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PM2.5, also known as fine particles, refers to particulate matter with a dynamic diameter
of 52.5 µm in air pollutants, that carries metals (Zn, Co, Cd) which can pass through
the alveolar epithelium and enter the circulatory system and tissues. PM2.5 can cause
serious health problems, such as non-alcoholic fatty liver and hepatocellular carcinoma,
although the underlying mechanisms of its toxic effect are poorly understood. Here, we
exposed L02 cells to PM2.5 and performed a pooled genome−wide clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)
to assess loss of function and identify new potential PM2.5targets. Enrichr and
KEGG pathway analyses were performed to identify candidate genes associated
with PM2.5 toxicity. Results revealed that four key genes, namely ATPase Na+/K+
transporting subunit alpha 2 (ATP1A2), metallothionein 1M (MT1M), solute carrier family
6 members 19 (SLC6A19) and transient receptor potential cation channel subfamily
V member 6 (TRPV6) were associated with PM2.5 toxicity, mainly in regulating the
mineral absorption pathway. Downregulating these genes increased cell viability and
attenuated apoptosis in cells exposed to PM2.5. Conversely, overexpressing TRPV6
exacerbated cell apoptosis caused by PM2.5, while a reactive oxygen species (ROS)
inhibitor N-acetyl-l-cysteine (NAC) alleviated PM2.5-induced apoptosis. In conclusion,
ATP1A2, MT1M, SLC6A19 and TRPV6 may be contributing to absorption of metals in
PM2.5 thereby inducing apoptosis mediated by ROS. Therefore, they hold potential as
therapeutic targets for PM2.5-related diseases.

Keywords: PM2.5, CRISPR/Cas9, liver, mineral absorption, apoptosis

INTRODUCTION

Particulate Matter (PM) refers to a suspended mixture of solid and liquid particles in the air (Oh
et al., 2021), whereas inhalable fine particles are described by PM2.5, usually 2.5 microns or less in
diameter (Xing et al., 2016). These potentially harbors various toxic substances, including heavy
metals or minerals such as copper (Cu), zinc (Zn), calcium (Ca), potassium (K), and cadmium (Cd)
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(Ye et al., 2018). These substances can pass through the nasal
cavity, enter into the respiratory tract via the airflow and
accumulate in tissues through diffusion or active transport (Xing
et al., 2016). previous studies have shown that PM2.5 is associated
with various respiratory disorders (Xing et al., 2016), as well
as cardiovascular (Rajagopalan et al., 2018), neurodegenerative
(Zhu et al., 2020), and hepatic (Tarantino et al., 2013) diseases.
For instance, occurrence of nonalcoholic fatty liver disease – a
known silent disease attacking about 20–30% of the population-
was linked to exposure to PM2.5 (Sivell, 2019). Furthermore,
people living in environments with high PM2.5 concentrations
generally exhibit high incidence of hepatocellular carcinoma
(HCC), with an associated high mortality rate (VoPham et al.,
2018; Lee et al., 2019).

Previous studies have described the mechanism of PM2.5-
induced liver disease, with ROS and lysosome implicated
in PM2.5-induced cell apoptosis (Dornhof et al., 2017;
Jing Piao et al., 2018; Zhu et al., 2018). Moreover, PM2.5
was shown to induce oxidative stress and inflammation
in hepatocytes by altering the normal lipid metabolism
(Xu M. X. et al., 2019), farnesin X receptor (FXR) (Wang
et al., 2020), ROS/PINK1/Parking Signal pathways causing
NADPH oxidation, and liver fibrosis (Zheng et al., 2015; Qiu
et al., 2019). To date, however, the underlying mechanism of
PM2.5 -mediated hepatotoxicity remains unclear, necessitating
further exploration.

Clustered regularly interspaced short palindromic
repeats/CRISPR-associated protein 9 (CRISPR/Cas9), an
RNA-guided DNA endonuclease, can be easily programmed
to target new sites by changing its guide RNA sequence
(Shalem et al., 2014; Wang et al., 2016). CRISPR/Cas9 is a
potent gene-editing tool, that enables direct and accurate
editing of DNA (Lino et al., 2018). This technology can be
experimentally be applied to evaluate and modify the functions
of thousands of genes, identify and verify new drug targets
and detect potential diseases in humans (Huang A. et al.,
2020). CRISPR/Cas9 has also been applied in exploration of
pathogenesis of the nonalcoholic fatty liver disease, affirming
its role as a promising method for genetic engineering of liver
cancer (Ratan et al., 2018; Gordon et al., 2019). Here, we applied
genome-wide CRISPR/Cas9 (GeCKO) technology to unravel
new regulatory factors associated with PM2.5 toxicity in human
cell line L02. The method also revealed some drug-resistant
genes in response to PM2.5, which may be utilized as potential
therapeutic targets.

