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Osteonecrosis without effective early treatment eventually leads to the collapse of the
articular surface and causes arthritis. For the early stages of osteonecrosis, core
decompression combined with bone grafting, is a procedure worthy of attention and
clinical trial. And the study of bone graft substitutes has become a hot topic in the area of
osteonecrosis research. In recent years, polymers have received more attention than other
materials due to their excellent performance. However, because of the harsh
microenvironment in osteonecrosis, pure polymers may not meet the stringent
requirements of osteonecrosis research. The combined application of polymers and
various other substances makes up for the shortcomings of polymers, and to meet a
broad range of requirements for application in osteonecrosis therapy. This review focuses
on various applying polymers in osteonecrosis therapy, then discusses the development of
biofunctionalized composite polymers based on the polymers combined with different
bioactive substances. At the end, we discuss their prospects for translation to clinical
practice.
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INTRODUCTION

Osteonecrosis is a disease caused by a temporary or permanent loss of blood supply to the bone. The
causes of osteonecrosis are extensive, and the pathogenesis is still unclear (Guo et al., 2014; Cui et al.,
2021; Hines et al., 2021). The potential pathogenic factors that have been explored include trauma
(Pascarella et al., 2019), long-term history of heavy drinking (Chen et al., 2017), hyperlipidemia
(Mogensen et al., 2017), history of hormone medication (Li et al., 2018b), decompression sickness
(Jones et al., 1993), and blood system diseases such as Gaucher disease (Reed et al., 2018) and sickle
cell anemia (Severyns and Gayet, 2021) among others. The loss of blood supply to bone tissue leads to
a decrease in the activity of bone cells, which leads to bone destruction (Zhou et al., 2019).

The destruction of bone activates the self-repair response of bone tissue (Shrivats et al., 2014)
[including vascular regeneration, new bone formation, and sequestered bone resorption (Mont et al.,
1998)]. However, the self-repair response of bone tissue is hindered by the harsh microenvironment
of the osteonecrosis site (Zheng et al., 2015). Ineffective repairs such as fibrous tissue repair cannot
replace the original bone tissue in terms of structure and support performance. Therefore,
osteonecrosis involving joints often leads to the gradual collapse of the articular surface, which
in turn causes arthritis (Calder et al., 2001; Hernigou et al., 2020; Cui et al., 2021).
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At present, in both basic research on and clinical application of
osteonecrosis treatments, there are a large number of studies that
report various constructive methods. Systemic management may
be unsuitable for osteonecrosis because the unavoidable problems
of systemic treatment include insufficient local osteonecrosis
concentration and systemic side effects. Recently, researchers
to treat osteonecrosis locally through injection of stem cells
(Piuzzi et al., 2017), growth factors (Rackwitz et al., 2012;
Peng and Wang, 2017), cytokines (Rackwitz et al., 2012; Peng
and Wang, 2017; Yang et al., 2018), various drugs (Feng et al.,
2017; Guo et al., 2017; Huang et al., 2018), and hormones
(Bakhshi et al., 2012; Zhou et al., 2017) at the site of
osteonecrosis to achieve local treatment of osteonecrosis.
These basic researchs have had varying outcomes. However,
such local injection therapies face problems such as leakage,
burst release, and loss of biological activity (Li et al., 2009; Tai
et al., 2013; Phipps et al., 2016).

In clinical application, surgical treatment is the most important
means. Surgical therapies, including core decompression, osteotomy,
arthroplasty, and so forth, have been developed in clinical practice, but
they are also subject to limitations, such as the narrow scope of
application and repeated revision operations (Cao et al., 2016). At
present, for the early stage of osteonecrosis, core decompression
combined with bone grafting is widely practiced (Andronic et al.,
2021). Both autologous bone grafting and allogeneic bone grafting
meet the surgical needs. However, autologous bone grafting is limited
by insufficient donor supply and secondary damage to and
complications at the donor site, and allogeneic bone grafting faces
issues such as immune rejection. These problems limit the clinical
application of bone grafting (Lord et al., 1988; Stevenson et al., 1996).

Thanks to the development of biotechnology and materials
science, many biomaterials are available to make bone substitute
materials to cope with the problems in bone grafting. Among them,
polymers are widely used in the study of osteonecrosis because of their
excellent biocompatibility and biodegradability. This article focuses on
applying various polymers in osteonecrosis and elaborates and
summarizes the current research. Then, the different functions of
various polymers combined with different substances are discussed.
Finally, the application of polymers in the treatment of osteonecrosis
and future outlook are summarized. We aim to provide a
comprehensive review of the application of polymers in the
treatment of osteonecrosis and a meaningful theoretical basis
further to advance the treatment of osteonecrosis with biomedical
polymer materials.

POLYMERS USED IN OSTEONECROSIS
THERAPY

Biocompatibility, biodegradability, and certain mechanical properties
are required for biomaterials used in osteonecrosis research (Zhu et al.,
2020). Biocompatibility is the primary criterion for tissue engineering
materials. It allows cell adhesion, migration, and proliferation without
triggering an immune response and severe inflammation (Williams,
2008). Appropriate biodegradability and certain mechanical
properties are also characteristics that osteonecrosis repair
biomaterials need to have. Biomaterials with appropriate

biodegradability and mechanical properties provide sufficient
support before new bone is formed in the osteonecrosis area to
avoid articular surface collapse and pathologic fracture. Biomaterials
are degraded to a certain extent over time, providing enough space to
form new bone tissue (Zhang et al., 2019a; Zhu et al., 2020). In
addition, this feature also allows biomaterials to be used as carriers of
small molecules (Phipps et al., 2016; Zhang et al., 2019a; Zhu et al.,
2020). When biomaterials are degraded, the contained substances are
released into the environment. The degradation of biomaterials and
the absence of any toxic byproducts also avoid the body’s immune
response to foreign substances and subsequent inflammation (Zhang
et al., 2019a; Zhu et al., 2020).

Polymers are mainly divided into two types, natural and synthetic
(Zhang et al., 2019a; Zhang et al., 2019b). At present, natural polymers
such as alginate, chitosan, and peptide chain hydrogels have been used
in various forms for research on osteonecrosis. Because of their
inherent extracellular matrix structure, these natural polymers
exhibit better biological properties than synthetic polymers in
terms of cell proliferation and differentiation and hydrophobicity
(Chen et al., 2011). However, synthetic polymers also have some
advantages, including better mechanical strength, higher processing
capability, and a more controllable degradation rate than natural
polymers.

Polymers that are often used in the treatment of osteonecrosis are
poly (lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL),
polylactide (PLA), poly (propylene fumarate) (PPF) (Chen et al.,
2011; Zhu et al., 2020). Various materials have different advantages
and disadvantages. Furthermore, it is difficult for a single polymer to
meet the requirements of suitable biocompatibility, biodegradability,
porosity, and certain mechanical support properties at the same time.
In order to overcome these limitations, natural polymers, synthetic
polymers, cells, small molecule drugs, and other substances are
combined (Table 1). These hybrid biomaterials combine the
advantages of various materials to meet more requirements, such
as better biological activity, more robust mechanical properties, more
controllable degradation, and more convenient manufacturing
capability (Lee et al., 2014b; Feng et al., 2019).

