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Scleroglucan is a non-ionic water-soluble polysaccharide, and has been widely used in the
petroleum, food, medicine and cosmetics industries. Currently, scleroglucan is mainly
produced by Sclerotium rolfsii. A higher level of scleroglucan (42.0 g/L) was previously
obtained with S. rolfsii WSH-G01. However, the production of scleroglucan was reduced
despite a higher glucose concentration remaining. Additionally, the molecular weight of
scleroglucan was large, thus restricted its application. In this study, by adjusting the state
of seeds inoculated, the degradation issue of scleroglucan during the fermentation process
was solved. By comparing different fed-batch strategies, 66.6 g/L of scleroglucan was
harvested by a two-dose fed-batch mode, with 53.3% glucose conversion ratio. Tomodify
the molecular weight of scleroglucan, a combination method with HCl and high-pressure
homogenization treatment was established. Finally, scleroglucan with molecular weight of
4.61 × 105 Da was obtained. The developed approaches provide references for the
biosynthesis and molecular weight modification of polysaccharides.
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INTRODUCTION

Scleroglucan is a microbial exopolysaccharide, and is a typical β-glucan (Bai et al., 2021; Valdez et al.,
2021). It consists of backbone β-1,3-linked-glucopyranosyl residues and branches of β-1,6-linked-
glucopyranosyl residues. Due to its special structure of every three sugar residues of the main chain
bearing a single β-1,6-linked-glucopyranosyl residue, the branching degree of scleroglucan is up to 0.33
(Castillo et al., 2015). This characteristic of high branching frequency endows scleroglucan with high
water solubility different to other types of β-glucans. In addition, scleroglucan is reported to have a higher
molecular weight (Tan et al., 2019; Elsehemy et al., 2020). Due to these outstanding properties of a unique
chemical structure and higher molecular weight, scleroglucan has significant advantages in terms of water
solubility, biocompatibility, pseudoplasticity, resistance to hydrolysis, salt tolerance, moisture retention
and viscosity stability (Barcelos et al., 2020; Song et al., 2020). It has been applied in the petroleum, food,
medicine and cosmetics industries (Giavasis, 2014; Li et al., 2020c).

Scleroglucan is mainly produced by the genus Sclerotium sp., including S. rolfsii, S. glucanicum,
and S. delphinii (Schmid et al., 2011; Gao et al., 2021). S. rolfsii is the dominant producer, which can
accumulate high concentrations of scleroglucan with diverse substrates, such as glucose, sucrose,
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xylose and molasses (Survase et al., 2007b; Taskin et al., 2010;
Leonor Valdez et al., 2019). Strategies have been introduced to
enhance its production, most of which were focused on the
selection of medium components and cost-effective
optimization of controlling fermentation conditions (Survase
et al., 2007a; Zhang et al., 2017; Valdez et al., 2021). In our
previous research, 42.0 g/L of scleroglucan was obtained with
the screened strain S. rolfsii WSH-G01 (Tan et al., 2019). The
molecular weight of the obtained scleroglucan reached 108 Da
and even 109 Da, while application of the polysaccharide was
greater when its molecular weight was below 106. The function
of scleroglucan was reported to be closely related to its
molecular weight. Water solubility is poor when the
molecular weight is too large, while the physiological
function is lost when the molecular weight is too low
(Kulicke et al., 1997; Farina et al., 2001; Castillo et al., 2015).
Therefore, the modification of scleroglucan to obtain an ideal
molecular weight is significant for improving its water solubility
while maintaining its original function.

