
fbioe-09-673005 June 9, 2021 Time: 17:38 # 1

REVIEW
published: 15 June 2021

doi: 10.3389/fbioe.2021.673005

Edited by:
Stephan Klähn,

Helmholtz Centre for Environmental
Research (UFZ), Germany

Reviewed by:
John Michael Woodley,

Technical University of Denmark,
Denmark

Martin Weissenborn,
Leibniz Institute of Plant Biochemistry,

Germany

*Correspondence:
Patrik R. Jones

p.jones@imperial.ac.uk
Thomas Dandekar

dandekar@
biozentrum.uni-wuerzburg.de

Elena Bencurova
elena.bencurova@uni-wuerzburg.de

Specialty section:
This article was submitted to

Synthetic Biology,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 26 February 2021
Accepted: 06 May 2021

Published: 15 June 2021

Citation:
Scherer M, Fleishman SJ,

Jones PR, Dandekar T and
Bencurova E (2021) Computational

Enzyme Engineering Pipelines
for Optimized Production
of Renewable Chemicals.

Front. Bioeng. Biotechnol. 9:673005.
doi: 10.3389/fbioe.2021.673005

Computational Enzyme Engineering
Pipelines for Optimized Production
of Renewable Chemicals
Marc Scherer1, Sarel J. Fleishman2, Patrik R. Jones3* , Thomas Dandekar1* and
Elena Bencurova1*

1 Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany, 2 Department
of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel, 3 Department of Life Sciences, Imperial College
London, London, United Kingdom

To enable a sustainable supply of chemicals, novel biotechnological solutions are
required that replace the reliance on fossil resources. One potential solution is to utilize
tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste
to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize
biotechnological processes for renewable chemical biomanufacturing because of a
lack of highly active and specific biocatalysts. As experimental methods to engineer
biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable
computational tools that can speed up the identification or optimization of selective,
highly active, and stable enzyme variants for utilization in the biotechnological industry.
Here, we review and suggest combinations of effective state-of-the-art software and
online tools available for computational enzyme engineering pipelines to optimize
metabolic pathways for the biosynthesis of renewable chemicals. Using examples
relevant for biotechnology, we explain the underlying principles of enzyme engineering
and design and illuminate future directions for automated optimization of biocatalysts
for the assembly of synthetic metabolic pathways.

Keywords: computational, enzyme, engineering, design, biomanufacturing, biofuel, microbes, metabolism

INTRODUCTION

At the start of the third decade of the twenty-first century, humankind faces a multitude of
challenges regarding climate change (Arnell et al., 2019), air pollution (Wang et al., 2019), and a
shrinking number of intact ecosystems (Nolan et al., 2018) due to human activity. The demand
for sustainable solutions addressing the basis of chemical production, transport, and agriculture
to enable a net zero-carbon society is higher than ever before (Hoegh-Guldberg et al., 2019).
Hence, the development of technologies substituting fossil resources is an important goal of current
scientific research (Xu et al., 2018). Utilizing the synthetic power of microorganisms for the
sustainable production of bulk chemicals and fuels to replace chemicals currently generated from
fossil fuels and tropical plant agriculture is an important contributor toward the goal of achieving
a net zero-carbon society (Rodionova et al., 2017). In this regard, biosynthesis of hydrocarbons
in microorganisms can be a sustainable technological alternative to produce fuels for aviation
(Schirmer et al., 2010; Kallio et al., 2014a), a model of transportation for which competitive
electric solutions are still missing (Schäfer et al., 2019). The benefits of applying biocatalysts in the
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industrial production of commodity chemicals compared to
inorganic catalysts lie mostly in their ability to facilitate
enantioselective conversions at ambient conditions (temperature
and pressure) (Woodley, 2020). Additionally, the usage of
biocatalysts instead of metal catalysts, for example, can reduce the
amount of waste of chemical production because biocatalysts can
be recycled easily (Sheldon and Woodley, 2018).

Further optimization of biocatalysts can expand the solution
space of an enzyme and enable the identification of novel
synthetic pathways for biomanufacturing of chemicals (Erb
et al., 2017). Hence, engineering enzymes for tailored substrate
specificity (Amer et al., 2020; Eser et al., 2020), catalytic efficiency
(Risso et al., 2020), and stability (Goldenzweig et al., 2016; Yu
et al., 2017) are important for the implementation of novel
biosynthetic systems.