Natural Polymers in Osteonecrosis Therapy
Because natural polymers have the characteristics of biocompatibility
and biodegradability—and the biological functional molecules on the
surface of natural polymers are conducive to cell adhesion,
aggregation, proliferation, and differentiation—natural polymers
are widely used in tissue engineering. Various natural polymers
such as chitosan, alginate, and peptide chain hydrogel have been
made into bone substitute materials for osteonecrosis therapy (Zhang
et al., 2019a).

Chitosan and Its Derivatives
Chitosan is a linear polycationic polysaccharide polymer
derivative of chitin. A large number of research reports
show that chitosan has good biocompatibility, high
biodegradability, low allergenicity, antibacterial properties,
and wound healing activity. Chitosan can be easily
extracted from shellfish and other seafood waste. However,
the poor solubility of chitosan in neutral and alkaline media
limits the direct application of chitosan in medicine and
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biomedicine (Prabaharan and Mano, 2005; Bhattarai et al.,
2010; Fonseca-Santos and Chorilli, 2017). Chitosan is easily
carboxy-methylated to produce carboxymethyl chitosan
(CMC). The solubility of CMC in aqueous media is greatly
enhanced, while biodegradability and biocompatibility are
maintained. Moreover, CMC is easy to modify chemically
and has a high affinity for macromolecules in the body.
CMC is widely used in biomedicine and various tissue
engineering fields (Fonseca-Santos and Chorilli, 2017). Xu
et al. (2021) manufactured a carboxymethyl chitosan/
alginate scaffold (CMC/ALG) by a lyophilization approach
and loaded BMMSC and EPCs on the scaffold. Their research
confirmed that the scaffold has good biocompatibility
(Figure 1A) (porosity, low cytotoxicity, and excellent cell
adhesion). The researchers established a rabbit model of
steroid-induced osteonecrosis of the femoral head (ONFH)
(Figure 1B). After CD was performed on the necrotic femoral
head, a CMC/ALG/BMMSC/EPC scaffold was implanted into
the rabbit femoral head. Two weeks later, the results of

radiological evaluation and histological analysis showed that
the CMC/ALG/BMMSC/EPC group achieved the best curative
effect in the repair of osteonecrosis in each group (Figure 1C).
They observed that the CMC/ALG/BMMSC/EPC group had
significant bone formation and angiogenesis and decreased fat
production, which promoted the repair of ONFH.

Alginate
Alginate is a frequently used biomedical material, often for drug
delivery, cell embedding, tissue embedding, and cartilage tissue
regeneration (Chen et al., 2014). Alginate has good water
solubility and good biocompatibility and can be made into a
gel (Majima et al., 2005). Alginate is often made into an injectable
gel for surgery (Goodship and Birch, 2005), and many researchers
use it for research on osteonecrosis repair.

Chen et al. (2014) embedded synovial fluid mesenchymal
stem cells (SMSCs) in alginate beads and observed the
biological activity and osteogenic differentiation of synovial
mesenchymal stem cells in the internal environment of

TABLE 1 | Combined application of polymers.

Polymer Additional material
combined

with polymers

Biologically active
factor

Properties References

Chitosan Alginate BMMSC and EPCs Biocompatibility, porosity, low cytotoxicity and excellent cell adhesion,
enhanced bone production and angiogenesis, reduced fat production

Xu et al. (2021)

Alginate (ALG) — SMSCs Biocompatibility, biodegradability, osteogenesis, injectability, elasticity Chen et al. (2014)

Cervi cornus
colla (CCC)

Deproteinized bone — Biocompatibility, diameter 15 mm, thickness 3.5 mm, cylindrical shape,
pore structure, porosity (72.86 ± 5.45%), compressive strength 4.45 ±
1.02 MPa, degradation rate after 6 weeks is 35.81%, osteogenesis

Wang et al. (2019b)

HA CAP — Biocompatibility, biodegradability, osteoconductivity, bone conductivity,
promotes osteogenic differentiation and bone regeneration

Wang et al. (2018)

Peptide-based
hydrogel

— BMP-2 Biocompatibility, biodegradability, glue is also liquid in different
environments, osteogenesis

Phipps et al. (2016)

DBM — BFGF, BMP-2 Biocompatibility, enhanced osteogenesis and angiogenesis, cell adhesion Peng and Wang,
(2017)

PLGA β-TCP 5% Mg Biocompatibility, biodegradability, pore size PT 423.1 ± 77.0, PT 5 M
418.7 ± 33.4, PT, 10M 392.5 ± 30.2, PT 15M 411.5 ± 26.9, porosity PT
59.1 ± 9.7, PT 5M 59.4 ± 3.1, PT 10M 62.4 ± 5.3, PT 15M 65.8 ± 8.0, the
connectivity is 100%, compressive strength, PT 1.5 ± 0.1 MPa, PT 5M 2.9 ±
0.2 MPa, PT 10M 3.1 ± 0.2 MPa, PT 15M 3.7 ± 0.2 MPa, osteogenesis

Lai et al. (2019)
10% Mg
15% Mg

PLGA TCP Icaritin Biocompatibility, biodegradability, pore structure, compressive strength
47.03 ± 33.58 N, enhanced bone formation

Qin et al. (2015)

PLGA CPC BMP, VEGF Biocompatibility, biodegradability, porosity 62.13 ± 4.28%, compressive
strength of 6.60 ± 1.02 MPa, osteogenic, angiogenic

Zhang et al. (2016)

PCL TCP BMMCs Biocompatibility, pore structure, porosity near section is 15%, the middle
section is 40%, the far section is 16%, the 8-weeks degradation rate of the
proximal segment 42.5 ± 14.0%, 5.3 ± 1.9% at the middle segment, 5.5 ±
3.2% at the distal segment, osteogenic, vascular

Maruyama et al.
(2018)

PLA Nano-hydroxyapatite,
collagen

BMMSC Biocompatibility, biodegradability, pore size of 300 ± 250 µm, porosity of
70–90%, vascularity, osteogenesis

Wang et al. (2019a)

PPF CPC Ginsenoside Rg1 Biocompatibility, biodegradability, pore structure, the compressive strength
in C/P � 0, C/P � 1 and C/P � 2 groups are 13.66 3.00 MPa, 15.68
3.52 MPa and 21.37 1.06 MPa, respectively, osteogenic, angiogenic

Chang et al. (2010)

