from medical images (Lambin et al.,
2012; Aerts et al., 2014; Yip and Aerts, 2016). The radiomics
information has shown a great potential to assist clinicians,
and several radiomics models had been constructed to better
diagnose disease and monitor tumor response to treatment in
breast cancer (Antunovic et al., 2019; Li et al., 2020; Zheng et al.,
2020; Zhuang et al., 2020). Liu et al. developed a radiomics model
for predicting pCR after NACT in breast cancer based onmpMRI
and validated the model by multicenter datasets with the AUCs
of 0.71–0.80 (Liu et al., 2019). Radiomics can help acquire more
information fromMRI to better predict tumor shrinkage patterns
prior to NACT. However, to our knowledge, the feasibility of
radiomics to predict tumor shrinkage pattern based on mpMRI
and clinicopathologic characteristics prior to NACT still remains
to be tested, and no study investigated the correlation between the
tumor shrinkage pattern and the mpMRI radiomics features in
different molecular subtypes of breast cancer using the machine
learning method. Therefore, the purpose of our study is to
explore the radiomics biomarkers of tumor shrinkage pattern
from mpMRI, construct a prediction model combined with the
clinicopathologic characteristics, and investigate the predictor
based on the molecular subtype of breast cancer.

MATERIALS AND METHODS

Study Population
We retrieved 503 consecutive patients with breast cancer who
were treated with NACT and followed by surgery in our center
between March 2016 and July 2020. The inclusion criteria for
this study were as follows: (1) the patient had a biopsy-proven
unilateral breast cancer, (2) the patient successfully completed
NACT and following breast surgery in our center, (3) the MRI
examination of the breast was performed before the initiation
of NACT in our hospital within 2 weeks, and (4) the baseline
data were complete. The exclusion criteria were as follows: (1) the
patient had prior treatment to breast cancer, (2) the pathological
results or clinical data were unavailable, (3) the patient did not
complete standard NACT, or the surgery was not performed
in our center, (4) the MRI data were unavailable, or imaging
quality was insufficient, and (5) the patient had a metastatic
disease or other malignance. Finally, a total of 199 patients
met the criteria. The clinicopathologic characteristics of each
patient including age, menstrual state, clinical anatomical TNM
staging according to the AJCC Manual, 8th Edition, and the
pathological biopsy results including tumor type, receptor status,
and tumor proliferation rate (i.e., Ki-67 index) were derived from
the electronic medical records. The characteristics of all patients
are summarized in Table 1.

Treatment to Patients
All patients completed 6–8 cycles of chemotherapy and
underwent breast surgery based on the current National

TABLE 1 | Clinical and histopathological characteristics of study population

grouped by tumor shrinkage pattern.

Characteristics Total patients

(n = 199)

Type 1 shrinkage

(n = 105)

Type 2 shrinkage

(n = 94)

p-value

Age (mean ± SD) 46.85 ± 10.13 47.95 ± 10.19 45.62 ± 9.97 0.105

Menopausal status 0.819

Premenopausal 116

(58.3%)

62

(59.0%)

54

(57.4%)

Postmenopausal 83

(41.7%)

43

(41.0%)

40

(42.6%)

Histology 0.152

IDC 191

(96.0%)

103

(98.1%)

88

(93.6%)

Other 8

(4.0%)

2

(1.9%)

6

(6.4%)

Clinical stage 0.133

II 98

(49.2%)

57

(54.3%)

41

(43.6%)

III 101

(50.8%)

48

(45.7%)

53

(56.4%)

Clinical T stage 0.139

1 5

(2.5%)

3

(2.9%)

2

(2.1%)

2 127

(63.8%)

73

(69.5%)

54

(57.4%)

3 50

(25.1%)

24

(22.9%)

26

(27.7%)

4 17

(8.6%)

5

(4.7%)

12

(12.8%)

Clinical N stage 0.829

cN0 24

(12.1%)

14

(13.3%)

10

(10.6%)

cN1 105

(52.8%)

54

(51.4%)

51

(54.3%)

cN2 or cN3 70

(35.2%)

37

(35.3%)

33

(35.1%)

ER 0.026

Positive 117

(58.8%)

54

(51.4%)

63

(67.0%)

Negative 82

(41.2%)

51

(48.6%)

31

(33.0%)

PR 0.019

Positive 101

(50.8%)

45

(42.9%)

56

(59.6%)

Negative 98

(49.2%)

60

(57.1%)

38

(40.4%)

HER2 0.102

Positive 99

(49.7%)

58

(55.2%)