Efforts for enzyme engineering are exponentially growing
due to the demand for natural or biologically produced
chemical compounds, such as alcohols, hormones, or essential
oils, either by constructing de novo–designed pathways or by
optimizing existing ones (Marcheschi et al., 2013). In addition,
current progress in genome sequencing identified a number
of new enzymes or strain-specific variants that may be an
alternative for the application in biotechnology; however, in
a lot of cases, they are not stable or suitable for standard
expression strains. Currently, enzyme engineering efforts are
mostly based on rational engineering with low- and medium-
throughput screening of small libraries (Figure 1A) and directed
evolution-based approaches and high- and ultrahigh-throughput
screening (Figure 1B; Ma et al., 2021); nevertheless, also de novo
approaches start to get more attention and had been already
used in several works (DeLoache et al., 2015; Dou et al., 2018).
Interestingly, including computational tools (Romero-Rivera
et al., 2017) as evolutionary conservation analysis (Ashkenazy
et al., 2016), mutant structure modeling (Khersonsky et al.,
2018; Leman et al., 2020), and molecular dynamics (MD)
simulations (Yu and Dalby, 2018; Surpeta et al., 2020) is
becoming more abundant and has the potential to accelerate
the identification of highly stable and productive biocatalysts for
sustainable application (Figure 1C). The development of easy-to-
use software and tools available as online servers makes it possible
for researchers who are not experts in computational biology
to apply state-of-the-art computational protein engineering
methodology. On the other hand, the data from in silico
engineering do not necessarily correlate with experimental
data (Pucci and Rooman, 2016; Carlin et al., 2017), and thus
more advanced pipelines using multiple computational tools are
required for accurate mutant structure modeling and energy
predictions. The application of engineered proteins is versatile
and covering various technological branches from pharmaceutics
to bioelectronic devices (Kalyoncu et al., 2017) and biosensors
(Xiong et al., 2017; Kunjapur and Prather, 2019).

Our research in synthetic biology and metabolic engineering
is directed toward developing methods for bioproduction of
renewable chemicals with special emphasis on biofuel-producing
pathways. We and others have found that conventional strategies
such as directed evolution are not applicable to all enzymatic
reactions for lack of high-throughput assays that are required

for the effective use of laboratory-evolution strategies. This
has turned our attention to computational enzyme engineering
methodology that can guide the experimental efforts. It is
important to note that the modules described here can be applied
with necessary adjustments to all kinds of protein engineering
tasks and are therefore not limited to the field of metabolic
enzyme engineering. Still, the application of computational
methodology will be discussed on the example of metabolic
enzymes involved in biofuel production to highlight strengths
and limitations of such approaches on a particular field of
biotechnological research.

In this article, we review computational tools that can be
used to create a platform for fast and customizable modeling
and evaluation of promising enzyme variants in silico (Figure 2).
We focus on methods that have been experimentally validated
and shown to outperform conventional in vitro selection
methods. We conclude that computational enzyme engineering
can accelerate the development of synthetic metabolic pathways
for industrial use.

METABOLIC ENGINEERING OF FATTY
ACID BIOSYNTHESIS AND ENZYME
ENGINEERING FOR ENHANCED
PRODUCTION OF BIOFUELS

Fatty acyl compounds are an important target for engineering
microbial metabolism and chosen as example. By adding
heterologous enzymatic modules, fatty acid metabolism can
be redirected toward alkane/alkene biosynthesis (Liu and Li,
2020). Several metabolic pathways for the synthesis of alkanes
of varying chain length have been reported (Schirmer et al.,
2010; Bernard et al., 2012; Kallio et al., 2014b; Sorigué et al.,
2017; Yunus et al., 2018; Amer et al., 2020). However, the
production of the structurally similar class of alkenes, especially
medium- and short-chain length alkenes, remains a challenge.
Although first attempts at biosynthesis of medium- and short-
chain alkenes have been made (Dennig et al., 2015; Zhang et al.,
2019; Bauer et al., 2020), the substrate conversion efficiencies
remain low. Further optimization of metabolic pathways will be
required to facilitate future commercialization. The improvement
of key enzymatic properties, such as stability and modified
substrate specificity and activity, may be necessary, but that
is traditionally a cost-intensive and time-consuming task. For
example, in a study by Bao et al., single residues in the binding
pocket of the Synechococcus elongatus cyanobacterial aldehyde-
deformylating oxygenase (cADO) were targeted for site-directed
mutagenesis experiments. Substitution of small residues by
bulkier hydrophobic ones blocked parts of the binding pocket,
which led to a shift in substrate specificity. Depending on
the position of the substituted residue, specificity of the
engineered cADO variants ranged from C4 to C12 substrates (Bao
et al., 2016). With similar structure–function–based approaches,
residues near the active site of Chlorella variabilis NC64A fatty
acid photodecarboxylase (CvFAP) (Figure 3A) and Jeotgalicoccus
sp. ATCC 8456 OleTJE were targeted recently to engineer
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FIGURE 1 | Experimental protein engineering strategies and an idealized scheme for a design–test–build–learn cycle of optimizing enzymes using computation.
(A) Exemplified workflow for low- and medium-throughput enzyme engineering strategies. (B) Exemplified workflow for high- and ultrahigh-throughput enzyme
engineering strategies. (C) Design–test–build–learn cycle for industrial chemical production including computational methodology and
production–consumption–recycling cycle of chemical usage. Promising enzyme variants are identified computationally, which leads to targeted experimental testing.
The metabolic systems are then applied in microorganisms for industrial-scale production. The experimental implementation provides additional information for
computational optimization. Consumption of chemicals as biofuels results in the release of CO2, which can be recycled by microorganisms in bioreactors to close
the cycle.

