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Because of the low self-healing capacity of articular cartilage, cartilage injuries and
degenerations triggered by various diseases are almost irreversible. Previous studies
have suggested that human chondrocytes cultured in vitro tend to dedifferentiate during
the cell-amplification phase and lose the physiological properties and functions of the
cartilage itself, which is currently a critical limitation in the cultivation of cartilage for tissue
engineering. Recently, numerous studies have focused on the modulation of chondrocyte
redifferentiation. Researchers discovered the effect of various conditions (extracellular
environment, cell sources, growth factors and redifferentiation inducers, and gene
silencing and overexpression) on the redifferentiation of chondrocytes during the
in vitro expansion of cells, and obtained cartilage tissue cultured in vitro that exhibited
physiological characteristics and functions that were similar to those of human cartilage
tissue. Encouragingly, several studies reported positive results regarding the modulation of
the redifferentiation of chondrocytes in specific conditions. Here, the various factors and
conditions that modulate the redifferentiation of chondrocytes, as well as their limitations
and potential applications and challenges are reviewed. We expect to inspire research in
the field of cartilage repair toward the future treatment of arthropathy.
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INTRODUCTION

A multitude of diseases, such as osteoarthritis and trauma, lead to the degeneration and defect of
articular cartilage; because articular cartilage hardly repairs itself, the loss of articular cartilage
implies that these patients would have limited mobility and even disability (Smolen et al., 2016;
Krishnan and Grodzinsky, 2018). Researchers have attempted to repair cartilage using a variety of
techniques. The most recognized among them is autologous chondrocyte implantation (ACI), which
uses autologous chondrocytes that are cultured and expanded in vitro for repairing cartilage by
transplanting the expanded chondrocytes or cartilage-like tissue shaped using tissue-engineering
technology into joints. However, one major problem of ACI is that autologous chondrocytes would
dedifferentiate during the process of proliferation in vitro, become fibrous-like cells, and lose the
physiological characteristics of the chondrocytes themselves. Therefore, researchers aim to develop
methods to solve this problem and have assessed a variety of factors and techniques that may regulate
the redifferentiation of chondrocytes in vitro, including the extracellular environment, cell sources,
growth factors and redifferentiation inducers in the cell culture environment, and gene silencing and
overexpression. In this study, we summarized and analyzed relevant studies in this field to provide
strategies for the modulation of chondrocyte redifferentiation.
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CELL SOURCES

The main cell source of ACI is a cartilage sample from the low-
weight-bearing area of the patient’s sick joint (mainly the knee
joint), which provides chondrocytes for cultivation and
expansion in vitro, followed by their implantation into the
articular cartilage defect (Jones and Peterson, 2006; Minas
et al., 2014; Mistry et al., 2017). Current research shows that
chondrocytes extracted from articular hyaline cartilage remain
more effective in repairing cartilage than human bone marrow
stem cells (HBMSCs), even though the former usually undergo
dedifferentiation during in vitro culture and expansion (Makris
et al., 2015). The implantation of HBMSCs into the defect of
articular cartilage usually causes the formation of fibrocartilage,
which is not sufficient for joints that have weight-bearing
functions.

In turn, the use of human nasal septal chondrocytes in ACI has
better clinical application potential (Mumme et al., 2016; von
Bomhard et al., 2017). Compared with articular cartilage cells,
human nasal septum chondrocytes exhibit a superior ability to
reproducibly generate hyaline-like cartilage tissues, based on their
plasticity of adaption to a joint environment. Moreover, polydactyly
cartilage derived from patients with polydactyly in infancy may be
another option in this setting. Polydactyly chondrocytes also have the
potential for use in stable cartilage production (Cavalli et al., 2019).
Similarly, microtia chondrocytes from patients with microtia are
another alternative cell source, as dedifferentiated microtia
chondrocytes transform into redifferentiated microtia chondrocytes
after culturing in a three-dimensional (3D) chondrogenic culture
system (He et al., 2020). Relevant researches on cell source have
been summarized in Table 1.

For practical application, it is feasible to use cartilage tissue
from the patient’s own diseased joint as a cell source for ACI.
However, the state of articular cartilage cells in different patients
is not the same. Therefore, the reproducibility of the results of this
approach in different studies is questionable.