41

(43.6%)

Negative 100

(50.3%)

47

(44.8%)

53

(56.4%)

Molecular subtype 0.239

HR+/HER2– 66

(33.2%)

30

(28.6%)

36

(38.3%)

HER2+ 99

(49.7%)

58

(55.2%)

41

(43.6%)

TN 34

(17.1%)

17

(16.2%)

17

(18.1%)

(Continued)
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TABLE 1 | Continued

Characteristics Total patients

(n = 199)

Type 1 shrinkage

(n = 105)

Type 2 shrinkage

(n = 94)

p-value

Ki-67 0.048

<30 83

(41.7%)

37

(35.2%)

46

(48.9%)

≥30 116

(58.3%)

68

(64.8%)

48

(51.1%)

Comprehensive Cancer Network (NCCN) guideline
(Goetz et al., 2019). All patients with HER2– breast cancer
received four cycles of epirubicin and cyclophosphamide and
then followed by four cycles of taxotere (EC-T regimen), whereas
patients with HER2+ breast cancer were treated with four cycles
of epirubicin and cyclophosphamide and followed by four cycles
of taxotere and trastuzumab (EC-TH regimen), or received
six cycles of taxotere, carboplatin, and trastuzumab (TCH
regimen). For HER2+ breast cancer, some patients received
trastuzumab and pertuzumab dual-target therapy during their
NACT (EC-THP or TCbHP regimen). After NACT, BCS, or
mammectomy were performed. The staging of axillary nodes
included sentinel lymph node biopsy (SLNB) or axillary lymph
node dissection (ALND).

Pathological Assessment
All pre-NACT biopsy and postoperative pathological results
were analyzed by a breast pathologist with more than 10 years
of experience. The receptor status and Ki-67 index of the
tumor were determined based on immunohistochemistry (IHC)
staining. The HR was defined as positive for estrogen receptor
(ER) or progesterone receptor (PR) expression when ≥1% of the
tumor cells showed nuclear staining, and the HER2 expression
graded 3+ was defined as positive while 0 and 1+ were negative
(Hammond et al., 2010; Wolff et al., 2013). When the HER2
expression graded 2+was reported, the gene amplification by the
fluorescence in situ hybridization (FISH) was used to determine
the HER2 status. Tumors were classified into three molecular
subtypes as follows: (1) HR+/HER2–, (2) HER2+, and (3) TN.
For Ki-67 index, we defined tumor cells with ≥30% staining as
high expression and those with <30% staining as low expression.

The specimen pathology was used as the gold standard of
tumor shrinkage pattern, and the largest diameter of the invasive
tumor region on slides was measured by two pathologists in
consensus. According to the surgical pathology, tumor shrinkage
patterns were classified as follows: (a) pCR (i.e., no residual tumor
or only residual ductal carcinoma in situs, defined as ypT0/is), (b)
concentric shrinkage (i.e., only one residual invasive tumor focus,
without DCIS), (c) diffuse shrinkage (i.e., a main residual invasive
focus with surrounding satellite DCIS), (d) multifocal shrinkage
(≥ 2 invasive tumor foci, with/without DCIS), (e) SD, and (f)
PD. The former two are classified into type 1 shrinkage, which is
called favorable shrinkage pattern, and the last four are classified
into type 2 shrinkage, which is called the poor shrinkage pattern.
Figure 1 shows the tumor shrinkage patterns after NACT.

FIGURE 1 | Tumor shrinkage patterns after neoadjuvant chemotherapy. (A)

Pathological complete response [i.e., no residual tumor or only residual ductal

carcinoma in situ (DCIS), defined as ypT0/is], (B) concentric shrinkage (i.e., only

one residual invasive tumor focus, without DCIS), (C) multifocal shrinkage (i.e.,

more than 2 invasive tumor foci, with/without DCIS), (D) diffuse shrinkage (i.e.,

a main residual invasive focus with surrounding satellite DCIS), (E) stable

disease (SD), and (F) progressive disease (PD). (A,B) belong to type 1

shrinkage pattern. (C–F) belong to type 2 shrinkage pattern.