Currently, the commonly used methods for polysaccharide
hydrolysis include physical hydrolysis, acid hydrolysis and
enzymatic hydrolysis (He et al., 2018; Hu et al., 2021).
Physical hydrolysis is a relatively fast and clean method, and
includes microwave, irradiation and ultrasonication; however,
the application of these methods is limited due to low yield and
high cost (Liu et al., 2021a). Recently, high-pressure
homogenization (HPH) as an emerging technology was used
for polysaccharide hydrolysis (Belmiro et al., 2018; Xie et al.,
2021). Acid hydrolysis is usually used for the degradation of
polysaccharides by controlling the pH value. However, this
method has some drawbacks, such as a wide distribution of
product molecular weight and poor homogeneity formation
(Lin et al., 2017). Enzymatic hydrolysis is considered the
optimal choice for the high regional-selectivity and
stereoselectivity of enzymes, but it also requires special
conditions for storage, reaction and removal from the
polysaccharide system (Cristina Vallejo-Garcia et al., 2019;
Zheng et al., 2020). For modification of the molecular weight
of scleroglucan, a suitable hydrolase with efficient capacity for
scleroglucan degradation was not found after the expression and
identification of β-glucanases from different microorganisms
(Zeng et al., 2021). Co-culture with Pichia pastoris GS115
expressed an endo-β-1,3-glucanase (glycoside hydrolase
family 55) from Trichoderma harzianum with S. rolfsii WSH-
G01, and the final polymerization degree was only 2–17 (Gao
et al., 2021), which did not fulfill the common requirement that
the molecular weight be between 105 and 106 Da.

In S. rolfsii, it was reported that β-glucanases and β-1,3-
glucanases were expressed to degrade scleroglucan in the late
fermentation stage (Farina et al., 2009; Tan et al., 2019). Based
on the whole genome sequencing, some β-glucanases and
β-1,3-glucanases were discovered and then overexpressed in
Pichia pastoris in our previous study. However, the results
showed that the hydrolysis effects of these identified
β-glucanases on scleroglucan degradation were extremely
weak (Zeng et al., 2021). In addition, the utilization of the
acid hydrolysis method alone to obtain the appropriate

molecular weight of modified scleroglucan was also
ineffective. In the present study, the fermentation process
was optimized to further enhance scleroglucan production.
Furthermore, the scleroglucan degradation method based on
HPH treatment was investigated to obtain the appropriate
molecular weight of scleroglucan. Finally, 66.6 g/L of
scleroglucan was produced by a two-stage fed-batch
fermentation strategy. In addition, an HCl-HPH
combination method was also established for scleroglucan
degradation, which resulted in the molecular weight of
scleroglucan being degraded to 4.61 × 105 Da. The methods
developed in this study could provide a reference for the
efficient fermentation, production and degradation of
scleroglucan and other polysaccharides.

MATERIALS AND METHODS

Strains
The wild-type strain S. rolfsii WSH-G01 (CCTCC M2017646),
which is a scleroglucan overproducer screened in our previous
work, was used in this study (Gao et al., 2018).

Medium and Culture Conditions
The medium for slant, seed cultures contained the following:
30.0 g/L glucose, 1.0 g/L yeast extract, 3.0 g/L NaNO3, 1.0 g/L
KH2PO4, 0.5 g/L KCl, and 0.5 g/L MgSO4·7H2O, at pH 4.0. In
the slant medium, 20 g/L agar was added. The fermentation
medium contained the following: 95.0 g/L initial glucose, 1.0 g/
L yeast extract, 3.0 g/L NaNO3, 0.5 g/L KCl, 0.5 g/L
MgSO4·7H2O, 1.0 g/L KH2PO4, 1.5 g/L citric acid, at an
initial pH of 4.0. All the components were autoclaved for
20 min at 115°C (Tan et al., 2019). In addition, different
concentrations of glucose sterilized before addition to the
medium were added based on the different fermentation
controlling strategies.