substrate specificity of the enzymes for the short-chain-length
substrate butyric acid, enabling increased production titers
of propane (Amer et al., 2020) and propene (Bauer et al.,
2020), respectively. All these examples have in common that
a small library of rationally designed single-point or double
mutants was synthesized and tested for elevated production
levels and altered substrate specificities (Figure 1A). Despite
these successes, however, in many cases multiple mutations are
required to generate an enzyme variant with robust production
titers (Grisewood et al., 2017; Khersonsky et al., 2018; Trudeau
et al., 2018), and effects of enzyme destabilization upon mutations
may interfere with a beneficial effect on substrate binding
or catalysis (Trudeau and Tawfik, 2019). Therefore, adding
computational prediction and engineering tools to the overall
pipeline is likely to increase chances to identify an enzyme
variant with enhanced properties. Until now, the most common
method to engineer enzymes is by repetitive rounds of directed
evolution-based sequence randomization and high-throughput
screening (Figure 1B; Farinas et al., 2001). Such approaches are
time-consuming and heavily rely on the availability of a suitable

screening methodology, which has not been developed for
terminal-alkene production yet (Sulzbach and Kunjapur, 2020).
This emphasizes the importance of exploiting computational
engineering solutions, at least in the special case of alkenes.

COMPUTATIONAL PIPELINES TO
ENGINEER ENZYMES

Advances in the fields of structural bioinformatics,
computational modeling, and the availability of huge amounts
of DNA sequence data have led to the development of a variety
of computational tools that can speed up enzyme engineering
for biotechnological application. Computational enzyme
engineering and design methodology has been reviewed recently
for altering properties such as stability, substrate specificity, or
activity of biocatalysts (Ebert and Pelletier, 2017; Chowdhury and
Maranas, 2020; Sequeiros-Borja et al., 2020). Here, we describe
which enzymatic features are important for enzyme engineering
and design and how recently published computational tools
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FIGURE 2 | Computational enzyme engineering pipelines. Module 1: structure–function analysis to identify active site and substrate-binding pocket. Module 2:
building enzyme–substrate complexes with molecular docking approaches. Module 3: identification of design positions for the subsequent sequence design. Module
4: engineering stability of enzymes with PROSS and FireProt. Module 5: engineering activity and specificity of enzymes with FuncLib, IPRO, CADEE, and
HotSpotWizard. Module 6: screening for stability, affinity, and activity changes with DUET, STRUM, KDEEP, and mCSM-lig.

(Table 1) can facilitate the required steps from preparing the
input structure complexes to screening designed variants for
best performance. Combining these engineering steps, we
propose a pipeline for computational enzyme engineering and
design (Figure 2) that includes workflows for engineering
stability, activity, and specificity of enzymes. Depending on
the research objective, different engineering efforts can be
combined to first design a stable enzyme variant that can be
functionalized afterward. Advantages and disadvantages of the
most promising stand-alone software and web applications are
summarized in Table 2. Initially, a structure–function analysis
(Module 1) is performed. Then, Module 2 describes how to
build enzyme–substrate complexes. Subsequent analysis of
enzyme–substrate interaction and evolutionary conservation
analysis leads to the identification of design positions (Module
3). Next, the sequence space of the enzyme–substrate complex
can be designed for stability engineering (Module 4) and/or
activity and specificity engineering (Module 5). The pipelines
end with computational stability, affinity, and activity screening
(Module 6) to identify the best variants for experimental
testing. Additionally, we provide information on how
computational modules have paved the way and will speed

up the discovery of enzyme variants for increased chemical
production in the future.

MODULE 1: STRUCTURE–FUNCTION
ANALYSIS OF ENZYMES

Before starting to engineer an enzyme, a deep understanding
of the structural and dynamical underpinnings of enzymatic
function has to be acquired. The availability of a crystal structure
is still a prerequisite for successful rational engineering that
can be exemplified by the discovery of mutations in the
binding pocket changing the substrate specificity of the CvFAP
(Figure 3A; Amer et al., 2020), the thioesterase TesA (Deng
et al., 2020), and cADO (Bao et al., 2016). If the crystal structure
has not been determined yet, computer-based protein structure
prediction could generate models for structure–function analysis
(Roy et al., 2010; Webb and Sali, 2016; Yang et al., 2020), but it
is important to note that subsequent engineering heavily depends
on the quality of the enzyme model (Kuhlman and Bradley, 2019).
Recent advances in deep learning–based structure prediction are
likely to change this situation completely, alleviating step-by-step

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 673005

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-673005 June 9, 2021 Time: 17:38 # 5