Abbreviations: CRISPR, clustered regularly interspaced short palindromic
repeats; Cas9, CRISPR-associated protein 9; PM2.5, Particulate Matter 2.5;
ATP1A2, ATPase Na+/K+ Transporting Subunit Alpha 2; ATP1B2, ATPase
Na+/K+ transporting subunit beta 2; MT1M, metallothionein 1M; SLC6A19,
Solute Carrier Family 6 Member 19; TRPV6, Transient Receptor Potential
Cation Channel Subfamily V Member 6; GeCKO:genome−scale CRISPR/Cas9
knockout; NGS, next−generation sequencing; sgRNA, single guide RNA; IL1RAP,
interleukin 1 receptor accessory protein; PIK3R1, phosphoinositide-3-kinase,
regulatory subunit 1 (alpha); PLCG1, phospholipase C gamma 1; MICAL2,
Microtubule Associated Monooxygenase, Calponin and LIM Domain Containing
2; NAC, N-acetyl-l-cysteine; ROS, reactive oxygen species; DAPI, 4′,6-diamidino-
2-phenylindole; DCFDA, dyes 2′,7′-dichlorodihydrofluorescein diacetate.

MATERIALS AND METHODS

Lentiviral Production of the Single Guide
RNA Library
We generated lentiviruses using a previously described
protocol (Cai et al., 2019). Briefly, a day before transfection,
HEK293T cells (ATCC, United States) were cultured in DMEM
(Gibco) containing 10% fetal bovine serum (FBS, Invitrogen,
United States) and maintained at 37◦C (5% CO2). The fusion
rate was about 50%. The cells were transfected with 4 µg
LentiCRISPR plasmid library (#1000000048, Addgene), 2 µg of
pVSVg (#8454, Addgene) and 6 ug psPAX2 (#12260, Addgene)
in a petri dish at 10 cm2 using Lipofectamine 2000 (Invitrogen,
United States), according to the manufacturer’s instructions.
After 48 h of culture, the contents were transferred into a test
tube, then cell fragments precipitated via centrifugation at
3,000 rpm for 10 min. The supernatant was filtered (with a pore
size of 0.45 µm), and ultracentrifuged for 2 h at 24,000 rpm at
4◦C. Finally, the virus preparation was suspended in DMEM at
4◦C overnight and stored at −80◦C after being divided equally
(Figure 1A, step 1).

Lentiviral Transduction of the sgRNA
Library
L02 cells were purchased from ATCC, and cultured in DMEM
(Gibco), supplemented with FBS 10% (Invitrogen, United States).
Gecko library was used to infect 3 × 108 cells. The multiplicity
of infection (MOI) was 0.1, and aimed to ensure that most cells
received only 1 viral construct. The culture medium containing
cells was supplemented with 10% FBS and 4 mM l- glutamic acid
(Invitrogen), 10 µg/ml penicillin and streptomycin (Invitrogen,
United States), followed by addition of the lentivirus to each dish
with 8 µg/mL polybrene (Sigma). The cultures were incubated
for 48 h, medium aspirated out, replaced with fresh DMEM
supplemented with 1 µg/ml doxycycline, followed by incubation
for 7 days. The cell population was created, with each target gene
theoretically carrying a mutation of functional loss (Figure 1A, 2)
(Wang et al., 2014b).