BMMSC, Bonemarrowmesenchymal stem cells; EPCs, endothelial progenitor cells; SMSCs, synovial fluid mesenchymal stem cells; HA, hyaluronic acid; CAP, calcium phosphate; BMP-
2, bonemorphogenetic protein-2; DBM, demineralized bonematrix; BFGF-2, basic fibroblast growth factor-2; β-TCP, β-tricalcium phosphate; Mg, magnesium; CPC, calcium phosphate;
VEGF, vascular endothelial growth factor.
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FIGURE 1 | BMMSC and EPCs dual-loaded CMC/ALG scaffolds for enhanced bone regeneration in ONFH (Xu et al., 2021). (A)Morphology of the scaffold for in
vivo transplantation. The SEM micrograph showed the porous structure of the scaffold. And CCK-8 assay results confirmed that CMC/ALG scaffolds generated no
cytotoxicity effects on BMSC/EPC viability. (B) Representative MRI photograph of the normal rabbit and the rabbit model. 2D and 3D micro-CT images of the femoral
head in normal group andmodel group. (C)H&E staining of the empty lacuna in the necrotic region of the femoral head for each group. Reproducedwith permission
(Xu et al., 2021). Copyright 2021, Wiley Periodicals LLC.
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FIGURE 2 | The alginate beads loaded with SMSCs promote bone formation and angiogenesis in animal models of femoral head necrosis (Chen et al., 2014). (A)
Procedures for treating femoral head necrosis in the animal model. Radiographs of harvested femoral heads (B) and histological observations (C) of different groups.
Reproduced with permission (Chen et al., 2014). Copyright 2014, ELSEVIER.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7613025

Dong et al. Osteonecrosis Therapy

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


alginate beads in in vitro experiments. The alginate beads
embedded with synovial fluid MSCs (ABSMSCs) were
implanted into the femoral head of the rabbit model of
hormone-induced femoral head necrosis after core
decompression surgery (Figure 2A).

The results of in vitro experiments show that the SMSC in the
internal environment of alginate beads have the potential to

differentiate into bone. In vivo, the hormone-induced femoral
head necrosis rabbit model can be treated by core decompression
and alginate beads carrying ABSMSCs implantation. This
method maintains the density and spherical shape of the
femoral head and promotes bone regeneration within the
necrotic femoral head (Figure 2B). Histological analysis results
also showed that compared with other groups, the ABSMSCs

FIGURE 3 | CCC deproteinized bone scaffold reduced femoral head necrosis in rats. (A) Exterior view of a 3D printed CCC-deproteinized bone scaffold, and
scaffold degradation curves. The degradation levels of the CCC-deproteinized bone scaffolds and deproteinizedbone scaffolds after 6 weeks immersion in PBS reached
35.81 and 26.61%, respectively (*p < 0.05). (B) The femoral head implanted with a CCC-deproteinized bone scaffold and the non-implanted femoral head exhibited
different outcome. (C)Pathological observation of the femoral head of rat in different groups. Significant alleviation of femoral head necrosis was observed in the rats
implanted with CCC-deproteinized bone scaffolds. Reproduced with permission (Wang et al., 2019b). Copyright 2019, SPRINGER.
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group hadmore new bone tissue and new blood vessels in the area
of osteonecrosis (Figure 2C). Therefore, alginate is also an
polymer suitable for osteonecrosis research.

Cervi Cornus Colla
Cervi Cornus colla (CCC) is a Chinese medicine extracted from
deer antlers, and it is a protein-polysaccharide complex. CCC
contains 16 amino acids, including glycine, proline, glutamic acid,
and so forth. (Choi et al., 2013). CCC has long been used in

animal model tests and clinical human experiments. CCC has
been used to prevent and treat acute and chronic arthritis,
osteoporosis, fractures, hypercholesterolemia, and other
diseases (Kim et al., 2013; Li et al., 2014). Wang et al. (2019b)
processed the proximal pig femur to obtain a deproteinized bone
meal. After mixing the deproteinized bone meal with CCC and
synthetic organic materials, CCC-deproteinized bone scaffolds
were made by 3D printing technology. The 3D printed CCC-
deproteinized bone scaffold had a porous structure, degradability,

FIGURE 4 | HA-BP/CAP composite hydrogel can promote bone regeneration at the site of osteonecrosis (Wang et al., 2018). (A) The details regarding the
standard animal model of ONFH. (B) The subchondral bone of the femoral head in the experimental group presented the establishment of the ONFH animal model
because of the dark red area on the surface of the femoral head, while the untreated group appeared normal. (C) shows that the amount of bone regeneration at 1 and
2 months after injection of HA-BP/CAP composite hydrogel in the experimental group was significantly greater than that in the control group. Reproduced with
permission (Wang et al., 2018). Copyright 2018, 2018 Elsevier Inc.
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and excellent mechanical properties (Figure 3A). They
implanted the scaffold into the femoral head of the mouse
model with osteonecrosis of the femoral head (ONFH) to
repair osteonecrosis (Figure 3B) and found that the CCC
deproteinized bone scaffold significantly reduced femoral

head necrosis in rats (Figure 3C). In vitro experiments also
showed that osteoblasts aggregated and adhered in the pore
structure of the CCC deproteinized bone scaffold, and the CCC-
deproteinized bone scaffold enhances the proliferation of
osteoblasts (Wang et al., 2019b).

FIGURE 5 | A peptide-based hydrogel named RADA16 provides a feasible method for the leakage problem encountered by local injection of BMP-2 in the
treatment of femoral head necrosis (Vandermeer et al., 2011; Phipps et al., 2016). (A) Radiograph and histological analysis showed heterotopic ossification after local
intraosseous administration of ibandronate and BMP-2 (Vandermeer et al., 2011). (B) Distribution of different concentrations of RADA16/radiocontrast mixture in the
femoral head (Phipps et al., 2016). (C) Intraosseous needle introduced in the central region of the femoral head by transphyseal approach for RADA16/
radiocontrast infusion (Phipps et al., 2016). (D) Micro-CT images showing different amount of backflow of radiocontrast solution down the needle track. Bar graph
showing percentage of needle track with radiocontrast backflow after the removal of the needle (Phipps et al., 2016). Reproduced with permission (Vandermeer et al.,
2011). Copyright 2011, LIPPINCOTT WILLIAMS & WILKINS. Reproduced with permission (Phipps et al., 2016). Copyright 2016, American Chemical Society.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7613028

Dong et al. Osteonecrosis Therapy

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hyaluronic Acid
Hyaluronic acid (HA), a natural polysaccharide composed of
D-glucuronic acid and D-N-acetyl glucosamine repeating units
(Kutlusoy et al., 2017; Rezaeeyazdi et al., 2018), is the main
component of the extracellular matrix and an essential structural
element in various tissues. HA plays an essential role in
angiogenesis and wound healing (Wu et al., 2017; Rezaeeyazdi
et al., 2018), and researchers are currently using HA to study
osteonecrosis. Wang et al. (2018) combined bisphosphonate
(BP)-modified HA (HA-BP) and CAP to create an HA-BP/
CAP composite hydrogel. Their in vitro experiments
confirmed that the composite hydrogel has good
biocompatibility. The composite hydrogel material was also
injected into the femoral skull tunnel of the ONFH rabbit
model as the experimental group. The control group was
injected with saline (Figures 4A,B). At 1 month and 2 months,
the repair of femoral head necrosis of the two rabbit models was
compared. As expected, in the radiological evaluation and
histological analysis, the experimental group produced more
new bone mineral tissue than the control group (Figure 4C),
demonstrating that this HA-BP/CAP composite hydrogel can
promote bone regeneration at the site of osteonecrosis.