Scherer et al. Pipelines for Computational Enzyme Engineering

FIGURE 3 | Optimization of enzymes with different engineering strategies with increasing amount of computational modeling and predictions. (A) Rational
engineering of CvFAP enzyme for the increased production of propane. (B) Rational engineering based on MD simulation data of SrCAR increased production of
benzaldehyde. (C) Semirational sequence design with IPRO of EcTesA for altered substrate specificity. (D) Semirational sequence design with FuncLib and
subsequent screening with the EVB approach to increase the catalytic efficiency of a Kemp eliminase GNCA4.
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the need for a crystal structure (Senior et al., 2020; Singh, 2020;
Torrisi et al., 2020). The field of ab initio structure prediction
has recently advanced tremendously through deep learning
methods and that its accuracy even surpasses that of high-quality
homology modeling and reaches the point of atomic accuracy.
With this, it is quite likely that such models would be good
starting points for protein design calculations, circumventing
laborious structure determination by experimental methods.

In cases where the exact location of the binding
pocket and active site of an enzyme is not known, MD
simulation-based approaches can be applied to analyze substrate-
binding trajectories and identify hidden binding pockets

(Petřek et al., 2006; Stank et al., 2017; Stourac et al., 2019).
The Caver 1.0 webserver, for example, was used to identify
residues forming the access tunnel and substrate-binding cavity
of the Serratia marcescens prodigiosin ligase PigC. Subsequent
targeting of these residues in mutagenesis experiments revealed a
double mutant with a shift in substrate preference by enhancing
the catalytic efficiency (kcat) 3.4-fold for the pharmaceutically
interesting short-chain prodiginines compared to the wild-type
PigC (Brands et al., 2021).

Furthermore, understanding the catalytic mechanism of an
enzyme can be helpful (Chen and Arnold, 2020). Simulating
the MD of Segniliparus rugosus carboxylic acid reductase

TABLE 1 | State-of-the-art software and online tools for computational protein engineering pipelines.

Module no. Method Tool/software References

Module 1 Protein structure prediction trRosetta, I-TASSER, MODELLER Roy et al., 2010; Webb and Sali, 2016; Yang et al.,
2020

MD-based binding pocket search TRAPP, CaverWeb1.0 Stank et al., 2017; Stourac et al., 2019

Molecular dynamics GROMACS, AMBER Salomon-Ferrer et al., 2013; Abraham et al., 2015

Protein–protein docking GalaxyHomomer, ZING Baek et al., 2017, 2019; Vangaveti et al., 2020

Module 2 Molecular docking GALigandDock Park et al., 2021

Module3 Protein–substrate interaction analysis Arpeggio, GSP4PDB Jubb et al., 2017; Angles et al., 2020

Evolutionary conservation analysis ConSurf, SMI-BLAST Ashkenazy et al., 2016; Jin et al., 2020

Dynamic cross-correlation analysis GROMACS + R Yan et al., 2000; Abraham et al., 2015; Yu and
Dalby, 2020

Module 4 Protein stabilization PROSS, FireProt Goldenzweig et al., 2016; Musil et al., 2017

Protein solubility prediction Protein-sol Hebditch and Warwicker, 2019

Module 5 Protein functionalization FuncLib, IPRO, CADEE, HotSpotWizard3.0 Pantazes et al., 2015; Amrein et al., 2017;
Khersonsky et al., 2018; Sumbalova et al., 2018

Module 6 Protein stability prediction DUET, STRUM, DynaMut Pires et al., 2014a; Quan et al., 2016; Rodrigues
et al., 2018

Protein–substrate binding affinity prediction KDEEP, mCSM-lig, Rosetta flexddG Pires et al., 2016; Barlow et al., 2018; Jiménez
et al., 2018

TABLE 2 | Advantages and disadvantages of selected state-of-the-art software and online tools for computational protein engineering.

Module no. Software Function in pipeline Advantages Disadvantages

Module 1 trRosetta Obtain enzyme structure model High accuracy of most enzyme structure
models

Enzymes lacking structural and sequence
similarity are often predicted with low
quality scores

GROMACS Understand catalytic mechanism and
conformational flexibility

Time-resolved sampling of overall enzyme
conformations and functional residues

Computation-intensive, requirement of
substrate and cofactor parameters for force
field

Module 2 GALigandDock Obtain enzyme–substrate complex Precise sub-angstrom enzyme substrate
docking

Location of binding pocket needs to be
known

Module 3 ConSurf Analyze evolutionary conservation of single
residues of enzyme

Fast and easy assessment of importance of
residues

Requirement of high number of
homologous sequences

Module 4 PROSS Stabilize enzyme–substrate complex Automated identification and modeling of
multipoint mutants with increased
expression and stability

Requirement of enzyme structure and a few
dozen homologous sequences

Module 5 FuncLib Engineer functionality of enzyme Automated identification and modeling of
multipoint mutants for functionality
screening

Requirement of enzyme structure and of a
few dozen homologous sequences

Module 6 DUET Predict stability changes of enzyme upon
mutation

Fast and easy assessment of changes in
stability due to mutation

Only stability changes due to single-point
mutations can be predicted

Rosetta
flexddG

Predict enzyme substrate affinity changes
upon mutation

Accurate prediction of changes in binding
affinity due to mutations (not only
single-point mutations)