The longest diameter of the primary tumor on the segmented
3D regions of interest (ROI) was measured in the MRI
workstation as well. According to the Response Evaluation
Criteria in Solid Tumors (RECIST 1.1) guideline, patients were
classified into response or non-response group to NACT as the
following: patients who responded to NACT were determined
when the invasive tumor area showed a decrease of largest
diameter ≥30% compared with that in the MRI, while SD
indicated a decrease of largest diameter <30% or an increase
of largest diameter <20%, and PD indicated an increase of
largest diameter ≥20% (Chalian et al., 2011; Schwartz et al.,
2016). Concentric shrinkage is defined as only one invasive
tumor focus without DCIS, and such a shrinkage pattern is
more likely to achieve the negative surgical margins in BCS,
while multifocal and diffuse shrinkages are both considered as
significant responses to NACT but still unsuitable for BCS.

MRI Acquisition
All patients underwentMRI examination using a 3.0 Tesla system
(Siemens Verio, syngo MR B17, Erlangen, Germany) with a
dedicated 16-channel breast coil within 2 weeks prior to the
initiation of NACT. The MRI sequences of each patient included
as follows: an axial fat-suppressed T2-weighted imaging (T2WI),
an axial T1-weighted DCE (T1-DCE), and an apparent diffusion
coefficient (ADC)map derived from diffusion-weighted imaging.
The details of the MRI examination and parameters for MRI
images are shown in the Supplementary Material.

Tumor Segmentation and Features
Extraction
Two radiologists with more than 10 years of experience
in breast imaging performed the tumor segmentation with
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Segmentation Module in 3D Slicer software (version 4.10.2,
www.slicer.org) (Fedorov et al., 2012; Cheng et al., 2016). On
T1-DCE images, the high signal intensity of the tumor region
after injection of the contrast agent allows an accurate delineation
to the tumor margins. The semi-automatic algorithms did the
preliminary segmentation according to the intensity threshold
segmentation, and then, manual corrections such as relabeling
and hole-filling were done by two professional radiologists in
consensus. The masks of ROI on T1-DCE were then registered
to the other two MRI sequences (i.e., T2WI and ADC map).
Finally, we got three segmentation ROI masks per patient.
More details about the tumor segmentation are shown in the
Supplementary Material.

Feature extraction of ROI was performed with Pyradiomics
Module in 3D Slicer software (https://github.com/Radiomics/
pyradiomics) (van Griethuysen et al., 2017; Zwanenburg et al.,
2020). Before features extraction, the voxel size of each sequence
was resampled to 1 × 1 × 1mm, and the bin width of
the gray-level histogram was fixed as 25. Six Laplacian of
Gaussian filters (i.e., kernel sizes were set as 1, 2, 3, 4, 5,
and 6) and a wavelet-based filter were used to process the
original MRI images. Then, 1,424 quantitative radiomics features
could be extracted from each MRI sequence, and the features
were divided into seven categories: (1) first-order statistics
features, (2) shape-based features, (3) gray-level co-occurrence
matrix (GLCM), (4) gray-level size zone matrix (GLSZM),
(5) gray-level run length matrix (GLRLM), (6) neighboring
gray-tone difference matrix (NGTDM), and (7) gray-level
dependence matrix (GLDM). After removing the duplicate shape
of features, a total of 4,198 radiomics features from three
MRI sequences could be extracted per patient. The information
of the various features is shown in Supplementary Material.
The clinical characteristics such as age, menopausal status,
histological type, clinical anatomical TNM stage, ER status, PR
status, HER2 status, and Ki-67 index were also added in the
feature set.

Feature Selection
Features selection was performed with Python 3.70 (https://
www.python.org/). Before feature selection, the feature
normalization was performed to ensure a relatively uniform
range of all the radiomics features. The z-score normalization
process is shown in the Supplementary Material. To
achieve the dimensionality reduction, we used ANOVA
and the least absolute shrinkage and selection operator
(LASSO) logistic regression with 10-fold cross-validation
to select the most significant features corresponding to the
tumor shrinkage pattern. Then, the Pearson’s correlation
coefficient matrix (PCCM) was used to identify the
multicollinearity between features. If there is any pair of
features with a correlation coefficient of more than 0.85
or less than −0.85, then only one feature with a higher
discriminative ability was selected. Finally, we selected the
most significant features to make a combination with the best
prediction performance.

Establishment and Assessment of Models
The establishment and evaluation of the machine learning
model were performed with Scikit-learn 0.18 package in Python
3.70. All patients were randomly allocated to the training
dataset and testing dataset by stratified cross-validation, which
included a 6-fold outer loop and a 5-fold inner loop. The
positive/negative sample ratio was similar in the training dataset
and testing dataset. In the outer loop, 5-fold (83.4%, 166
patients) dataset was used as the training dataset to develop
the model, and the independent testing dataset (16.6%, 33
patients) was used to evaluate the model performance. To
determine the best optimal hyperparameters, grid searching, and
cross-validation were employed in the inner loop, and 1-fold
(16.6%, 33 patients) dataset, also called the inner validation
dataset, was assessed to choose the best hyperparameters.
The whole process (i.e., stratified splitting, subsequent model
development, hyperparameters optimization, and performance
evaluation) was repeated by a 30-round bootstrap method to
assess the robustness.