Peptide-Based Hydrogels
Some peptide and protein nanofiber structures have also been
extensively studied as biomaterials. As early as 2011, Vandermeer
et al. (2011) injected ibandronate combined with BMP-2 into an
animal model of ischemic femoral head necrosis. Experiments
confirmed that ibandronate combined with BMP-2 could reduce
femoral head deformities and at the same time stimulate bone
formation. However, they also found that infusion of BMP-2
solution can cause the unnecessary spread of BMP-2 outside the
femoral head and produce heterotopic ossification in the hip joint
capsule (Figure 5A).

Five years later, Phipps et al. (2016), in the same laboratory as
Vandermeer et al., used a peptide-based hydrogel called RADA16
to provide a solution to the BMP-2 leakage problem previously
encountered by. They believe that this novel method may provide
benefits for osteonecrosis therapy.

RADA16 is a peptide-based hydrogel composed of 16
amino acids (Yokoi et al., 2005) and has a β-sheet structure
in a saline environment (Zhang et al., 1993). Previous studies
have shown that this peptide-based hydrogel is biocompatible,
biodegradable, and can support new bone formation (Misawa
et al., 2006; Nakahara et al., 2010; Kohgo et al., 2011). In their
in vivo and in vitro experiments, Phipps et al. (2016) used
RADA16 as a carrier to deliver BMP-2, retaining the biological
activity of BMP-2 and effectively controlling the diffusion of
BMP-2 (Figures 5B,C). After a mixed injection of RADA16
and a radiographic agent, the backflow of the contrast agent in
the porcine femoral head channel was significantly reduced
(Figure 5D).

The above findings support peptide-based hydrogel as an
intraosseous carrier and provide a new solution to the leakage
problem in osteonecrosis therapy. They also guide the next steps
in studying peptide chain hydrogel in osteonecrosis model
experiments.

Demineralized Bone Matrix
The bone tissue removes the mineralized components and retains
the organic matrix and growth factors to obtain demineralized
DBM. DBM has strong osteogenic properties because it contains
many organic components and growth factors and is often used
in bone repair research (Lee et al., 2014a). BFGF can affect gene
expression and angiogenesis. Therefore, it is considered to be a
critical factor in the process of bone repair (Hu et al., 2015). Peng
and Wang (2017) transfected adenovirus-mediated bone
morphogenetic protein 2 (Ad-BMP-2) and bFGF into
BMMSC. The modified bone marrow mesenchymal stem cells
combined with DBM (Ad-BMP2-bFGF-GFP group) were then
implanted into an ONFH canine model. This experiment shows
that the BMMSC modified by Ad-BMP-2/bFGF combined with
DBM can repair the osteonecrosis of the femoral head in the
ONFH canine model by promoting bone formation and
angiogenesis, and DBM itself has osteoinduction and
osteoconduction capabilities. Both radiological evaluation and
histological analysis show that the Ad-BMP2-bFGF-GFP group
had a larger area of new bone and a higher density of new blood
vessels than the other groups.

Synthetic Polymers in Osteonecrosis
Therapy
In recent years, synthetic polymers have received more attention
than natural polymers because of their desirable properties in
bone engineering, such as porosity, degradation time, and
mechanical properties. They have strong shaping abilities and
can be made into various shapes according to need (Oh, 2003;
Sheikh et al., 2016).

Poly (Lactide-Co-Glycolide)
Poly (lactide-co-glycolide) (PLGA) is currently one of the most
successfully developed synthetic biodegradable polymers.
Because of its excellent biocompatibility and biodegradability,
it has been widely used in research on various human delivery
systems (Danhier et al., 2012). PLGA is approved by the U.S.
Food and Drug Administration (FDA) and the European
Medicines Agency for use in various human drug delivery
systems (Kempen et al., 2008). PLGA has extremely low
toxicity in the human body because the hydrolyzed
metabolites of PLGA are monomeric lactic acid and
monomeric glycolic acid, as shown in Figure 6A. As
endogenous substances in humans, these two monomers are
easily metabolized through the human body’s Krebs cycle
(Kumari et al., 2010).

Lai et al. (2018) established a poly (lactide-coglycolide)
(PLGA), β-TCP composite scaffold using low-temperature
rapid prototyping (LT-RP) technology. The PLGA/TCP (PT)
scaffold has a trabecular pore structure with good
biocompatibility, bone conductivity, and biodegradability in
vivo and in vitro. Lai et al. (2019) also added magnesium (Mg)
to the PT scaffold to make a PTM scaffold in a follow-up study.
The research results show that the PTM scaffold has a good bionic
structure and suitable mechanical properties. The PTM scaffold
has the dual capabilities of osteogenesis and angiogenesis
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(Figure 6B). The PTM scaffold is synergistic in enhancing the
formation and quality of new bone in the rabbit model of
steroid-associated osteonecrosis (SAON), and it has a
stronger ability to promote bone formation than the PT
scaffold.

Qin et al. (2015) added icaritin to the PLGA/TCP scaffolds to
produce PLGA/TCP/icaritin (PTI) scaffolds. A steroid-associated
osteonecrosis (SAON) animal model was established, and the PTI
and PT scaffolds were implanted in the animal model. A non-
implanted scaffold group was the control group. The effects of the

FIGURE 6 | PLGA for osteonecrosis therapy. (A)Hydrolysis of PLGA (Danhier et al., 2012). (B) Representative radiographs showed that new bone formation within
bone tunnel at 4, 8, and 12 weeks after surgery (Lai et al., 2019). Reproduced with permission (Danhier et al., 2012). Copyright 2012, Elsevier Ltd. Reproduced with
permission (Lai et al., 2019). Copyright 2019, Elsevier Ltd.
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PTI scaffold on the recruitment, bone formation, and anti-
adipogenesis of bone marrow mesenchymal stem cells
(BMMSC) were observed. The results of the study showed that
the incidence of femoral head collapse in the PTI stent group was
the lowest. Compared with the control group and the PT group,
the femoral head cartilage was better preserved in the PTI scaffold
group, and more new bone was formed in the bone tunnel.