Knowledge of Rosetta computing required
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(SrCAR) (Qu et al., 2019a), which catalyzes the reduction
of carboxylic acids to the corresponding aldehydes (Winkler,
2018; Figure 3B), sheds light on the structural underpinnings
of catalytic mechanism and conformational flexibility. The
information acquired by molecular dynamic simulation enabled
the discovery of an SrCAR single-point mutant that showed
an increase in enzymatic activity for benzoic acid by twofold
(Qu et al., 2019b). This example highlights how studying the
dynamic nature of catalysis in enzyme engineering can be used
for optimization strategies.

Many enzymes form complexes by the assembly of protein
subunits or monomers (Levy and Teichmann, 2013), as recently
discovered for CvFAP (Lakavath et al., 2020), or interactions
with additional molecules as cofactors to facilitate chemical
conversions (Kara et al., 2014). Therefore, it is important
to elucidate which residues are essential for such molecular
interactions to restrain residue positions during the engineering
process. Protein–protein interfaces and multimerization can be
predicted by protein–protein docking (Baek et al., 2017, 2019;
Vangaveti et al., 2020).

MODULE 2: BUILDING THE
ENZYME–SUBSTRATE COMPLEX

Modeling enzyme variants in the presence of the cognate
substrate has shown to be helpful for both activity and specificity
engineering (Jha et al., 2015; Grisewood et al., 2017; Risso
et al., 2020). Hence, obtaining an enzyme–substrate complex
with accurate substrate-binding poses or transition state complex
is the first step in the proposed computational pipeline.
Molecular docking is a widely used method in drug discovery
for identification of substrate-binding poses by searching the
conformational space for the best fit to the binding pocket of the
protein (Pagadala et al., 2017) and can be applied similarly in
enzyme engineering (Ebert and Pelletier, 2017). First molecular
docking algorithms mainly focused on docking small molecules
into a single static structure of a protein (rigid-body docking),
hence immensely reducing the complexity of computation under
the penalty of precision (Kuntz et al., 1982; Ebert and Pelletier,
2017). Over the years, molecular docking has advanced to take
the dynamic nature of substrate binding and the conformational
flexibility of enzymes into account (Pinzi and Rastelli, 2019). Such
flexible docking (Carlson, 2002; Davis and Baker, 2009; Forli
et al., 2016) or unbiased (Shan et al., 2011) and biased (Ebert
et al., 2017; Kokh et al., 2020) MD-based docking approaches
benefit from docking the substrate into an ensemble of structures
rather than one single structure (static), therefore describing
substrate-binding more accurately. Current methods in rigid-
body, flexible, and MD-based substrate docking were compared
elsewhere (Kotev et al., 2016). Still, engineering or design
of an enzyme–substrate complex requires almost atomic-level
accuracy, which may not be reached with the molecular docking
methods mentioned previously. Recently, a novel approach
called GALigandDock was reported that enabled small molecule
docking with sub-angstrom accuracy in the Rosetta framework
by force field optimization (Park et al., 2021). GALigandDock

outperformed the top current docking approaches in a cross-
docking benchmark set providing new directions for automated
enzyme–substrate complex modeling.

MODULE 3: IDENTIFICATION OF DESIGN
POSITIONS

After the enzyme–substrate complex has been prepared, the next
step is to identify residues (design positions or hotspots) that
are allowed to mutate during the sequence design steps (see
Modules 4 and 5). Computational tools that predict prominent
interactions between enzyme and substrate can be used to analyze
the basic molecular interaction network in the binding pocket
(Jubb et al., 2017; Angles et al., 2020). A prediction of the
importance of single residues or structural motifs can be achieved
based on an evolutionary conservation analysis (Ashkenazy et al.,
2016; Gil and Fiser, 2019; Jin et al., 2020), which can be helpful
to assess suitability of residues as design positions. The ConSurf
webserver for example was used to guide the engineering of
PigC (see Module 1) to exclude those residues from mutagenesis
experiments that showed high conservation scores as they are
likely to be essential for enzymatic function (Brands et al., 2021).
Depending on the engineering task, altering polarity and/or size
of binding pocket residues has to be considered to increase
activity or change specificity of the enzyme. It is important to
keep in mind that changes in activity and substrate specificity are
not always connected to mutations of the first shell. It has been
shown that second shell mutations or even remote mutations can
modulate functionality of enzymes (Trudeau et al., 2018; Wilding
et al., 2019; Osuna, 2020). Interaction networks that may span
the whole size of the enzyme facilitate conformational flexibility.
With the aid of MD simulations and dynamic cross-correlation
network analysis, such interaction networks can be identified
and targeted for engineering (see also Module 4; Yu and Dalby,
2018, 2020). Additionally, biased MD simulations can be used
to identify mutational hotspots by simulating substrate binding
as shown for the cytochrome P450 enzyme CYP102A1 (BM3)
binding palmitic acid (Ebert et al., 2017). In this study, simulating
the steered movement of the substrate toward BM3 revealed all
residues involved in substrate binding even a formally unknown
Q73 of the second shell of the binding pocket. Its importance
was proven by site-directed mutagenesis revealing a single-point
mutant that showed a fivefold increase of the Michaelis constant
(KM) compared to the wild-type BM3.