The clinical model and radiomics model were constructed
with selected significant clinicopathologic and radiomics
features, respectively, and then, the total features were
combined to establish a combined model. As our model
construction was a task for the labeled data, we used 12
robust supervised classification algorithms as following:
Logistic Regression, Support Vector Machine (i.e., linear
or radial kernel), Linear Discriminant Analysis, Random
Forest, Extreme Gradient Boosting, Gaussian Naïve Bayes,
AdaBoost, Decision Tree, K-Nearest Neighbors, AdaBoost,
and Multilayer Perception (MLP) neural network. Then,
the performance of each model was evaluated using the
receiver operating characteristic (ROC) curves, the area
under the ROC curve (AUC), accuracy, sensitivity, and
specificity. Each specific algorithm was designed to fit the
training dataset in the inner loop and to correctly predict
the independent testing dataset in the outer loop. The
prediction results were used to assess the performance and
generalization ability of the models. We divided our patients
into three subgroups according to molecular subtypes as
follows: (1) HR+/HER2–, (2) HER2+, and (3) TN. The
stratified 5-fold cross-validation was used to evaluate the model
performance for each subtype. Figure 2 shows the workflow of
data input, feature extraction, selection, model construction, and
performance assessment.

Statistical Analysis
The baseline data of the patient were evaluated with professional
statistics packages in Python 3.7.0 and SPSS (version 20.0).
The quantitative data were calculated and recorded as mean ±

SD, and the qualitative data were summarized as frequencies
and percentages. The Mann–Whitney U-test or Student’s t-
test was used for quantitative variables, and the chi-squared
test or Fisher’s exact test was used for qualitative variables.
The normality test and Z-test were done for the comparison
of performance indexes. The discrimination metrics of models,
such as AUC, accuracy, sensitivity, and specificity, were also
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FIGURE 2 | Outline of the workflow from the data input, feature extraction, selection, model construction, and performance assessment.

calculated. A two-sided p < 0.05 is considered statistically
significant. The Wilson score interval method was used to
calculate the CI of AUC.

RESULTS

Baseline Characteristics of Patients
In total, 199 eligible patients were enrolled in this study. The
baseline data are presented in Table 1. The mean age was
46.85 ± 10.13 years (range 23–78 years), and 116 patients
(58.3%) were premenopausal women. Among all patients, 66
were HR+/HER2– (33.2%), 99 were HER2+ (49.7%), and 34
were TN (17.1%). After NACT, 105 patients had achieved type
1 tumor shrinkage pattern (52.8%), whereas 94 had achieved
type 2 tumor shrinkage pattern (47.2%) according to the
histological confirmation. Significant differences of some baseline
characteristics were detected between two groups, including ER,
PR, and Ki-67 (p= 0.026, 0.019, and 0.049, respectively).

Feature Extraction and Selection
For each patient, 4,198 radiomics features and 10 clinical features
were used in the followedmachine learning process. The ANOVA
and LASSO logistic regression were used to reduce dependency
and redundancy, and finally, the 50 most optimal features were
selected as follows: 2 clinicopathologic characteristics (ER and
Ki-67), and 48 radiomics features, including 11, 16, and 21
features from T1-DCE, T2WI, and ADC map, respectively.
The associations of these features were assessed using the
PCCM Heatmap, which is shown in Figure 3. The features were
considered independent of each other as there was no PCC value
over 0.85 or < −0.85.

Development and Performance of Models
In order to find the most suitable algorithm for the prediction of
tumor shrinkage patterns, 12 robust machine learning algorithms
were applied based on the total features we selected. Table 2
summarizes the performances of each algorithm. The MLP
neural network outperformed all other classifier algorithms, with
a mean AUC value of 0.939 (95% CI: 0.896–0.965), a mean
accuracy of 0.870 (95% CI: 0.815–0.910), a mean sensitivity
of 0.840 (95% CI: 0.781–0.885), and a mean specificity of
0.897 (95% CI: 0.846–0.933) in the testing dataset based on
the 30-round bootstrap validation. Then, we chose the MLP
neural network as the basic algorithm to construct the machine
learning models. The MLP neural network contained input,
hidden, and output layers, and the hyperparameters in each
layer were trained in the inner loop. The prediction workflow
of MLP classifier was as follows: all features of one patient were
input to the first layer, and finally, the output layer provided a
prediction result.