Zhang et al. (2016) produced a composite PLGA microsphere.
This calcium phosphate (CPC) scaffold contained BMP-vascular

endothelial growth factor (VEGF)-loaded PLGA microspheres
(BMP-VEGF-PLGA-CPC) and exhibited compressive strength
equivalent to that of cancellous bone. The composite
microspheres showed good biocompatibility and promoted
bone formation and angiogenesis in animal experiments.
Compared with other scaffold groups, more new mineralized
tissue can be observed around the scaffold, and more new blood
vessels appear in the newly mineralized tissue in the BMP-VEGF-
PLGA-CPC group. Zhang et al. (2016) proposed that the

FIGURE 7 | FGS and FGS/BMMC could promote bone regeneration in the area of osteonecrosis. (A) A schematic image shows how the three segments of FGS
with different porosities are distributed in the femoral head. The FGS consisting of three segments of spatially graded porosity, including 4 mm length proximal segment
of 15% porosity, 17 mm length middle segment of 40% porosity, and 6 mm distal segment of 15% porosity. (B) FGS is degraded at the proximal end, and there is
mineralized tissue around it. (C) Histological analysis confirmed that there was more new bone formation around FGS than other groups. Reproduced with
permission (Maruyama et al., 2018). Copyright 2018, Elsevier Ltd.
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BMP-VEGF-PLGA-CPC scaffold has a potentially useful
application in the treatment of osteonecrosis.

In summary, PLGA is currently one of the most widely used
synthetic polymer materials in the field of osteonecrosis research.
We believe that PLGA will continue to receive more attention in
this field in the future.

Poly (ε-Caprolactone)
Poly (ε-caprolactone) (PCL) is another polymer material that is
widely used in bioengineering. The biocompatibility of PCL is
excellent, and the surface chemistry of PCL is suitable for cell
attachment, proliferation, and differentiation. Moreover, the
degradation byproducts of PCL are non-toxic and can usually
be metabolized and eliminated through the body’s natural
metabolic pathways (Gao et al., 2017). A previous study (Sung
et al., 2004) compared the pH level of the environment around the
implant after PCL and PLGA scaffolds were implanted under the
skin of the mouse back. The study concluded that PCL is less
likely to acidify the environment than PLGA and less likely to
cause inflammation in the body. Thermoplastic polymers such as
PCL can be easily produced by 3D printing technology into
controllable, various-shaped, porous scaffolds for various
scientific research (Lam et al., 2009; Wang et al., 2019c).
However, the degradation rate of PCL in the abdomen of rats
is low, and the low degradation rate causes PCL to hinder the
production of new cell tissue in the implantation area and may
even trigger the body’s immune rejection reaction (Qazi et al.,
2014; Kargozar et al., 2018; Zhu et al., 2020).

Maruyama et al. (2018) produced PCL/TCP functionally
graded scaffold (FGS), which was divided into three porosity-
spatially-graded sections. The porosity of the proximal section
was 15% to produce a length of 4 mm, the porosity of the middle
section was 40% to produce a length of 17 mm, and the porosity
of the distal section was 16% to produce a length of 6 mm. The
porosity of each segment was similar to that of the human femur
(Figure 7A). The study also added bone marrow-derived
mononuclear cells (BMMCs) to FGS and implanted FGS +
BMMCs and FGS into the femoral head of a rabbit steroid-
induced osteonecrosis model after CD surgery. The results
showed that the degradation rate of the proximal segment of
FGS was higher than that of the middle and distal segments. The
degradation rate of the proximal part of FGS in the FGS/BMMCs
group was higher than that in the FGS group. The addition of
TCP increased the degradation rate of PCL to a suitable range.
The experimental results also showed that more new bone was
formed in the bone tunnel in the FGS group than in the CD
group, and the FGS/BMMCS group had the newest bone of each
group. The results indicated that both FGS and FGS/BMMCS
could promote bone regeneration in the area of osteonecrosis
(Figures 7B,C).

Poly(Lactic Acid)
Lactic acid, the precursor of poly (lactic acid) (PLA), is non-toxic
to humans. PLA is also one of the most widely used synthetic
polymers approved by the FDA for biomedical purposes (Abdal-
hay et al., 2013; Zhao et al., 2019b; Zhao et al., 2021). Wang et al.
(2019a) combined PLA, nano-hydroxyapatite, and collagen PLA

to establish a nano-hydroxyapatite/collagen I/poly-L-lactic acid
composite scaffold (nHAC/PLA). The BMMSC were cultured on
the composite scaffold and implanted into the necrotic femoral
head after CD in the ANFH rabbit model (Figure 8A). The
researchers observed the adhesion of BMMCs to the nHAC/PLA
scaffold through an electron microscope, which proved the good
biocompatibility of the composite scaffold (Figure 8B). The
experimental results showed that the nHAC/PLA/BMMSC
group had the best therapeutic effect in the treatment of
osteonecrosis. Micro-CT and histological analysis showed that
the nHAC/PLA/BMMSC group produced more new bone tissue
than the CD and nHAC/PLA groups, and the degradation rate of
the composite scaffold was also the highest in these groups
(Figures 8C,D).

Poly(Propylene Fumarate)
In recent years, polypropylene fumarate (PPF) has attracted
widespread attention as a promising biodegradable, injectable,
and non-toxic bone cement material (Lee et al., 2006). Chang
et al. (2010) study combined polypropylene fumarate (PPF) and
CPC. They also studied the effects of different CPC/PPF ratios on
their mechanical properties and cytotoxicity (Figure 9A). The
results show that as the C/P ratio increases (C/P � 0, C/P � 1 and,
C/P � 2), the cytotoxicity of the composite bone cement
decreases, and the increase in the CPC ratio also enhances the
mechanical strength of the composite bone cement. The bone
cement composite material added with ginsenoside Rg1 also has
an angiogenic effect (Figure 9B). They believe that this newly
developed angiogenic bone cement composite material has
significant development potential in treating femoral head
necrosis.

FUNCTIONALIZED POLYMER MATERIALS
IN OSTEONECROSIS THERAPY

Osteonecrosis is a disease caused by the destruction of blood supply
and decreased skeletal cell activity (Guo et al., 2014; Cui et al., 2021;
Hines et al., 2021). The reconstruction of bone and blood supply in
the necrotic area is the top priority in treating osteonecrosis (Zhu
et al., 2020). Previously, researchers injected stem cells (Piuzzi et al.,
2017), growth factors (Rackwitz et al., 2012; Peng andWang, 2017),
cytokines (Rackwitz et al., 2012; Peng and Wang, 2017; Yang et al.,
2018), various drugs (Feng et al., 2017; Guo et al., 2017; Huang
et al., 2018), and hormones (Bakhshi et al., 2012; Zhou et al., 2017)
directly into the area of osteonecrosis to explore the role of these
biological substances that have osteogenic and vascular functions
in promoting the repair of osteonecrosis (Maruyama et al., 2018;
Zhang et al., 2019a; Zhu et al., 2020). The researchers have achieved
practical results.