Screening for PM2.5 Resistance Genes
via DNA Sequencing
Cells were exposed to PM2.5 (0.1 mg/mL), purchased from the
National Institute of Standardization and Technology (1648a,
Urban Particles), for 48 h, followed by transfer to a glucose-
containing medium (95% air, 5% CO2) for 6-h recovery. After
exposure to PM2.5, the cells were merged for sgRNA analysis
(Figure 1A, step 2–3). Genomic DNA was extracted from
living cells using the DNA Extract All Reagents Kit (Invitrogen,
United States) and stored it at −20◦C. The DNA was used
for PCR amplification, using the following primers; Forward
primer: CTTGTGGAAAGGACGAAACA; and Reverse primer:
GCCAATTCCCACTCCTTTCA. The PCR conditions are 95◦C
for 5min, 54◦C for annealing, 72◦C for 30 s, 35 cycles.
PCR amplicons were sequenced on the HiSeq 2500 platform
(Illumina) as previously described (Shalem et al., 2014).
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FIGURE 1 | Genome-wide CRISPR/Cas9-mediated forward genetic screening for identification of genes associated with PM2.5 resistance. (A) Schematic
representation of forwarding genetic screening in L02 cells based on pooled sgRNA library. (B) PM2.5 resistance genes identified after screening. Number of unique
sgRNAs genes (X-axis) and changes in the number of reads of each sgRNA relative to controls (Y-axis).

Sequencing of sgRNAs amplified from the genome of
surviving cells was done using Next-generation sequencing
(NGS), and the number of unique sgRNAs and NGS reads used to
classify candidate genes. We adopted a customized CRISPR-Cas9
library screening pipeline to process and analyze raw sequence
data. Briefly, the barcode in the reverse primer was first used
to analyze the repeated sequential readings, then Cutadapt used
to delete the sequence from the starting point of sgRNA. The
sgRNA sequence was mapped to the pooled GeCKO v2 library
A and B, using the trimmed reads, and read counts from all
samples quantified by MAGeCK 5. 6. 0. Counting data were
filtered and standardized, then essential sgRNA and genes ranked
using MAGeCK. Unique sgRNAs with a high number (4–6) were
defined as top-level genes (Figure 1A, 4).

KEGG Pathway and GO Analysis of PM2.5
Resistance Genes
KEGG pathway analysis and Gene Ontology (GO) were
performed for functional annotation enrichment analysis of
top-level genes with a high number (4–6) of unique sgRNAs
using Enrichr1 (Kuleshov et al., 2016). Gene Ontology function
annotation comprised three categories, namely biological
processes (BP), cell components (CC) and molecular functions
(MF). Gene Ontology terms and KEGG pathways were
downloaded from the website, at a threshold of P-value < 0.05.

Cell Cultures, RNA Silencing, and TRPV6
Overexpression
L02 cells were seeded on 24-well plates and cultured in DMEM
(Gibco) containing FBS 10% (Invitrogen, United States) and
maintained at 37◦C in a humidified incubator (5% CO2). Cells
were divided into six groups: siMTM1, siTRPV6, siATP1A2,
siATP1B2, siSLC6A19, and control siRNA. Small interfering
RNAs (siRNAs) was bought from GenePharma (Shanghai,
China). siRNAs and their corresponding control RNAs were

1https://maayanlab.cloud/Enrichr/

transfected using Lipofectamine 2000 (Invitrogen, United States)
according to the manufacturer’s instructions. Exactly 50 pmol
of siRNAs/well were transfected into cells in a 24-well plate
with 1 µL Lipofectamine 2000. The cells were exposed to PM2.5
(0.1 mg/ml) for 48 h, then incubated for different periods
under conditions of 95% air, 5% CO2, and glucose-containing
medium to induce apoptosis. Negative controls (NC, Control)
were incubated with medium (FBS 10%) without PM2.5.

TRPV6 (NM_018646) plasmid or negative control plasmid
(purchased from Origene [#RC214982]) was transfected into
L02 cells: TRPV overexpression cells or control, then divided
into six groups: negative control, TRPV6, PM2.5 treated negative
control or TRPV6, PM2.5 and NAC (N-acetyl-l-cysteine) treated
negative control or TRPV6. The cells, transfected by plasmid,
were exposed to PM2.5(0.1 mg/ml) for 48 h, followed by different
periods of 95% air, 5% CO2, and glucose-containing medium
to induce apoptosis. Negative controls (NC, Control) were
incubated with medium (FBS 10%) without PM2.5. We design
experiment with three replicates, each replicate has like three
samples for every groups.

MTT Assay
Cell viability was assessed using colorimeter 3,4,5-
dimethylthiazole -2- yl -2,5- diphenyltetrazolium bromide
(MTT). Briefly, 30 µL of MTT solution was added to each well
containing cells, incubated at 37◦C for 3 h, the medium aspirated
out and dried overnight. The following day, the formazan crystal
was dissolved in 50 µL of dimethyl sulfoxide (DMSO), mixed on
a shaker for 1 h, readings taken on a spectrophotometer at 570 nm
wavelength, followed by analysis of percentage cell activity.