Based on the MLP neural network, nine various models
based on feature type were constructed and the prediction
performances of various models were shown in Table 3.
The accuracy of ModelRadiomics was 0.828 (95% CI: 0.767–
0.874), which demonstrated a better performance than that
in ModelT1−DCE (0.644, 95% CI: 0.573–0.708), ModelT2WI

(0.606, 95% CI: 0.534–0.672), ModelADCmap (0.709, 95%
CI: 0.641–0.768), and ModelClinical (0.561, 95% CI: 0.490–
0.629). The AUC value (0.900, 95% CI: 0.849–0.935) of
ModelRadiomics also outperformed that in the other four models
(i.e., ModelT1−DCE: 0.712, 95% CI: 0.644–0.771; ModelT2WI:
0.661, 95% CI: 0.591–0.724; ModelADCmap: 0.795, 95% CI:
0.732–0.846; and ModelClinical: 0.611, 95% CI: 0.540–0.677)
on testing dataset. On the training dataset, the ModelRadiomics

achieved a mean accuracy of 0.912 and a mean AUC of 0.975.
When the clinicopathologic characteristics were added to
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FIGURE 3 | The Pearson’s correlation coefficient matrix of the selected features. Red color denotes positive correlation, blue denotes a negative correlation, and the

shade of the color indicates the correlation intensity.

construct ModelRadiomics+Clinical, the accuracy was improved
to 0.870 (95% CI: 0.815–0.911) and the AUC was improved to
0.939 (95% CI: 0.896–0.965) on testing dataset, which showed
the highest performance in differentiating tumor shrinkage
pattern. On the training dataset, the ModelRadiomics+Clinical

achieved a mean accuracy of 0.930 and a mean
AUC of 0.985.

The results of 1-round 6-fold cross-validation of ROC
curves of three representative models (i.e., ModelClinical,
ModelRadiomics, and ModelRadiomics+Clinical) are shown in

Figure 4. For the different molecular subtypes, the predictive
performance was evaluated, respectively, and the results
were shown in Table 4. The HER2+ subtype achieved
the highest performance in ModelRadiomics+Clinical with
an AUC value of 0.940 (95% CI: 0.873–0.973), while the
TN subtype had a relatively low performance with an
AUC value of 0.837 (95% CI: 0.699-1.0) in the testing
dataset. The results of 1-round 5-fold cross-validation of
ROC curves for three molecular subtypes are shown in
Figure 5.
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TABLE 2 | Performances of the 12 machine learning classifiers on 30-round 6-fold cross-validation in testing dataset for predicting tumor shrinkage pattern based on all

the selected features.

Algorithm AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

MLP neural network 0.939 (0.896–0.965) 0.870 (0.815–0.910) 0.840 (0.781–0.885) 0.897 (0.846–0.932)

Logistic Regression 0.922 (0.874–0.952) 0.847 (0.789–0.891) 0.817 (0.756–0.865) 0.874 (0.819–0.913)

SVM (radial kernel) 0.909 (0.859–0.941) 0.823 (0.761–0.869) 0.784 (0.720–0.836) 0.855 (0.798–0.898)

Linear discriminant analysis 0.902 (0.851–0.936) 0.815 (0.753–0.863) 0.789 (0.725–0.840) 0.838 (0.779–0.883)

SVM (linear kernel) 0.890 (0.837–0.926) 0.809 (0.747–0.858) 0.780 (0.715–0.832) 0.835 (0.775–0.880)

Random forest 0.803 (0.740–0.852) 0.731 (0.663–0.788) 0.664 (0.594–0.727) 0.790 (0.726–0.841)

Gradient boosting 0.786 (0.722–0.838) 0.712 (0.644–0.771) 0.650 (0.580–0.714) 0.769 (0.703–0.822)

K neighbors 0.782 (0.718–0.834) 0.722 (0.654–0.780) 0.633 (0.562–0.698) 0.802 (0.739–0.852)

Gaussian NB 0.776 (0.711–0.829) 0.667 (0.597–0.730) 0.775 (0.710–0.828) 0.570 (0.499–0.638)

AdaBoost 0.769 (0.704–0.823) 0.708 (0.640–0.768) 0.679 (0.610–0.741) 0.734 (0.667–0.791)

XGB 0.758 (0.692–0.813) 0.677 (0.607–0.739) 0.639 (0.568–0.703) 0.711 (0.643–0.770)

Decision tree 0.630 (0.559–0.695) 0.630 (0.559–0.694) 0.630 (0.559–0.695) 0.629 (0.559–0.694)

TABLE 3 | Diagnostic performances to classify tumor shrinkage pattern in testing dataset of different models based on the type of features using the Multilayer Perception

(MLP) neural network.