However, problems related to biologically active substances
such as loss of biological activity, short half-life in vivo,
heterotopic ossification, and lack of effective support remain
to be resolved (Phipps et al., 2016; Shi et al., 2017; Zhang
et al., 2018a).

Various polymer scaffolds, gels, and microspheres with
biocompatibility, biodegradability, porous structure, and
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excellent mechanical support have helped solve the above
problems (Zhang et al., 2019a; Zhu et al., 2020). Adding
biologically active substances such as stem cells and growth
factors to pure polymers to enhance the osteogenesis and

angiogenesis function of polymers is considered to be an
effective strategy (Zhu et al., 2020). Polymer scaffolds can
provide attachment points for biologically active substances,
effective support, and slow-release capability, and these

FIGURE 8 | PLA-based composite scaffolds may improve the curative effect of CD and provide a strategy for treating ANFH. (A) composite scaffolds were
implanted into the decompression tunnel. (B) A total of 24 h after seeding, hematoxylin and eosin staining and scanning electron microscopy micrographs revealed that
BMMSC attach to scaffolds. (C) The micro-CT results further showed more bone trabeculae around the decompression tunnel in group C. (D) CT images and HE
micrographs at 4 weeks post-operation. The CT images suggested that the osteogenesis in the decompression tunnel of group Cwas significantly higher than that
in the other two groups. Histology micrographs of H&E staining of bone tunnels (x200) of the three groups. CT, computerized tomographic scanning; NB, new bone; HB,
host bone; VT, vascular tissue; H&E, hematoxylin and eosin. Group A, pure CD; group B, CD + nHAC/PLA; and group C, CD + nHAC/PLA/BMMSC. Reproduced with
permission (Wang et al., 2019a). Copyright 2019, Spandidos Publ Ltd.
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biologically active substances improve the biological activity and
mechanical properties of pure polymers. The combination of
different biologically active substances [such as stem cells (Fan
et al., 2015; Ismail et al., 2017; Peng and Wang, 2017; Maruyama
et al., 2018), growth factors (Wang et al., 2009; Garcia et al., 2012;
Bai et al., 2014; Phipps et al., 2016; Zhang et al., 2016; Zhu et al.,
2017; Chen et al., 2018), small molecule drugs (Tai et al., 2013; Qin
et al., 2015; Salarian et al., 2017), metal ions (Salarian et al., 2017; Li
et al., 2018a; Lai et al., 2019)] and polymers provides polymers with
different functionalities. This strategy has also become a popular
area in the research and treatment of osteonecrosis.

Combination of Polymers and Bioactive
Factors With Osteogenesis Function
The addition of bioactive factors with osteogenic function to
polymers can enhance the osteogenic properties of polymers,
which is conducive to the formation of new bone in the
osteonecrosis area and prevents joint collapse and arthritis.
Mesenchymal stem cells can differentiate into a variety of cell
lines (such as bone cells, osteoblasts, and endothelial cells) (Fan
et al., 2015; Hernigou et al., 2015; Sui et al., 2019). Bone marrow
mesenchymal stem cells are accessible to culture and expand
in vitro and accelerate bone regeneration by differentiating into
osteoblasts (Le et al., 2020; Song et al., 2020; Zhu et al., 2020; El-
Jawhari et al., 2021). Previous studies have shown that bone
marrow mesenchymal stem cells secrete a variety of growth
factors, cytokines, and other biologically active molecules to
regulate the damage and repair process of ischemic tissue after
transplantation (Herrmann et al., 2011).

In the study of PCL/TCP FGS (Figure 7A) constructed by
Maruyama et al. (2018), the FGS/BMMSc group had more new
bone formation than the other groups. The FGS/BMMSc group
also had a higher FGS degradation rate than the FGS group. It is
believed that (Maruyama et al., 2018) this result proves that
BMMSc promotes osteogenesis and that proper pretreatment
improves the therapeutic effect of bone marrow mesenchymal
stem cells. Hypoxic preconditioning induces a compensatory
response in bone marrow mesenchymal stem cells by
activating endogenous mechanisms, increasing vitality, and
reducing cell apoptosis during implantation (Tsai et al., 2012;
Fan et al., 2015). Fan et al. (2015) implanted bone marrow
mesenchymal stem cells on an absorbable collagen sponge
under hypoxic conditions of 2 and 20% oxygen concentration
to construct a hypoxic pretreatment functionalized absorbable
sponge. They found that, compared with normoxic conditions,
hypoxic pretreatment could more effectively overcome the
obstacles of cell death in vitro and promote the survival and
proliferation of bone marrow mesenchymal stem cells in vitro.

Some investigators studied SMSC. These cells show the ability
to differentiate into bone, cartilage, and fat and can be easily
obtained from the joint fluid (Morito et al., 2008). Chen et al.
(2014) embedded synovial fluid mesenchymal stem cells (SMSCs)
into alginate beads and implanted them into the femoral head of a
rabbit model of femoral head necrosis induced by hormones
(Figure 4A). Through core decompression and ABSMSCs
implantation, the density and spherical shape of the femoral
head of the rabbit model was maintained, and the bone
regeneration within the necrotic femoral head was promoted
(Figures 4B,C).

FIGURE 9 | The bone cement composite material added with ginsenoside Rg1 to treat osteonecrosis. (A) Section morphology observation of the cement in
different C/P ratio by scanning electron microscopy. (B) Tube formation in different extract-contained media from cements. Reproduced with permission (Chang et al.,
2010). Copyright 2010, Elsevier Ltd.
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Growth factors can accelerate the differentiation of stem cells
into osteoblasts and have been widely used in the study of
osteonecrosis (Zuo and Gong, 2012; Zhao et al., 2018b).
Among them, the most well-known include bone
morphogenetic protein (BMP), vascular endothelial growth
factor (VEGF), and BFGF. These factors are often used to
transform biological materials. BMP promotes the
differentiation of mesenchymal stem cells into osteoblasts in

the human body, and is also the main factor in inducing bone
and cartilage formation in the body (Ngo et al., 2006; Zhao et al.,
2019a). These growth factors are mostly protein structures. In the
harsh microenvironment of osteonecrosis, they are susceptible to
losing their activity. As a carrier, the polymer scaffold effectively
preserves the biological activity of the growth factor, stabilizes the
growth factor in the target area, and ensures its release is
sustainable (Zhang et al., 2019a; Cui et al., 2020). In addition,