S. rolfsii was activated on PDA (potato dextrose agar) plates
at 30°C for 96 h and then inoculated into 500 ml shaking flasks
containing 50 ml culture medium for 60 h at 200 r/min and
30°C on a reciprocal shaker (Zhichu, Shanghai, China). The
fed-batch fermentation was performed in a 5 L fermenter (T&J
Bioengineering, Shanghai, China) with a 3.5 L working volume
at 400 r/min and 1.0 vvm (volume air per volume). The pH was
controlled automatically by adding 4.0 mol/L NaOH or
4.0 mol/L HCl according to the different strategies. The size
of the inoculation was 5% (v/v) and all cultivations were
carried out at 30°C. Different fed-batch strategies are
investigated. The initial glucose content was 95 g/L and the
total concentration of glucose was 125 g/L. For the two-dose
fed-batch mode, glucose was intermittently fed twice with
15 g/L each time at 36 and 60 h, respectively. For the three-
dose fed-batch mode, glucose was intermittently fed three
times with 10 g/L each time at 36, 48, and 60 h, respectively.
For the constant rate feeding fed-batch mode, glucose was
constantly fed at a rate of 1.25 g/(L·h) during 36–60 h. All
fermentations were performed in triplicate and the results
presented as mean values.
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FIGURE 1 | Time course of scleroglucan production using different
pH-shift controlling fermentation strategies. The pH was controlled at 4.0
in the early fermentation process, and then adjusted to 3.0 at different
times. (A) The pH was controlled at 4.0 before 36 h, and maintained
at 3.0 after 36 h. (B) The pH was controlled at 4.0 before 45 h, and
maintained at 3.0 after 45 h. (C) The pH was controlled at 4.0 before 54 h,
and maintained at 3.0 after 54 h.

FIGURE 2 | Time course of scleroglucan production using different
feeding methods. The initial glucose concentration was 95.0 g/L and
30.0 g/L of glucose was added with different feeding approaches. (A)
Two-dose fed-batch strategy (15.0 g/L of glucose was added at 36
and 60 h, respectively). (B) Three-dose fed-batch strategy, (10.0 g/L of
glucose was added at 36, 48, and 60 h, respectively). (C) Constant speed
feeding strategy (1.25 g/(L·h) of glucose was continuously added from 36
to 60 h).
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Combined HCl-HPH Treatment of
Scleroglucan
The pure sample of scleroglucan extracted from fermentation broth
(the extraction method of scleroglucan was showed in Analytical
Method) was re-dissolved in distilled water. Then, 0.20 mol/L of HCl
was added and the solution was hydrolyzed in a water bath at 90°C
for different times (2, 4, 6, 8, and 10 h). After cooling to room
temperature, the pH of the hydrolysis system was adjusted to 7.0
with 2.0 mol/L NaOH. The HPH treatment was then conducted at
80MPa for 25 s and the operation was repeated nine cycles.

Analytical Method
Determination of dry cell weight (DCW): The samples of
fermentation broth were diluted five times with distilled

water and the pH was adjusted to 7.0 with 2.0 mol/L NaOH
or 2.0 mol/L HCl. The diluent solutions were then centrifuged
at 10,000 × g for 30 min after being heated at 80°C for 30 min in
a water bath. The cells were washed three times with ultrapure
water and then dried at 105°C to a constant weight.

Extraction of scleroglucan and determination of its production:
The fermentation broths obtained at different time points were
diluted 3-fold by distilled water and mixed well. The supernatant
was then obtained by centrifuging at 10,000 × g after being heated
at 80 C in a water bath for 30min. The pH of the supernatant was
adjusted to 7.0 with 2.0 mol/L NaOH or 2.0 mol/L HCl. After
adding an equal volume of anhydrous ethanol, scleroglucan was
harvested by the alcohol deposition method at 4 C for 16 h. The
production of scleroglucan was determined after freeze-drying to
constant weight.