Analysis of Cell Apoptosis
Cell apoptosis was assessed via Annexin V-FITC/Propidium
Iodide (PI) double staining, using the cell apoptosis detection
kit (Nanjing KeyGen Biotech Co., Ltd.). Briefly, L02 cells
were collected and washed twice with PBS, then mixed with
500 µL binding buffer, 5 µL annexin V-FITC, and 10 µL
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FIGURE 2 | KEGG pathway (A) and GO enrichment (B) analyses of the top-ranked PM2.5 resistance genes with high number (4–6) of unique sgRNAs. Significant
processes and pathways are depicted in red. BP, GO Biological Process; MF, GO Molecular Function; CC, GO Cellular Component).

polyimide. the cultures were incubated at 37◦C for 10 min
in the dark at, then apoptosis analyzed via flow cytometry
(BD Biosciences, United States) and Cell QuestPro software
(BD Biosciences).

Quantification of Apoptotic Nuclei by
DAPI Staining
Apoptotic nuclei were quantified through DAPI Staining. Briefly,
cells were first washed with PBS, fixed in 40% paraformaldehyde
(20 min) and permeabilized in 0.1% (w/v) Triton X100
(15 min). The cells were stained with DAPI (4′,6-diamidino-2-
phenylindole) for 15 min, washed with PBS and examined under
a fluorescent microscope (Leica, Germany).

ROS Detection
Production of ROS in cells was measured by oxidation
of cell-permeable dyes DCFDA/ H2DCFDA – Cellular ROS
Assay Kit (ab113851, Abcam, United States) following the
manufacturer’s instructions. Briefly, cells were digested with
collagenase IV (Gibco), precipitated and suspended in a medium
containing 20 µM DCFDA, with a 30-min incubation. The
cells were centrifuged at 2,000 rpm for 10 min, suspended
in a fresh medium, then analyzed via flow cytometry (BD
Biosciences, United States).

Activation of Lysosomal Function in Cells
The intralysosomal pH was estimated using LysoSensorTM

Green DND-189 (# L7535, Invitrogen, USA). Briefly, cells
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were incubated with 5 µM hemolysis sensor green DND-189
in DMEM at 37◦C for 5 min, and their nuclei examined
using DAPI. Intensity of fluorescence was examined, images
of typical cells taken using a confocal microscope (Leica TCS
SP8, Leica Microsystems). A cell-lysate-based assay for cathepsin
B/D activity was performed using Cathepsin B kit (Abcam
Plc. Cambridge), according to the manufacturer’s protocol.
Summarily, cells were lysed in a lysis buffer, then the lysate
incubated, for 1 h, with 50 µM fluorescent cathepsin B
substrate (Z-RR-AMC) in a cell-free system containing buffer
(10 mM HEPES-NaOH, pH 7.4) in a plate at 37◦C. Fluorescence
intensity was monitored at 400 and 505 nm wavelengths using
a fluorometer (ThermoFisher Scientific Inc), and the data
compared between treated and control groups.

Statistical Analysis
All statistical analyses were performed using Graphpad Prism
6 software, and the data presented as means ± standard errors
of the mean (SEM). Comparisons between and among groups
were performed using a student’s t-test and one-way analysis
of variance (ANOVA), respectively, at a significance level of
p ≤ 0.05.

RESULTS

Genome-Wide CRISPR/Cas9−Mediated
Screening Identifies PM2.5 Resistance
Genes
A GeCKO library, containing 123,411 sgRNA for 19,050 human
genes, was inserted into the lentiviral vector to generate a pool of
cells with targeted genes carrying a loss−of−function mutation.
GeCKO detection revealed that cells exposed to PM2.5 were
enriched in multiple sgRNAs. We deduced that the loss of
homologous genes confers resistance to PM2.5. A scatter plot of
sgRNA number and corresponding sequence reads (Figure 1B),
showed that the detected genes were well-distributed in every
sgRNA. A total of 614 top-level genes, with a high number (4–6)
of unique sgRNAs among the 19,050 genes, were identified and
these were associated with toxic effects of PM2.5 (Supplementary
Table 1). We also identified some interesting gene defects that
were potentially associated with protection from PM2.5 toxicity
(Supplementary Table 2). Generally, these genes were involved
in mineral absorption (ATP1A2, ATP1B2, MT1M, SLC6A19, and
TRPV6) and inflammatory mediators regulating TRP channels
(ADCY9, ASIC5, calm5, CYP4A22, CALML4, IL1RAP, PIK3R1,
and PLCG1).