Model AUC (95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

ModelT1−DCE 0.712 (0.644–0.771) 0.644 (0.573–0.708) 0.489 (0.418–0.558) 0.783 (0.719–0.835)

ModelT2WI 0.661 (0.591–0.724) 0.606 (0.534–0.672) 0.562 (0.491–0.630) 0.645 (0.575–0.709)

ModelADCmap 0.795 (0.732–0.846) 0.709 (0.641–0.768) 0.699 (0.630–0.759) 0.718 (0.650–0.777)

ModelClinical 0.611 (0.540–0.677) 0.561 (0.489–0.629) 0.653 (0.582–0.716) 0.480 (0.410–0.550)

ModelRadiomics 0.900 (0.849–0.935) 0.828 (0.767–0.874) 0.788 (0.724–0.839) 0.864 (0.807–0.905)

ModelT1−DCE+Clinical 0.743 (0.676–0.799) 0.687 (0.618–0.748) 0.713 (0.644–0.771) 0.665 (0.595–0.727)

ModelT2WI+Clinical 0.708 (0.640–0.768) 0.649 (0.579–0.713) 0.627 (0.556–0.692) 0.670 (0.599–0.732)

ModelADCmap+Clinical 0.809 (0.746–0.858) 0.729 (0.662–0.787) 0.699 (0.630–0.759) 0.757 (0.690–0.811)

ModelRadiomics+Clinical 0.939 (0.896–0.965) 0.870 (0.815–0.910) 0.840 (0.781–0.885) 0.897 (0.846–0.932)

TABLE 4 | Performance to classify tumor shrinkage pattern in three molecular subtypes.

Molecular subtype Training dataset Testing dataset

AUC

(95%CI)

Accuracy

(95%CI)

Sensitivity

(95%CI)

Specificity

(95%CI)

AUC

(95%CI)

Accuracy

(95%CI)

Sensitivity

(95%CI)

Specificity

(95%CI)

HR+/HER2- 0.999

(0.980–0.999)

0.991

(0.899–0.995)

0.999

(0.850–0.991)

0.986

(0.930–1.0)

0.901

(0.866–0.936)

0.816

(0.715–0.917)

0.729

(0.546–0.912)

0.883

(0.799–0.967)

HER+ 0.999

(0.986–0.997)

0.987

(0.926–0.996)

0.997

(0.956–1.0)

0.980

(0.886–0.994)

0.940

(0.886–0.994)

0.865

(0.761–0.986)

0.912

(0.701–0.994)

0.799

(0.707–0.891)

TN 1.0

(0.913–1.0)

0.999

(0.767–0.967)

0.999

(0.688–1.0)

1.0

(0.773–1.0)

0.837

(0.699–0.975)

0.811

(0.614–0.993)

0.777

(0.456–0.993)

0.851

(0.558–0.996)

The Stability and Interpretability of Models
The differences in accuracy and AUC between the validation
dataset in the inner loop and the testing dataset in the outer
loop were calculated 30 times to assess the reproducibility of
the results. There are no significant difference in AUC and
accuracy between the outer loop and inner loop (Figures 6,
7), so we considered that the results of our models are
stabilized and representative. To evaluate the feature importance

and predictive workflow of our model, the SHapley Additive
exPlanations (SHAP) values were calculated (Rodríguez-Pérez
and Bajorath, 2020a,b). The mean SHAP value of each feature
was summarized based on its weight importance to the model,
which calculated the number of times a feature was used to
split the dataset in the model. For the prediction of tumor
shrinkage pattern, each selected feature had a significant impact
on the model output. Figure 8 lists the weight importance
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FIGURE 4 | Receiver operating characteristic (ROC) curves of clinical prediction model, radiomics prediction model, and combined prediction model in testing dataset

for 1-round cross-validation.

FIGURE 5 | The ROC curves of prediction model based on three molecular subtypes in testing dataset for 1-round cross-validation.

rank of the total features. Figure 9 shows the decision curve
reflecting how each feature affects the predictive output for
the patients in the testing dataset (i.e., one round of classical
splitting method with a ratio of 7:3). The baseline SHAP
value was set as 0, and in the workflow of our model, each
feature has a positive or negative impact on the final output
value. When the output value was over 0, the patient was
considered achieving type 1 shrinkage pattern after NACT, and
when the value was <0, type 2 shrinkage pattern was more
likely considered.