FIGURE 3 | Effects of different pressures and cycles with HPH treatment on the molecular weight of scleroglucan. (A) Molecular weight (MW) chromatogram of
scleroglucan treated with 20 MPa. (B) Molecular weight chromatogram of scleroglucan treated with 40 MPa. (C) Molecular weight chromatogram of scleroglucan
treated with 60 MPa. (D) Molecular weight chromatogram of scleroglucan treated with 80 MPa. (E) Molecular weight chromatogram of scleroglucan treated with
different pressures for nine cycles. (F) Distribution of scleroglucan in the molecular weight range of 106–108. The control was the sample not treated with HPH. The
dotted lines represent the standard curve of scleroglucan molecular weight (1.80 × 102–2.00 × 106 Da). MW, Molecular weight.
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Determination of the concentrations of glucose and organic acids:
Glucose and oxalic acid were determined by high performance liquid
chromatography (HPLC, Agilent 1260, CA, United States) with an
Aminex HPX-87H column (Bio-Rad, CA, United States). The
elution conditions were as follows: 5 mmol/L H2SO4 of mobile
phase, 0.4 ml/min flow rate, 40°C column temperature and 10 µl
injection volume. Glucose was detected by applying the differential
refraction index detector, and oxalic acid was detected by an UV
detector at 210 nm (Gao et al., 2018; Tan et al., 2019).

Determination of the molecular weight of the polysaccharide:
The molecular weight of scleroglucan treated with HPH was
determined by high performance gel penetration
chromatography (HPGPC, Waters, MA, United States) with a
Shodex OHpak SB-806M HQ (Shodex, Tokyo, Japan). The
detection conditions were as follows: parallax detector, 0.1 mol/
L NaNO3 of mobile phase, 1.0 ml/min flow rate, 40°C column
temperature and 50 µl injection volume. The differential refraction
index detector was used.

RESULTS AND DISCUSSION

Solution of the Scleroglucan Degradation
During the Fermentation Process
In a previous study, 42.0 g/L of scleroglucan was produced by
S. rolfsii WSH-G01, and further enhancement of

scleroglucan production was difficult. The production of
scleroglucan was gradually decreased and the content of
substrate glucose was increased in the late stage of the
fermentation process (Tan et al., 2019). The expression of
β-glucanases and β-1,3-glucanases was initially considered
to be the main reason for this phenomenon, as studies have
reported that S. rolfsii can express some glucanohydrolases
that degrade scleroglucan into glucose, providing energy to
maintain basic cell growth and metabolism (Bateman, 1972;
Martin et al., 2007). However, the effect of β-glucanases on
scleroglucan degradation was determined to be weak
through mining the autologous β-glucanase genes in S.
rolfsii (Zeng et al., 2021). In addition, it was reported that
other factors could also affect accumulation of the target
product during the fermentation process, such as the seed
culture and fermentation conditions (Sun et al., 2020b; Tian
et al., 2020).

To solve the issue of scleroglucan degradation,
adjustments to the fermentation process were introduced.
The seeds inoculated were in the mid-log phase, and the seed
culture time was adjusted from 72 to 60 h on the reciprocal
shaker. In addition, to better suit the changed state of the
seeds inoculated, three different time points for pH
adjustment (36, 45, and 54 h) were compared based on a
previously established pH-shift strategy and one-dose fed-
batch strategy. The results are shown in Figure 1. The titer of

FIGURE 4 | Effects of different HCl pretreatment conditions with the combination HCl-HPH method on molecular weight of scleroglucan. (A) Molecular weight
chromatogram of scleroglucan pretreated with different concentrations of HCl (0.05, 0.10, 0.2, 0.30, and 0.50 mol/L) using the HCl-HPH method. (B)Molecular weight
chromatogram of scleroglucan pretreated with 0.10 mol/L HCl using the HCl-HPH method at different temperatures. (C) Molecular weight chromatogram of
scleroglucan pretreated with 0.20 mol/L HCl using the HCl-HPHmethod at different temperatures. (D)Molecular weight chromatogram of scleroglucan pretreated
with 0.30 mol/L HCl using the HCl-HPH method at different temperatures. The control was the sample not pretreated with HCl. The dotted lines represent the curve of
scleroglucan molecular weight (1.80 × 102–2.00 × 106 Da). MW, Molecular weight.
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scleroglucan was 27.7 g/L, 32.2 g/L and 32.2 g/L according to
the three time points of pH adjustment at 36, 45, and 54 h,
respectively. Compared with the previous results (Tan et al.,
2019), the titer of scleroglucan was reduced, but the decrease
in scleroglucan production did not appear in the late stage of
the fermentation process. In addition, accumulation of the
by-product oxalic acid was below 5 g/L. Considering the
increased rate of scleroglucan in the late stage of the

fermentation process, the time point for pH adjustment at
54 h was selected for the subsequent optimization process.