KEGG Pathway and GO Analysis of PM2.5
Resistance Genes
The top 10 key KEGG pathways and GO functions are illustrated
in Figure 2. Specifically, KEGG analysis identified 17 significant
pathways (P < 0.05) (Supplementary Table 3). Particularly,
the mineral absorption pathway was significantly associated
with a group of genes, namely ATP1A2, SLC6A19, MT1M,
TRPV6, and ATP1B2) (p = 0.019) (Figure 2 and Supplementary
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FIGURE 3 | Knockdown of mineral absorption-related genes rescued the
reduction of cell viability by PM2.5. L02 cells were transfected with siRNAs
targeting each candidate gene, then cells exposed to PM2.5. Cell viability was
analyzed by MTT. *p < 0.05, **p < 0.01. ns, no significance. Data are
representative of three independent experiments with n = 3 (Mean ± SEM),
normalized by NC group.

Table 2) whereas inflammatory mediator regulation of TRP
channels comprised ADCY9, ASIC5, CALML5, CYP4A22,
CALML4, IL1RAP, PIK3R1, and PLCG1. Gene Ontology analysis
revealed several biological processes associated with PM2.5,
including biological mineral tissue development (p = 0.0014),
skeletal system development (p = 0.0018), and inorganic
anion transport across membrane (p = 0.0033). On the other
hand, those significantly associated with molecular function
included inorganic anion transmembrane transporter activity
(p = 0.0033), inhibitory extracellular ligand-gated ion channel
activity (p = 0.0099), chloride channel activity (p = 0.01),
and transmitter-gated ion channel activity (p = 0.017). With
regards to cellular components, we identified tertiary granular
membrane (p = 0.0069), specific granular membrane (p = 0.06),
and tight connection between two cells (p = 0.069) as the
significant GO terms (Figure 2 and Supplementary Table 3).
Apart from these, antioxidant enzyme activity (GO: 0016709)
and T cell receptor binding (GO: 0042608) were also identified,
suggesting a possible association with PM2.5-induced oxidative
stress and inflammation.

Mineral Absorption-Related Genes Affect
PM2.5−Induced Apoptosis
Knocking out ATP1A2, MT1M, SLC6A19, or TRPV6 resulted
in significant elevation of cell survival rate following PM2.5
exposure (Figure 3). On the other hand, knocking out ATP1A2,
ATP1B2, MT1M, SLC6A19, or TRPV6 potentially suppressed the
rate of apoptosis following PM2.5 exposure (Figure 4). These
findings indicate that these genes might enhance sensitivity of
cells exposed to PM2.5 to apoptosis.
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Metals Absorbed by TRPV6 Cause
PM2.5-Induced Apoptosis Through ROS
Production
Results above indicated that TRPV6 exerted the most significant
role in PM2.5-induced apoptosis. Therefore, we selected TRPV6
for further exploration of PM2.5-induced apoptosis. Rescue
experiments revealed that overexpressing TRPV6 could aggravate
PM2.5-induced apoptosis, whereas N-acetyl-l-cysteine (NAC),
a ROS inhibitor potentially blocked PM2.5- and TRPV6-
induced apoptosis (Figure 5A). Besides, overexpressing TRPV6
positively promoted ROS production (Figure 5B). These findings
suggest that TPRV6 promotes the toxic effects of PM2.5,
thereby aggravating ROS production in the cell, leading to

apoptosis. Besides, we found no evidence of activation of
lysosomal cell function after PM2.5 exposure (Supplementary
Figure 1), indicating that the lysosome did not mediate PM2.5-
induced apoptosis.