EXTRACELLULAR MICROENVIRONMENT

During the process of in vitro expansion of chondrocytes, a variety
of extracellular microenvironmental conditions may affect their
dedifferentiation and redifferentiation, including the culture
temperature, hypoxia, 3D culture, extracellular matrix (ECM),
and hydrogel. Several studies have confirmed that hypoxia and

3D culture are beneficial for the redifferentiation of chondrocytes.
Because 3D culture lacks uniform standards, the quality of studies
of 3D culture is inconsistent. In turn, the fact that a low
temperature (32.2°C) delays the dedifferentiation of
chondrocytes may be because it attenuates all biological
processes in chondrocytes. Finally, hydrogels have great
potential for the redifferentiation of chondrocytes; however, the
related parameter standard of hydrogels requires further
investigation.

Culture Temperature
In 3D pellet culture, a temperature of 37°C promotes chondrocyte
redifferentiation to a greater extent than does a temperature of
32.2°C. Moreover, a temperature of 32.2°C slows down the
proliferation rate of chondrocytes significantly. In monolayer
culture, hypothermia at 32.2°C retarded the dedifferentiation
and proliferation rate of chondrocytes significantly (von
Bomhard et al., 2017). Hypothermia has the potential to avoid
dedifferentiation in monolayer culture. Another study
demonstrated that a culture temperature of 41°C inhibited the
redifferentiation of chondrocytes and the formation of ECM
compared with 37°C (Ito et al., 2015).

Hypoxia
The environment in human healthy joints is hypoxic with
negative pressure (Stegen et al., 2019). Does hypoxia regulate
the redifferentiation of chondrocytes? Many studies (Duval et al.,
2009; Markway et al., 2013; Das et al., 2015; Ollitrault et al., 2015;
Rakic et al., 2017; Öztürk et al., 2017; Jeyakumar et al., 2019) have
investigated the effect of hypoxic conditions on the
redifferentiation of chondrocytes during in vitro expansion,
with the results basically indicating that hypoxia has a positive
effect on the redifferentiation of chondrocytes. In addition,
several studies have reported that a partial oxygen pressure
(pO₂) of 2.5% achieves the best effect in improving the
expression of chondrocytic markers (Acan and Col2a1) and
suppressing the expression of dedifferentiation markers
(Col1a1 and Col3a1) (Jahr et al., 2019).

Three-Dimensional Culture
At present, 3D culture is widely used in cell culture, because
researchers increasingly find that the extracellular
environment of 2D culture is far from the real extracellular
microenvironment. 3D culture can be classified into 3D
culture methods with and without scaffolds (Wu X. et al.,

TABLE 1 | Cell source modulates the redifferentiation of chondrocytes.

Aspects Factors Modulation of chondrocyte
redifferentiation

References

Cell
source

Human knee chondrocytes Commonly used cell sources Jones and Peterson, (2006); Minas et al., (2014); Mistry et al.,
(2017)

Human nasal septal
chondrocytes

Better reproducible ability to generate hyaline-like cartilage
tissue

Mumme et al., (2016); von Bomhard et al., (2017)

Human polydactyly
chondrocytes

Potential for stable cartilage production Cavalli et al. (2019)

Human microtia chondrocytes 3D chondrogenic culture system is needed He et al. (2020)
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2021), and Three-dimensional culture with scaffolds is widely
used to redifferentiate chondrocytes (Caron et al., 2012). This
type of culture is a common approach that is used to induce
and maintain chondrocyte redifferentiation, and generate
ECM. Numerous studies (von Bomhard et al., 2017; He
et al., 2020; Caron et al., 2012; Takahashi et al., 2007;
Schulze-Tanzil, 2009; Mukaida et al., 2005; Ahmed et al.,
2014) have shown that 3D culture with scaffolds can
regulate the redifferentiation of chondrocytes. Perhaps
because researchers generally believe that 3D culture with
scaffolds is closer to mammalian cartilage in physical
properties, almost all 3D cultures with scaffolds are used to
regulate chondrocyte redifferentiation. But can a scaffold-free
3D culture system regulate the redifferentiation of
chondrocytes? This is a question worth studying. The
application of bioprinting in cartilage tissue engineering has
made great progress, but its effect on the redifferentiation of
chondrocytes needs further research (Han et al., 2021).
Besides, there is no criterion for 3D culture, which hinders
its application to the induction of the redifferentiation of
chondrocytes (represented in Figure 1).