Comparison of Different Fed-Batch
Strategies on Scleroglucan Production
To further enhance the production of scleroglucan, various
feeding strategies were tested with the exception for the

FIGURE 5 | Effects of different scleroglucan concentrations with the combination HCl-HPH method on the molecular weight of scleroglucan. (A)Molecular weight
chromatogram of different scleroglucan concentrations treated using the HCl-HPH method for 2 h. (B) Molecular weight chromatogram of different scleroglucan
concentrations treated using the HCl-HPH method for 4 h. (C) Molecular weight chromatogram of different scleroglucan concentrations treated using the HCl-HPH
method for 6 h. (D) Molecular weight chromatogram of different scleroglucan concentrations treated using the HCl-HPH method for 8 h. (E) Molecular weight
chromatogram of different scleroglucan concentrations treated using the HCl-HPH method for 10 h. (F)Molecular weight change of scleroglucan (with high or medium
molecular weight) treated using the HCl-HPH method for the samples with different scleroglucan concentrations. The dotted lines represent the curve of scleroglucan
molecular weight (1.80 × 102–2.00 × 106 Da). MW, Molecular weight.
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previously applied single-dose fed-batch mode. These strategies
included the two-dose fed-batch mode, three-dose fed-batch
mode and constant rate feeding fed-batch mode. The results
are shown in Figure 2. The two-dose fed-batch mode yielded the
best results, with the highest scleroglucan production being
66.6 g/L, a glucose conversion ratio of 53.3%, and productivity
of 0.4 g/(L·h). Compared with the fed-batch process, the titer of
scleroglucan was enhanced by 106.8%, and compared with the
previous result (Tan et al., 2019), the titer of scleroglucan was
enhanced by 58.7%.

The fed-batch mode is a usual strategy for improving the
output of some target products, including the feeding of
substrate or other ingredients. Different feeding modes also
have diverse influences, such as the intermittent fed-batch
mode and constant rate feeding fed-batch mode (Sun et al.,
2020a; Liu et al., 2021b). In our previous research, diverse fed-
batch strategies were established for specific products with
different microorganisms, such as the one-dose fed-batch
mode for enhancement of 2-phenylethanol (Tian et al.,
2020), a multi-intermittent fed-batch mode for 2-keto-D-
gluconic acid production (Zeng et al., 2019), and a
constant rate feeding fed-batch mode for the simultaneous
biosynthesis of α-ketoglutarate and pyruvate (Zeng et al.,
2017). In this study, the production and glucose conversion
efficiency were significantly enhanced with the intermittent
fed-batch mode, while the productivity showed a slight
decline. In the future, optimization could be conducted to
further enhance the productivity and scleroglucan
production, such as adding nitrogen sources, and

improving the performance of strain and fermentation
parameters.

Effects of HPH Treatment on Scleroglucan
Molecular Weight
Homogenization technology is the most widely used method for
emulsifying and refining. The high-pressure homogenization
(HPH) procedure possesses distinguishing advantages in high
shear stress, high-frequency oscillation, and cavitation (Xie et al.,
2018; Li et al., 2020b). It is often employed in food processing to
reduce the particle size of solid substances and improve the
quality of products, such as yogurt, fruit and vegetable juice
(Wellala et al., 2020; Levy et al., 2021). HPH technology has been
increasingly used in polysaccharide processing, and is mainly
used to reduce the molecular weight of polysaccharides. For
example, the structural characteristics of tamarind seed
polysaccharides were obviously changed after HPH treatment,
and therefore, affected the physicochemical properties of corn
starch (Xie et al., 2021). In addition, it was reported that the
viscosity of polysaccharides could also be reduced by HPH
treatment (Villay et al., 2012).