MODULE 4: ENGINEERING STABILITY
OF ENZYMES

For the engineering of protein stability, several strategies and
computational tools have been reviewed (Liu et al., 2019). In
general, engineering an enzyme to increase expression and
thermostability represents a versatile starting point to diversify
enzymatic function. The introduction of mutations into the
wild-type structure is likely to interfere with configurational
stability and hence functionality if a certain stability threshold is
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exceeded (Trudeau and Tawfik, 2019). From a biotechnological
viewpoint, engineering the stability of a biocatalyst can improve
its robustness against elevated temperature or organic solvents,
which makes it possible to accelerate chemical conversion rates at
industrial scale. Additionally, these enzymes may withstand the
introduction of mutations that enhance enzymatic activity and
specificity for a given substrate of interest.

To address this challenge, a combination of phylogenetic
analysis and the outstanding capacity of the Rosetta software
(Leaver-Fay et al., 2011) to screen and design conformational
space of an enzyme scaffold enabled the identification of
mutations that increased thermostability and expression levels.
One application that was developed also as a webserver is
called PROSS (Goldenzweig et al., 2016). PROSS uses sequence
alignment to exclude mutations without occurrence in homologs
sequences followed by modeling of mutant structures and
Rosetta energy calculations of the native state to identify fewer
than 10 candidates for experimental testing. Protein variants
designed by PROSS showed dramatically increased heterologous
protein expression yields underlining the ability of PROSS to
optimize enzymes for heterologous expression in industrial
microbial hosts as Escherichia coli (Goldenzweig et al., 2016).
In a recently published study, PROSS was used to design three
variants of the HIV-1 envelope glycoprotein gp140 with 17–45
mutations (Malladi et al., 2020). The gp140 variants maintained
similar antigenicity profiles as the wild type and showed
fourfold and twofold increases in protein yield, respectively.
Additionally, PROSS stabilization was shown to be affective
in designing enzyme variants of acetolactate synthase (AlsS)
from Bacillus subtilis for increased solubility in 8% isobutanol
while maintaining ∼80% of activity during a 5-day experiment
(Sherkhanov et al., 2020). In this case, three mutant variants
containing 20, 37, and 71 mutations, with and without three
deletions (six mutant variants in total), respectively, were tested
to identify one with increased solubility while maintaining
activity in 8% isobutanol. These two examples highlight the
applicability of PROSS-based protein design in biomedicine
and biotechnology.

Alternatively, the FireProt webserver uses a similar approach
that combines screening of stability changes (energy-based
mutations) and back-to-consensus analysis (evolution-based
mutations) that are summarized in a user-specific mutant library
(Musil et al., 2017). FireProt was used, for example, to engineer
a ketoreductase ChKRED12 for enhanced thermostability (Liu Y.
et al., 2021). In this case, FireProt identified 12 (energy-based)
and 17 (evolution-based) single-point mutations of ChKRED12,
respectively. While the multipoint variants containing all
identified mutations showed no activity, screening of 12 single-
point mutants predicted with the evolution-based approach
revealed four mutants with higher residual activity after 1.5 h of
heat treatment at 50◦C.

Both approaches, PROSS and FireProt, rely on Rosetta
modeling and energy calculations but also show some differences
as PROSS includes an option for specifying regions that will
be excluded from the calculations as active sites or protein–
protein interfaces. Additionally, PROSS designs a small library of
multipoint mutants, whereas FireProt identifies a larger library

of single-point mutations for experimental testing (Goldenzweig
et al., 2016; Musil et al., 2017). To visualize changes in enzyme
surface polarity due to the introduction of stabilizing mutations
by PROSS and FireProt, the Protein-Sol web tool can be used
(Hebditch and Warwicker, 2019).

An alternative strategy for stability engineering that requires a
higher degree of computational skills is based on MD simulations
and subsequent dynamic cross-correlation network analysis (Yu
and Dalby, 2020). This approach was used to generate multipoint
mutants of the E. coli transketolase (TK) based on four single
mutations and a double-mutant variant (Yu and Dalby, 2018).
The final quadruple mutant showed 10.2-fold increase in residual
activity after 1-h incubation at 60◦C.