DISCUSSION

PM2.5 particles have been implicated in occurrence of diseases,
such as nonalcoholic fatty liver disease (Tarantino et al., 2013)
and HCC (VoPham et al., 2018). Notably, these disease have
been associated with PM2.5-induced apoptosis, which is one
of the primary pathological characteristics (Peng et al., 2017;
Huang X. et al., 2020). CRISPR screening represents a key
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FIGURE 5 | Metal absorption by TRPV6 initiated ROS-mediated PM2.5-induced apoptosis. (A) Fluorescent images indicate the degree of apoptosis. DAPI was used
to stain the nucleus to evaluate apoptosis, nuclear pyknosis (bright, small, irregular) represented apoptosis. Normal L02 cells and TRPV6 overexpressing L02 cells
showed good growth (upper panel). PM2.5-induced apoptosis of L02 cells (middle left, fluorescent represents apoptotic cells), and L02 cells overexpressing TRPV6
showed worse growth (middle right). Addition of NAC suppressed the effect of PM2.5, and upregulated TRPV6 (lower panel). TRPV6 overexpression increased
apoptosis of L02 cells, whereas NAC (ROS inhibitor) decreased apoptosis. (B) Evaluation of ROS production in cells using DCFDA. ROS was evaluated by staining
cells with a DCFDA cell reactive oxygen species detection kit. ROS levels were quantified via flow cytometry (BD Biosciences, United States). PM2.5 (black line)
induced ROS generation, while TRPV6 overexpression (green line) elevated the effect of PM2.5.

approach for identifying essential genes or genetic sequences
that trigger specific functions or phenotypes. In the present
study, this method allowed us to identify 19,050 genes associated
with PM2.5 resistance. Particularly, GeCKO screening revealed
614 genes that included a large number (4–6) of unique
sgRNAs, potentially related to PM2.5 toxicity. Functional analyses
showed that the PM2.5 resistant genes were associated with
absorption of liver minerals and regulation of inflammatory
environments, suggesting that they may be playing a crucial role
in apoptosis of hepatocytes.

Previous studies have shown that major heavy metals of PM2.5
potentially accumulate in the liver (Li et al., 2015), whereas genes
associated with transportation of toxic chemicals (metals and
minerals) in PM2.5 may play an important role in apoptosis and
damage of liver cells (Figure 6). Notably, our KEGG analysis
revealed several pathways associated with PM2.5 resistance,
namely the insulin signaling pathway, phosphatidylinositol
signaling system, adrenergic signaling in cardiomyocytes, gastric
acid secretion, and inflammatory mediator regulation of TRP
channels, consistent with previous studies (Xu Z. et al., 2019;
Sanchez et al., 2020; Zheng et al., 2020). One of the most
significant pathway was that regulating mineral absorption,
which comprised several genes including ATP1A2, SLC6A19,
MT1M, TRPV6, and ATP1B2, indicating that the absorption
of metals by the liver is essential for PM2.5 toxicity. Notably,
ATP1A2, ATP1B2, MT1M, SLC6A19, and TRPV6 contribute to
absorption of metals and minerals. Moreover, downregulating
these genes suppressed accumulation of metals and minerals in

L02 cells after PM2.5 exposure. On the other hand, regulation of
inflammatory media in the TRP channels was also significantly
enriched, and comprised ADCY9, ASIC5, calm5, CYP4A22,
CALML4, IL1RAP, PIK3R1, PLCG1 genes following exposure to
PM2.5. This implied that PM2.5 exposure induced oxidative stress
and cellular lesions, in line with a previous study that found PM2.5
to be the primary cause of oxidative stress and inflammation in
hepatocytes (Xu M. X. et al., 2019).

Gene Ontology (GO) analysis revealed that PM2.5 resistance
genes were mainly associated with bio-mineral tissues and
skeletal systems, such as biological mineral tissue and skeletal
system development. Previous studies have shown that minerals
play a crucial role in development of bio-mineral tissues and
skeletal systems (Office of the Surgeon General, 2004; Upadhyay,
2017), indicating that genes related to minerals play a role in
PM2.5 resistance. Other GO functions identified in the present
study included inorganic anion transport across membrane,
inhibitory extracellular ligand gated ion channel activity, chloride
channel activity and transmitter gated ion channel activity,
among others, which are also indirectly associated with the inter-
cellular transfer of ions and minerals (or metals). Furthermore,
oxidative stress and inflammation were the consequence of the
absorption of metal ions in PM2.5. Herein, we found that the
antioxidant enzyme activity (GO: 0016709) and T cell receptor
binding (GO: 0042608) may amount to PM2.5-induced oxidative
stress and inflammation (Cope, 2003; Deleonardi et al., 2004).
Overall, GeCKO screening revealed that the PM2.5 resistance
genes identified in L02 cells were associated with the mineral
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FIGURE 6 | Transportation of toxic chemicals (metals and minerals) in PM2.5 induces apoptosis mediated by ROS. The minerals of PM2.5 may be trasported into
cell through transporters (e.g. MT1M, ATP1A2, SLC6A19, and TRPV6 encoding proteins), they may also affect other transporters which uptake other minerals
inducing apoptosis.

absorption and inflammation-associated pathways, while Go
terms confirmed that the PM2.5 resistance genes play a key
role in mineral absorption, inflammation, and induction of
oxidative stress.