To modify the molecular weight of scleroglucan for wider
application value, the effects of HPH treatment on scleroglucan
molecular weight was investigated. The content of scleroglucan in
the sample was 1.0 g/L. The effects of different pressures (20, 40,
60, and 80 MPa) and different cycles (1, 3, 5, 7, and 9) were
compared (Figures 3A–E). The result showed that HPH
treatment has an effect on reducing the molecular weight of

TABLE 1 | Molecular weight of scleroglucan (105–106) and its peak proportion in the samples with different scleroglucan concentrations.

Conditions Molecular weight (Da) Peak proportion (%)

1.0 g/L scleroglucan treated for 2 h 4.50 × 106 0.27
2.5 g/L scleroglucan treated for 2 h 5.61 × 106 0.54
5.0 g/L scleroglucan treated for 2 h 2.46 × 106 5.91
7.5 g/L scleroglucan treated for 2 h 4.92 × 106 2.29
10.0 g/L scleroglucan treated for 2 h 2.45 × 106 2.75
1.0 g/L scleroglucan treated for 4 h 6.74 × 106 0.16
2.5 g/L scleroglucan treated for 4 h 6.44 × 106 0.66
5.0 g/L scleroglucan treated for 4 h 4.78 × 106 5.19
7.5 g/L scleroglucan treated for 4 h 3.86 × 106 2.19
10.0 g/L scleroglucan treated for 4 h 2.49 × 106 2.19
1.0 g/L scleroglucan treated for 6 h 6.53 × 106 0.22
2.5 g/L scleroglucan treated for 6 h 3.79 × 106 0.74
5.0 g/L scleroglucan treated for 6 h 4.40 × 106 4.72
7.5 g/L scleroglucan treated for 6 h 2.46 × 106 2.13
10.0 g/L scleroglucan treated for 6 h 2.42 × 106 2.84
1.0 g/L scleroglucan treated for 8 h 3.26 × 106 0.06
2.5 g/L scleroglucan treated for 8 h 3.64 × 106 0.49
5.0 g/L scleroglucan treated for 8 h 1.60 × 106 3.72
7.5 g/L scleroglucan treated for 8 h 2.31 × 106 2.12
10.0 g/L scleroglucan treated for 8 h 2.07 × 106 2.84
1.0 g/L scleroglucan treated for 10 h /a /a

2.5 g/L scleroglucan treated for 10 h 4.61 × 105 4.80
5.0 g/L scleroglucan treated for 10 h 8.88 × 105 2.55
7.5 g/L scleroglucan treated for 10 h 2.53 × 106 1.50
10.0 g/L scleroglucan treated for 10 h 2.29 × 106 3.05

aThe molecular weight of the 1.0 g/L scleroglucan sample was 321 Da and its peak proportion was 71.23% after treatment with the HCl-HPH method (the time of HCl pretreatment
was 10 h).
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scleroglucan. The molecular weight of scleroglucan in the range
of 106–108 was determined after HPH treatment, and the range of
molecular weight was gradually degraded with increasing
treatment pressure and cycle. A type of scleroglucan with a
molecular weight of 5.6 × 106 Da was obtained under the
treatment conditions of 80 MPa and nine cycles. However,
scleroglucan with the highest molecular weight was not
degraded. Degradation was not obviously affected by
increasing the number of cycles below 80 MPa (Figure 3F). In
addition, it was not feasible to obtain the desired scleroglucan
with lower molecular weight by further increasing the processing
pressure, which was limited by the experimental equipment.