DISCUSSION

As there is an increasing need for BCS in patients with breast
cancer, the accurate evaluation of tumor shrinkage patterns
prior to NACT in a non-invasive way is essential. The aim
of this study was to investigate the relationship among tumor
shrinkage patterns, clinicopathologic characteristics, and MRI-
derived radiomics features. We aimed to develop a model
to assess tumor shrinkage patterns prior to NACT. The
radiomics method could improve the diagnostic accuracy of
MRI for tumor response to NACT. Enabling the prediction
of tumor shrinkage pattern prior to treatment would help
determine the feasibility of BCS and may lead to alterations

in chemotherapy regimen or performing surgery earlier than
initially planned.

The NACT benefits those patients who are willing to have
BCS but the tumor size is large and not suitable for the
surgery (Hennessy et al., 2005; Mathew et al., 2009; Mougalian
et al., 2016). Wolmark et al. have reported that the ipsilateral
recurrence rate of patients treated with BCS after NACT was
10.7%, and the rates were 7.6% in patients with primary tumors
fit for BCS and 15.9% in patients with primary breast cancer
unfit for BCS (Wolmark et al., 2001). Tumor downstaged by
NACT and followed by BCS has a higher local recurrence rate
than the primary tumor and is fit for BCS, which may be
a result of incomplete resection of cancer cells. It has been
clearly indicated that a clear surgical margin is essential to
decrease the local recurrence rate. In clinical practice, however,
the current criteria for the evaluation of tumor response, the
RECIST 1.1, are used extensively to assess tumor response
to NACT, but it cannot identify those patients with tumor
concentric shrinkage (Chalian et al., 2011; Schwartz et al.,
2016).

The MRI examination can accurately show the morphology
and extent of breast cancer, and it guides surgical decisions
to ensure a negative surgical margin. Several studies have
divided tumor shrinkage into concentric shrinkage and dendritic
shrinkage based on the MRI examination (Wang et al., 2013;

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 July 2021 | Volume 9 | Article 662749

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Huang et al. Machine Learning Predicts Tumor Shrinkage

FIGURE 6 | The AUC between the validation dataset in the inner loop and testing dataset in the outer loop for 30-round cross-validation.

Ballesio et al., 2017; Fukada et al., 2018; Goorts et al., 2018;
Zhang et al., 2018; Zhuang et al., 2020). According to earlier
studies, after NACT, about 70% of residual tumors were
concentric and 30% were dendritic in MRI images. Post-NACT
tumors that showed pCR and concentric shrinkage were easier
to obtain negative surgical margins, so those patients were
the candidates of BCS (Chen et al., 2004). In general, the
tumor that shows dendritic shrinkage has multicentric and
discontinuous residual tumor, which can cause postoperative
local recurrence and metastasis, so it is unfit for BCS. However,
some solitary residual tumors may be missed by conventional
histological sections, and negative margins are still observed in
surgical specimens. Favorable tumor shrinkage patterns, such
as pCR and concentric shrinkage tumor after NACT, were
included in the standards for BCS, while patients with poor
shrinkage pattern show either multifocal residual tumors or
no significant decline in tumor size. The post-NACT pCR is
more difficult to obtain in luminal breast cancer than other
subtypes, and dendritic shrinkage and mixed shrinkage are also
more common in the luminal subtype. The accurate assessment
of tumor shrinkage pattern can help in choosing an optimal
treatment option for patients. To find patients suitable for
BCS, our study divided the tumor shrinkage patterns into
two types as well. Patients with type 1 shrinkage pattern
showed an adequate response to NACT, with tumor complete

remission or a significant decline in size. In our study, the
percentages of type 1 shrinkage pattern in three subtypes were as
follows: HR+/HER2– (45.5%), HER2+ (58.6%), and TN (50%).
Consistent with the earlier studies, the concentric shrinkage
patterns were more likely to occur in patients with HER2+ and
TN subtype tumors.