MODULE 5: ENGINEERING ACTIVITY
AND SPECIFICITY OF ENZYMES

While the search for stabilizing mutations takes the whole amino
acid sequence of an enzyme into account (with exceptions),
rational and semirational engineering of functionality focuses
on residues that are directly or indirectly connected to the
catalytic center or binding pocket of an enzyme. Assuming a
simplistic correlation between binding pocket shape and the
ligand structure based on polarity and non-covalent bonding,
redesigning these properties allows the acceptance of novel
substrates to bind to the enzyme and ideally being processed
as the native substrate. This has been shown for substrate and
activity engineering of several enzymes connected to biofuel
production (see above). Of course, the reality is much more
complex, and, in many cases, multiple mutations are required
to substantially increase the activity toward a novel substrate
(Grisewood et al., 2017; Khersonsky et al., 2018; Trudeau et al.,
2018). Computational tools have been developed that target
such a goal with sequence design algorithms and subsequent
ranking of the energetics of enzyme variants (Pantazes et al.,
2015; Amrein et al., 2017; Khersonsky et al., 2018; Lapidoth
et al., 2018; Sumbalova et al., 2018). With the aid of the
IPRO (iterative computational protein library redesign and
optimization procedure) algorithm (Pantazes et al., 2015), for
example, scientists were able to redesign the E. coli thioesterase
TesA, which originally showed promiscuous activity to a
wide range of substrates (Figure 3C). After four rounds of
sequence design with IPRO, 54 TesA variants were screened
experimentally, 3 and 27 of them showed an increased mole
fraction of C12 and C8 fatty acids compared to the wild-type
TesA, respectively (Grisewood et al., 2017).

Alternatively, the FuncLib webserver has been used recently
to engineer the substrate specificity of the Salmonella enterica
acetyl-CoA synthetase (ACS). Screening of 29 ACS designs
revealed one multipoint mutant with five mutations in or
adjacent to the binding pocket that showed increased specificity
for the desired substrate glycolate by twofold and decreased
specificity for the native substrate acetate by eightfold at the
same time (Khersonsky et al., 2018; Trudeau et al., 2018).
The FuncLib algorithm is based on a four-step workflow
starting with a screening of the sequence space of the design
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positions of an enzyme input to allow only amino acid
substitutions with at least a modest probability of occurrence
in nature. Second, a mutant library in which all multipoint
mutants of the allowed mutations is enumerated in Rosetta.
The algorithm ranks the candidates after their stability and
destabilizing mutations are excluded. To ensure the generation
of a diverse set of multipoint mutants, the design candidates
are compared based on the introduced mutations, and if
similar designs occur, the less stable version(s) is (are) excluded
to avoid clustering (Khersonsky et al., 2018), resulting in
a condensed library (typically of a few dozen designs) for
experimental screening or further pruning through additional
computational steps. Forty-nine multipoint mutant variants
of the phosphotriesterase (PTE) from Pseudomonas diminuta
were tested, and 35 variants showed an increase in esterase
efficiency up to 1,000-fold. As a more radical approach to
engineer/design enzymes, the applicability of automated modular
backbone assembly was recently reported to generate highly
active enzymes with diverse substrate preferences (Lapidoth et al.,
2018) and hence represent a platform for future directions of
enzyme engineering and design. In both applications, FuncLib
and modular assembly, no enzyme–substrate or transitions state
complex was required.

An alternative web application, the HotSpot Wizard 3.0
webserver (Sumbalova et al., 2018), comprises a large number
of computational tools for modeling and assessment of protein
mutations for the generation of smart libraries. Again, Rosetta
software is included to calculate energy changes upon mutations
to select those mutations that have a stabilizing effect on the
enzyme structure. Interestingly, with the third version of HotSpot
Wizard, tools for enzyme structure prediction and model quality
assessment were added to increase applicability for the vast
amount of enzyme sequence data whose structure has not
been determined yet. Success for the application of HotSpot
Wizard 3.0 in enzyme engineering has been demonstrated
recently on the examples of engineering the kinetic stability
of a hyperthermostable β-mannanase (Liu Z. et al., 2021) and
enzymatic efficiency of a lytic polysaccharide monooxygenase
MtC1 (Guo et al., 2020).

Besides the computational methods described previously that
can be classified as semirational engineering strategies, a tool
for computer-aided directed evolution of enzymes (CADEE)
has been reported (Amrein et al., 2017). The method connects
automated high-throughput mutagenesis with computational
screening based on the empirical valence bond (EVB) approach
to identify substitutions that change the energetics of enzymatic
activation barriers and therefore might increase activity for
a given chemical reaction. On the downside, CADEE needs
a calibrated reference state based on experimentally tested
mutations to rigorously parameterize the EVB force field for
high-quality prediction (Amrein et al., 2017). Interestingly, the
EVB approach was successfully applied to identify variants of a de
novo Kemp eliminase enzyme (Figure 3D) generated by FuncLib
(Risso et al., 2020; see also Module 6).

Such pipelines in which fast bioinformatics and
macromolecular modeling calculations are used to select
designs for intensive but accurate transition-state modeling can

be an important next step that increases the accuracy of enzyme-
design methodology. The enzyme engineering applications
described above represent a variety of approaches that can be
used to engineer novel highly active and selective biocatalysts
in silico for industrial fuel biomanufacturing.