Establishment of the HCl-HPH Combination
Method for Scleroglucan Degradation
The molecular weight of the obtained scleroglucan was still too
large, which was limited by utilization of the HPH treatment
alone. Other strategies should be included to further modify
scleroglucan. Recently, several combination methods with
different single processes were established for polysaccharide
modification, such as enzymatic hydrolysis combined with
hydrothermal pretreatment for pectin (Wang et al., 2021), acid
hydrolysis combined with an induced electric field for guar gum,
chitosan and pectin (Li et al., 2020a). Acid hydrolysis with HCl,
H2SO4 or organic acids is an effective method for polysaccharide
degradation (Nguyen et al., 2020; Shi et al., 2020; Liu et al., 2021a).
In this study, an HCl-HPH combination method was attempted
to establish scleroglucan degradation. Based on the obtained
conditions of HPH treatment, the parameters of HCl
treatment were further optimized.

Firstly, the effects of different HCl concentrations (0.05, 0.1,
0.20, 0.30, and 0.50 mol/L) on the molecular weight of
scleroglucan were investigated. Treatment with HCL only at
60°C for 2 h was not obtained the desired molecular weight of
scleroglucan (Supplementary Table S1). Combining with HPH
treatment, the molecular weight could be modified, and reduced
to 1.62 × 106 Da with 0.2 mol/L HCl pretreatment, but it still did
not reach the desired range. It was found that the molecular
weight decreased with increased HCl concentration at
0.05–0.20 mol/L, while it increased with continuous enhanced
HCl concentration (Figure 4A, Supplementary Table S2). It was
speculated that the higher molecular weight of scleroglucan was
decomposed by high HCl concentrations, which usually has
better capacity in polysaccharide degradation (Nguyen et al.,
2020). Additionally, the degradation effects were further tested
with different HCl concentrations (0.1, 0.2, and 0.3 mol/L) under
higher treatment temperatures (70, 80, and 90°C) (Figures
4B–D). The results showed that the effect of pretreatment
with 0.2 mol/L HCl at 90°C was best, producing scleroglucan
of 1.32 × 106 Da (Supplementary Table S3).

The influence of prolonged HCl pretreatment was further
investigated. Simultaneously, different initial concentrations of
scleroglucan (1.0, 2.5, 5.0, 7.5, and 10.0 g/L) with higher
molecular weight were selected, which were extracted from
samples in the middle of the scleroglucan fermentation
process. Figure 5 shows the molecular weight changes in

scleroglucan at different times with HCl pretreatment. The
specific molecular weight of scleroglucan ranged from 105 to
106 Da and its peak proportion in the samples are shown in
Table 1. These results showed that the established HCl-HPH
combination method could be applied to modify scleroglucan.
The desiredmolecular weight of modified scleroglucan was 4.61 ×
105 Da and 8.88 × 105 Da by treating an initial 2.5 g/L of
scleroglucan and 5.0 g/L of scleroglucan for 10 h, respectively,
and the peak proportions were 4.80 and 2.55%, respectively. In
the future, several optimizations should be introduced to enhance
the peak proportion of the target modified scleroglucan. For
example, because of limiting by the experimental equipment, the
effect of higher processing pressure on the scleroglucan
modification was not implemented in this study. The results
showed that the degradation effect was obvious with the increased
pressure, which could be considered for further dealing with the
large amounts and high production. In addition, the enzymatic
hydrolysis could also be combined with the established HCl-HPH
method, though there are still no reports about enzymes that can
efficiently degrade scleroglucan.

CONCLUSION

In this study, the decrease in scleroglucan production during the
fermentation process was resolved by adjusting the state of the
seeds inoculated. Additionally, by establishing a two-dose fed-
batch mode, the production of scleroglucan was further
enhanced, reaching 66.6 g/L, with a 53.3% glucose conversion
ratio and productivity of 0.40 g/(L·h). Furthermore, based on
optimizing the conditions of HPH treatment and HCl treatment,
a combination HCl-HPH method was established for modifying
the molecular weight of scleroglucan, which produced
scleroglucan of 4.61 × 105 Da. These established methods
could provide a reference for the biosynthesis and molecular
weight modification of scleroglucan and other polysaccharides.
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