FIGURE 10 | Combination of polymers and bioactive factors. Histological specimens from mice tibias were made after 2 and 4 weeks of implantation of different
rhBMP-2 carriers (Group A, Group B, Group C) along with control. Original magnification is 400x for (A). Original magnification is 100x for (B). (Group A: 8 mg HAP and
2,500 ng rhBMP-2 within PLGA microspheres, Group B: 1,000 ng rhBMP-2 coating on PLGA microspheres, Group C: 2 mg HAP and 2000 ng rhBMP-2 coating on
PLGA microspheres) Blue arrows identify lacunae. (Wang et al., 2009). (C) Radiography of mice tibias 2 and 4 weeks after implantation of SIM/PLGA/HAP. No
implantation was implanted in the bone fracture of the control group. The meaning of the white arrow has been clarified. (group A, 3 mg SIM/PLGA/HAP; group B, 5 mg
SIM/PLGA/HAP) (Tai et al., 2013). (D) Hematoxylin-eosin staining and quantification of matrix formation in the callus by Image-Pro Plus. p < 0.01 compared with control
(Tai et al., 2013). Reproduced with permission (Wang et al., 2009). Copyright 2009, Elsevier Ltd. Reproduced with permission (Tai et al., 2013). Copyright 2013, Dove
Medical Press Ltd.
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BMP can stimulate the formation of new blood vessels (van der
Bent et al., 2002). Wang et al. (2009) encapsulated BMP-2 in
PLGA/hydroxyapatite (HAP) microspheres and found that the
microspheres could release a sufficient therapeutic concentration
of BMP-2, and the biological activity of BMP-2 was well
maintained. The results showed that new bone tissue appeared
in the area of osteonecrosis (Figure 10A). The addition of BMP
therefore improves the osteogenesis of polymers.

Previous studies have shown that oral simvastatin (SIM)
has the function of promoting new bone formation in the
damaged bone tissue of the human body, but statins are easily
degraded during the first liver metabolism (Mundy et al., 1999;
Maeda et al., 2001; Song et al., 2003; Baek et al., 2005; Solomon
et al., 2005). Tai et al. (2013) took advantage of the

biodegradability of PLGA and encapsulated simvastatin in
PLGA/HAP composite microspheres to obtain SIM/PLGA/
HAP composite microspheres. The SIM/PLGA/HAP
composite microspheres have a slow-release function, which
effectively avoids rapid loss of simvastatin biological activity in
the body. The SIM/PLGA/HAP microspheres were implanted
into the osteonecrosis area in a mouse osteonecrosis model,
and it was found that the SIM/PLGA/HAP microspheres
promoted bone healing in mice and promoted the
formation of new bone in the osteonecrosis area
(Figure 10C). The investigators believed that the SIM/
PLGA/HAP system will have a promising future in the
treatment of osteonecrosis. Their study also confirmed that
statins could promote the repair of osteonecrosis, because the

FIGURE 11 | Polymer scaffold carrying VEGF is beneficial to vascular regeneration during osteonecrosis. (A) Schematic illustration for preparation of injectable
hydrogel composite with VEGF loaded microspheres and vascular endothelial cells. Representative histological evaluation of cross sections retrieved at week 2, 4 and 6
after implantation of hydrogels composited with VEGF loaded microspheres. VEGF refers to vascular endothelial growth factor, VECs refers to vascular endothelial cells,
(B) refers to blood cells, BV refers to blood vessels. The black arrow refers to the position of (B) or BV in the figures. Reproduced with permission (Chen et al., 2018).
Copyright 2018, Elsevier Ltd.
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combination of statins and polymers endows the polymers
with osteogenic properties.

Combination of Polymer and Bioactive
Substance With Angiogenesis Function
Sufficient angiogenesis is necessary for the long-term survival of
osteoblasts in the necrotic area (Koike et al., 2004; Zhang et al.,
2018b). VEGF is considered to be a key regulator of angiogenesis
in the process of bone repair (Ferrara et al., 2003). VEGF
stimulates the reconstitution of blood supply at the site of
necrosis, can induce the adhesion and proliferation of
osteoblasts, and also promote the formation of new bone (Bai
et al., 2014; Zhang et al., 2016). Chen et al. (2018) loaded VEGF
into PLGA copolymer microspheres. VEGF-loaded PLGA
copolymer microspheres and vascular endothelial cells (VECs)
were composited into to form hydrogels (Figure 11A). Then they
implanted the hydrogels into the rabbit model of femoral head
necrosis. The results showed that the continuous release of VEGF
caused a constant increase in new blood vessels, indicating that
the polymer carrying VEGF is beneficial to vascular regeneration
during osteonecrosis (Figures 1C, 11B).

BFGF, because of its effect on gene expression and
angiogenesis, is considered to be a critical factor in the process
of bone repair (Hu et al., 2015). used BFGF as a cytokine to
transfect BMMSC, co-cultured it with XACB to construct
functionalized XACB, and transplanted it into a rabbit model
to repair osteonecrosis. The results showed that this method
could effectively promote angiogenesis in the avascular necrosis
area and significantly improve repair in osteonecrosis.

Some small molecule drugs also promote angiogenesis. The
active ingredient of ginseng, ginsenoside Rg1, regulates
angiogenesis and stimulates blood vessel formation by up-
regulating the expression of nitric oxide and VEGF (Yue et al.,
2007). Chang et al. (2010) added Rg1 to a CPC/PPF composite
bone cement material, and the results showed that more new
blood vessels were formed in the osteonecrotic area when Rg1
bone cement was added (Figure 9B). The addition of these
bioactive factors with angiogenic activity promotes the
angiogenic properties of polymers in osteonecrosis treatment.

Combination of Polymer and Bioactive
Substance With Dual Functions of
Osteogenesis and Angiogenesis
Osteogenesis and angiogenesis are the most critical functions of
functionalized polymers, and most functionalized polymer bone
substitutes are constructed with this goal. The combination of
osteogenesis and angiogenesis is more advantageous in
osteonecrosis therapy than either process alone. Osteogenesis
and angiogenesis are complementary: the new blood vessels
provide oxygen and nutrients for the new bone tissue and
remove the metabolic waste from the new bone tissue. The
pore structure of new bone tissue provides space and
mechanical support for new blood vessels.

Many small molecule drugs also promote bone formation and
angiogenesis and are cheaper and more stable in the human body

than stem cells and growth factors (Lo et al., 2012; Laurencin
et al., 2014). Icariin is the active extract of epimedium, which can
promote the activity and mineralization of osteoblasts and the
formation of capillaries (Yue et al., 2007; Yao et al., 2012; Song
et al., 2013; Tang et al., 2015b; Qin et al., 2015). Qin et al. (2015)
added icaritin to a PTI composite scaffold. Compared with the
simple PLGA/TCP (PT) group, in vivo experiments confirmed
that the PTI scaffold group had the lowest incidence of femoral
head collapse, better cartilage preservation, and more new bone
formation in the bone tunnel. Deferoxamine is an iron chelator
that stimulates the expression of angiogenic genes and promotes
osteogenic differentiation of osteoblasts (Yan et al., 2019). Li et al.
(2015) loaded deferoxamine on a gelatin sponge to enhance bone
regeneration in patients with osteonecrosis. However, the results
showed that the mechanical properties of the composite gel
sponge and the sustained release of drugs were insufficient in
the repair of osteonecrosis.