MODULE 6: SCREENING FOR STABILITY,
AFFINITY, AND ACTIVITY

Depending on the approach chosen in Modules 4 and 5,
the generated library of enzyme variants may exceed the size
that can be screened experimentally. Furthermore, designing
a diverse set of multimutation variants may require expensive
gene synthesis when experimental mutagenesis will be too
time-consuming. Therefore, computational screening of enzyme
stability, substrate-binding affinity, or activity can speed up the
process of identifying the best candidates for experimental testing
and simultaneously decrease the research expenses. Nevertheless,
prediction of the exact biophysical properties of an enzyme in
terms of changes in stability (Pucci et al., 2018; Montanucci
et al., 2019) and ligand-binding affinity (Wang et al., 2021)
upon mutation are still a great challenge and therefore require
intensive computation.

A variety of webservers were reported for fast prediction of
stability changes upon single-point mutations mainly applying
machine-learning approaches (Cheng et al., 2006; Pires et al.,
2014a,b; Quan et al., 2016). A review comparing the most
common machine learning–based approaches for protein
stability prediction upon mutations was published recently
(Fang, 2020). The impact of point mutations on dynamics of a
protein and stability are provided by the DynaMut webserver
(Rodrigues et al., 2018). These webservers can be useful for
rational engineering of enzymatic function to screen single
mutations for stabilizing effects. In contrast to the webservers
mentioned previously, applications such as FireProt, PROSS, and
FuncLib have an internal stability ranking with the Rosetta force
field included. Thus, additional screening for stability changes
is not necessary.

Similarly, the precision of applications for predicting the
impact of mutations on binding affinity is growing steadily.
A study by Aldeghi et al. (2018) compared different protein–
ligand binding affinity prediction approaches based on a
challenging benchmark set and showed that the Rosetta
protocol (flex_ddG) (Barlow et al., 2018), although originally
developed for prediction of protein–protein binding affinity
changes upon mutations, produced comparable results to
computation-intensive free energy calculations (Wang et al.,
2021). A combination of both further increased the precision
of the approach. Additionally, several webserver applications
such as mCSM-lig (Pires et al., 2016) or KDEEP (Jiménez
et al., 2018) were designed for the fast prediction of binding
affinity changes upon single-point mutations based on machine
learning algorithms.

Besides predictions of binding affinity changes, calculations of
activation free energy changes of the transition state with an EVB
approach proved to be useful for screening multipoint mutants

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 June 2021 | Volume 9 | Article 673005

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-673005 June 9, 2021 Time: 17:38 # 10

Scherer et al. Pipelines for Computational Enzyme Engineering

of a Kemp eliminase GNCA4 designed by FuncLib (Risso et al.,
2020). In this study, the 20 top-ranked GNCA4 variants were
tested, and 4 variants showed enhanced kcat values of up to one
magnitude compared to the GNCA4 WT (Figure 3D).

Still, accurate prediction on protein–ligand binding affinity
changes upon mutations, especially if multiple mutations are
involved, remains computationally demanding and requires a
high amount of knowledge of the underlying methodology and
biophysical parameters of ligand binding and enzymatic catalysis.
Nevertheless, future improvements of computational enzyme
engineering software led by a growing amount of experimental
data and advanced machine learning–based predictions will
further simplify and speed up the in silico analysis of mutant
enzyme models, similarly, modern methods in drug design and
drug delivery will speed up pharmacological applications.

CONCLUSION AND FUTURE
DIRECTIONS

Computational protein engineering promises a fast and efficient
identification of enzyme variants with altered properties tailored
for sustainable biomanufacturing of chemicals compared to
experimental engineering techniques. The need for stability,
specificity, and activity optimized biocatalysts drives the
improvement of software along the engineering pipelines
presented here. Still, proof of concept for the utilization of
generalizable engineering pipelines including enzyme structure
prediction, design, screening, and characterization of enzyme
variants in silico is missing. The Rosetta modeling suite
included in webserver applications and local software packages
presents the option to perform and automate most tasks
required in computational enzyme engineering by only one
software. Implementation of automated molecular docking

and screening platforms in webserver applications such as
FuncLib could further increase the performance of Rosetta-
based sequence design. The continuously increasing accuracy
of protein structures prediction by machine learning–based
approaches propels the development of fast and precise enzyme
modeling and engineering pipelines to complement experimental
engineering methodology or even open up the optimization
of biocatalysts for which experimental techniques are missing.
Complementing computational enzyme engineering with MD
simulations provides powerful means to understand how
mutations are affecting substrate binding and enzymatic activity.
In the future, such computational approaches will accelerate the
discovery of optimized protein-based solutions in general and
of biocatalyst in particular for biotechnological and biomedical
application. The computational pipelines described here can help
to overcome the experimental limitations in metabolic pathway
optimization on a protein level to enable, for example, industrial
scale production of biofuels.
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