Overexpressing siRNAs confirmed that MT1M, ATP1A2,
SLC6A19, and TRPV6 genes were associated with mineral
absorption and protection of liver cells from apoptosis. The
Certificate of Analysis of Standard Reference Material R© 1648a
listed 25 metals in PM2.5, including Cd, Cu, Zn, Ca, K, and Na.
Previous studies have shown that MT1M is a vital component of
the metallothionein (MTs) family, which comprises cysteine and
short peptide of thioprotein with a high affinity for heavy metals
such as Cd, Zn, Cu. Functionally, MR1M plays an indispensable
role in homeostasis and detoxification of metal ions (Si and Lang,
2018), whereas TRPV6 is a member of the TRP ion channel
family with the highest affinity for Ca2+ and mainly functions
in absorption of Ca2+ in the intestinal tract. The intervention
to TRPV6 can alter calcium absorption and bone mineralization
and the early stages of epithelial cell hyperplasia and malignancy
(Holzer, 2011). On the other hand, ATP1A2 encodes the α2
subtype of the Na+, K+-ATPase’s catalytic subunit, and functions
as an ion channel/ion transporter, while SLC6A19 encodes an

amino acid delivery system B (0) AT1, which mediates transfer
of neutral amino acids to the intracellular space from the
luminal compartment (Cheon et al., 2010). Results of the present
study showed that overexpressing TRPV6 elevated apoptosis,
but knockdown of ATP1A2, SLC6A19, MT1M, and TRPV6
significantly improved the rate of cell survival and suppressed
apoptosis. Particularly, MT1M, ATP1A2, SLC6A19, and TRPV6
facilitated transportation of metals and minerals to cells, which
was closely related to the toxic effects of PM2.5.

Previous studies have shown that PM2.5 induces oxidative
stress and inflammation, thereby indirectly initiating apoptosis
and disease development (Jomova and Valko, 2011; Jian et al.,
2018; Qiu et al., 2019; Xu M. X. et al., 2019). Our results
corroborated these findings, in that metals in PM2.5 might play
a highly crucial role in this process. Numerous studies have
reported that metals in PM2.5, such as Zn, Co, Cd, and Au,
can induce cell death by activating ROS production (Sharma
et al., 2012; Trejo-Solís et al., 2012; Wang et al., 2014a; Hu et al.,
2015; Iranpak et al., 2019). Results of the present study showed
that NAC (ROS inhibitor) suppressed apoptosis induced by
metals absorbed by TRPV6. GeCKO screening further revealed
absence of particular genes associated with inflammation and
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oxidoreductase activity, including IL1RAP (Wood et al., 2009),
PIK3R1, PLCG1 (Jiang et al., 2018), CYP26B1, CYP4F11 (Jian
et al., 2018), and MICAL2 (Mariotti et al., 2016). A previous study
reported that accumulation of intracellular PM2.5 promoted
lysosomal destabilization and cell death (Dornhof et al., 2017). In
the present study, we found no evidence that lysosome mediated
PM2.5-induced apoptosis, although further studies are needed to
explore the relationship between lysosomal destabilization and
cell death, other than apoptosis.

The present study had some limitations. Firstly, we focused
on transporter genes, and did not evaluate the concentration
and accurate types of metals or minerals. Secondly, although
mineral transporters, such as TRPV6, have been shown to be
critical for PM2.5, particularly in inducing ROS production and
cell apoptosis, the underlying mechanism of transport remains
unclear, thus necessitating further exploration. Experimental
works at our laboratory are expected to clarify the role of metal
or mineral transport proteins in ROS-mediated PM2.5 toxicity.

CONCLUSION

Metals represent the main component of PM2.5, and these play
a crucial role in PM2.5 -induced apoptosis. The distribution of
metals into liver cells through the transporter induces apoptosis.
Our results identified several genes associated with mineral
absorption, including ATP1A2, ATP1B2, MT1M, and TRPV6,
and these were also related to ROS-mediated apoptosis, following
absorption of metals in PM2.5. Overall, these results provide
theoretical support for designing strategies for management of
injuries caused by PM2.5 particles.
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