Some metal ions (such as strontium (Sr), Mg, and Li) also have
dual functions of osteogenesis and angiogenesis, and they are
often used in osteonecrosis research. Strontium has a chemical
structure similar to calcium and stimulates bone formation,
inhibits osteoclast differentiation, and promotes angiogenesis
(Bonnelye et al., 2008; Zhao et al., 2018a). Kang et al. (2015)
found that a strontium-doped calcium polyphosphate scaffold
promotes angiogenesis and osteogenesis in osteonecrosis
treatment. As an implantable metal material, Mg has good
mechanical properties and biodegradability and can promote
bone growth and microvascular expansion. Lai et al. (2019)
added Mg to the PT scaffold to make the PTM scaffold, which
promoted both osteogenesis and angiogenesis and had the
synergistic effect of enhancing the formation of new bone and
enhancing the quality of new bone in the rabbit model of
osteonecrosis. The PTM scaffold had stronger osteogenic and
angiogenic properties than the PT scaffold. Because Li enhances
bone formation, promotes vascularization, and inhibits fat
production, it has potential value in repairing osteonecrosis
(Tang et al., 2015a; Li et al., 2017). As mentioned above, Li
et al. (2018a) added Li to the composite scaffold and determined
that the composite scaffold has the ability to promote bone
formation and vascularization.

Many studies have found that the osteogenesis and
angiogenesis functions of various growth factors have a
synergistic effect, and their combined application can
achieve a better osteonecrosis repair effect than a single
growth factor (Garcia et al., 2012; Rackwitz et al., 2012; Bai
et al., 2014; Zhang et al., 2016; Peng andWang, 2017; Zhu et al.,
2020). Peng and Wang (2017) transfected BMP-2 and BFGF
into BMMSC and then loaded the modified bone marrow
mesenchymal stem cells onto DBM. Implanting it into the
canine model of ONFH promoted the bone repair effect in the
area of osteonecrosis. Zhang et al. (2016) co-loaded BMP and
VEGF into PLGA/CPC microspheres. The composite
microspheres showed good biocompatibility and promoted
bone formation and angiogenesis in animal experiments.
Compared with other treatments, more bone and
angiogenesis can be seen around the composite
microspheres loaded with BMP and VEGF.
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EPO is a pleiotropic cytokine that can enhance the function of
VEGF and accelerate the differentiation of bone marrow
mesenchymal stem cells into osteoblasts. Li et al. (2018a)
combined EPO, gelatin, Li, and hydroxyapatite to make a
composite scaffold (Figure 12A) and evaluated its mechanical
properties, release properties, and in vitro biological activity. They
implanted the scaffold into the femoral head of ONFH rabbits to
evaluate the bone formation and angiogenesis ability of the stent in

vivo and the effect in repairing bone defects. The results showed that
the composite scaffold had goodmechanical compressive strength. It
could continuously release Li and EPO, enhance the formation of
new bone and new blood vessel in ONFH rabbits, and had some
effect in repairing femoral head necrosis (Figures 2C, 12B).

Many pathological changes occur during the development of
osteonecrosis. It is challenging to achieve sufficient therapeutic
effects with pure polymer materials. Therefore, functional

FIGURE 12 | Combination of EPO, Li and polymers to treat osteonecrosis. (A) Schematic of the composite scaffold design. (B) HE staining and Masson staining
showing the bone defect repair in the drilling channels. (C) X-radiographic examination showing the implants in the femoral head and themorphology of the femoral head.
Reproduced with permission (Li et al., 2018a). Copyright 2018, The Royal Society of Chemistry 2018.
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polymer materials are being developed. The combination of
polymers and biologically active substances achieves targeted
therapy and maximizes the effectiveness of each, which is of
great significance for the treatment of osteonecrosis.

CONCLUSION AND FUTURE
PERSPECTIVES

Osteonecrosis often affects the articular surface and is especially
common in the femoral head. Osteonecrosis that has not been
effectively treated will eventually cause the articular surface to
collapse, leading to arthritis. The treatment of osteonecrosis has
always attracted the attention of themedical community, and various
methods have been explored to relieve and treat it. Treatment is
mainly divided into two categories, surgical and nonsurgical
treatments. At present, the primary clinical treatment is surgery.
In the surgical treatment of osteonecrosis, joint replacement surgery
is generally considered as a final intervention. Because the life of the
artificial joint is limited, it may require multiple revision operations,
which undoubtedly increase the pain and economic burden for the
patient (Cao et al., 2016). Therefore, investigators continue to explore
effective managements for osteonecrosis therapies. One therapy is
core decompression combined with bone grafting, which can reduce
intramedullary pressure in the necrotic area and trigger
revascularization, bone formation, and remodeling by inducing
local bone damage. Research on bone graft substitutes has
become a significant field of study in osteonecrosis research.
With the development of biotechnology and materials science,
more potential biomaterials can be used to research osteonecrosis
treatment.

A variety of organic and inorganic materials have been studied
to treat osteonecrosis (Zhang et al., 2019a; Zhu et al., 2020).
Because polymers have advantages over inorganic materials
concerning biocompatibility, biodegradability, and mechanical
properties, polymers have received more attention than inorganic
materials. However, because of the harsh microenvironment of
the area of osteonecrosis, pure polymers are not suitable for
treating osteonecrosis. The combined application of polymers
and various other substances harnesses the advantages of various
substances with the strengths of polymers to meet a broader range
of requirements in osteonecrosis research. The addition of
various substances improves the biological activity and
mechanical support performance of pure polymers. Various
biologically active substances are added to polymers to
produce functionalized polymers. Adding stem cells, growth
factors, small molecule drugs, and metal ions to the polymer
bone substitute materials endow the polymer with osteogenic and
vascular properties that are beneficial in repairing osteonecrosis.

Research on functionalized polymer bone substitute materials has
become a developing trend.

The relevant experiments mentioned in this review were all
carried out in animal models. Animal models of osteonecrosis
cannot fully simulate the process of human osteonecrosis. The
vast majority of research is limited to animal experiments, and
research results cannot soon be translated into clinical practice.
Therefore, the development of more ideal animal models for
osteonecrosis research is necessary for the future.

The current composites cannot achieve the optimal coordination
of various properties, such as the mutual influence between porosity,
degradability, and mechanical properties (Zhu et al., 2020). The
combined ratio of various materials also affects the properties of
composite materials. Future research should mainly focus on
improving existing materials and the development of new
materials to enhance the properties of various materials.

The reconstruction of human bone tissue is a complex process
that involves the synergy of many tissues, cells, and biological
factors. We believe that the next step of functionalizing polymer
materials should be to add more cells, growth factors, drugs, and
other biologically activematerials rather than just a few biologically
activematerials. The interaction between various biologically active
factors related to osteonecrosis should also be studied more.

In summary, the creation of various functionalized polymer
biomaterials may improve the treatment of osteonecrosis. We
believe that future scientific and technological innovations and
research can eventually result in significantly better treatment of
osteonecrosis.
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