The assessment of tumor size using MRI during NACT is
a good predictor of the tumor response to NACT. Loo et al.
reported that MRI was useful to monitor tumor response during
NACT and massive tumor regression was more easily observed
in HER2+ and TN tumors than in HR+/HER2– tumors (Loo
et al., 2011). In a meta-analysis of Yuan et al., MRI had high
specificity (91%) and relatively low sensitivity (63%) in predicting
pCR after NACT in patients with breast cancer (Yuan et al.,
2010). Liu et al. had reported that a radiomics model combining
T1-DCE, DWI, and T2WI images had a great performance to
predict the tumor response to NACT and achieved an AUC
of 0.71–0.80 in the testing cohort, but the literature did not
identify those patients with concentric shrinkage after NACT (Liu
et al., 2019). Zhuang et al. established a nomogram to predict
the tumor regression pattern using T2WI, DWI sequences, and
clinical factors, and their model achieved an AUC of 0.826 in
the testing cohort (Zhuang et al., 2020). Some studies have
shown that the radiomics models had diagnostic value in tumor
response toNACT, andmost of the literature aimed to distinguish
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FIGURE 7 | The accuracy between the validation dataset in the inner loop and testing dataset in the outer loop for 30-round cross-validation.

pCR and non-pCR (Antunovic et al., 2019; Liu et al., 2019; Li
et al., 2020; Zhuang et al., 2020). Fukada et al. reported that
the shrinkage pattern at MRI during NACT was the significant
independent predictor and the radiomics features based on
MRI had closer associations with the risk of recurrence and
prognosis in low-grade early-stage luminal breast cancer (Fukada
et al., 2018). Assessing tumor response to NACT has been
reported, which could predict the prognosis of patients with
luminal breast cancer. Richard et al. found that the patients
with breast cancer with a high pretreatment ADC in DWI
were more likely to respond completely to NACT (Richard
et al., 2013). From the earlier studies in the literature, we knew
that mpMRI had the potential in assessing tumor shrinkage
pattern, so in our study, we extracted radiomics features from
three MRI sequences (i.e., T1-DCE, T2WI, and ADC map),
and we also added the clinicopathologic characteristics into the
feature set.

The radiomics method offers the great potential to identify
the tumor shrinkage pattern prior to NACT, whereas the clinical
characteristics provide limited information about the tumor.
There continues to face a challenge for the success of BCS,
and there is still a lack of effective methods to assess the
tumor response during NACT and risk of local recurrence
postoperatively. In our study, after the feature selection, 50
features, including the clinicopathologic characteristics and the
radiomics features from MRI were selected to develop the

machine learning model. The mean AUC of the ModelClinical
in the testing set was 0.611 (95% CI: 0.540–0.677), while
the result of ModelRadiomics was 0.900 (95% CI: 0.849–0.935),
and when combining the clinicopathologic characteristics with
radiomics features, the result could rise to 0.939 (95% CI of the
ModelRadiomics+Clinical: 0.896–0.965). We also found that when
combining the clinical characteristics with radiomics features,
the model had a more stable performance with a lower SD.
Our radiomics model that combined the clinical and radiomics
features might provide a more accurate assessment for tumor
shrinkage pattern prior to NACT treatment and is worthy of
further study.

This study has some limitations. First, our study was based
on a retrospective design and the patient population is limited,
and it is better if there are data from external institutions that
could validate our model. Actually, NACT was mainly used in
locally advanced breast cancer, and it spent several months of a
patient to complete the standard NACT and followed surgery,
so the patient population is limited in most studies. Second,
the distribution of molecular subtypes was imbalanced due to
less number of patients with TN breast cancer. But in the
total population with breast cancer, the TN subtype occupied
the lowest proportion, which could explain the imbalanced
distribution of our patients. Third, only the pre-NACT MRI
data were collected to construct models, and it is worthwhile to
study further of the predictive potential to the tumor shrinkage
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FIGURE 8 | The weight importance rank of selected features. The feature with a longer bar contributes more to the model.

patterns based on the sequential MRI examination during NACT.
Delta-radiomics that combines pre-NACT with the early-NACT
MRI data could provide tumor response information in the

early stage of treatment, and that combines pre-NACT with the
post-NACT MRI data could help distinguish pCR from radial
complete response.
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FIGURE 9 | The decision curve that reflects how each feature affects the predictive output for the patients in testing dataset by classical splitting with a ratio of 7:3.

CONCLUSIONS

We constructed a model combining clinicopathologic

characteristics and radiomics features to accurately predict

tumor shrinkage pattern prior to NACT using the mpMRI data.

The model performed well in different molecular subtypes,
and this early prediction model can help clinicians make a
clinical decision with the potential to evaluate the feasibility of
BCS after effective chemotherapy. Further multicenter study
with larger datasets could improve our prediction model and
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explore the potential for clinical application to the wider regions
and population.
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