Extracellular Matrix and Hydrogels
It is believed that 3D culture can induce chondrocyte
differentiation. Researchers have explored many bionic

materials in this context. Because of the wide range of feasible
properties and the ability to culture cells in material, hydrogels
have become a promising extracellular scaffold (Vega et al., 2017).
Based on their ability to adjust their elasticity, hydrogels are an
option to regulate the redifferentiation of chondrocytes
(Bachmann et al., 2020). Fibrin hydrogels with elasticity close
to 30 kPa have a shape that is similar to that of the natural
physiological cartilage tissue and is able to induce the synthesis of
physiological ECM constituents, such as glycosaminoglycans
(sGAG) and collagen type II (Bachmann et al., 2020). In
addition, the adhesion-site density of the hydrogels has been
proven to affect the redifferentiation of chondrocytes, whereas the
hardness of the hydrogel substrate does not (Schuh et al., 2012).
Researchers have discovered several novel types of hydrogel for
the proliferation of chondrocytes in vitro. For example, a
microcavitary alginate hydrogel can help dedifferentiated
chondrocytes to redifferentiate and recover the capability of
synthesizing ECM (Zeng et al., 2015). Gelatin–methacryloyl
hydrogels, tyrosinase-crosslinked alginate sulfate tyramine
hydrogels, and composite microfibers also exhibit potential for
the engineering of cartilage-like tissues for 3D cultured
chondrocytes (Klotz et al., 2016; Angelozzi et al., 2017; Öztürk
et al., 2020). Self-assembled dendritic DNA hydrogel possesses
inherent biocompatibility, biodegradability, and unique
programmability, and has shown great potential in three-

FIGURE 1 | In the microenvironment of two-dimensional culture, chondrocytes generally undergo dedifferentiation after proliferation. Three-dimensional culture
with scaffolds has a good ability to modulate the redifferentiation of chondrocytes. And does the three-position culture without scaffold and bioprinting have the ability to
modulate the redifferentiation of chondrocytes? This issue needs further research to clarify.
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dimensional cell culture (Wu J. et al., 2021), but its effect on the
redifferentiation of chondrocytes needs further investigation.

Compared with hydrogels, the decellularized matrix (DCM)
derived from natural tissues is more suitable for cell culture and is
closer to the physiological environment; however, the DCMhas the
disadvantage of being arduous to generate in large quantities. The
mesenchymal stem cell (MSC)-derived extracellular matrix (MSC-
ECM) is a natural biological material with strong bioactivity and
excellent biocompatibility. Studies have shown that MSC-ECM
derived from decellularized human bone marrow is an excellent
culture substrate for the expansion of chondrocytes, with firm
cartilage formation being observed after 21 days of culture in vitro
(Yang et al., 2018). The meniscus-derived DCM has shown the
promising effect of promoting the proliferation of chondrocytes.
With the intervention of combined growth factors, meniscus-
derived DCM can modulate the differentiation of chondrocytes
(Liang et al., 2020). In addition, ECM deposited by synovial-
derived stem cells significantly enhanced the proliferation of
chondrocytes and retarded the dedifferentiation of the
proliferated chondrocytes (Pei and He, 2012).

Growth Factors and Redifferentiation
Inducers
Signal transduction mediated by the TGFβ superfamily plays an
important role in the regulation of cell growth, differentiation,
and development in many biological systems. The TGFβ and
bone morphogenetic proteins (BMP) signaling pathways are

regulated at multiple levels by the MAPK signaling pathway.
In addition, in some cases, the TGFβ signaling pathway can also
affect Smad-independent signal pathways, including the Erk,
SAPK/JNK, and p38 MAPK signal pathways. Therefore, there
exists cross-talk among the members of the TGF-β superfamily to
regulate the redifferentiation of chondrocytes. Some studies have
demonstrated the positive effect of the combined application of
growth factors on the regulation of redifferentiation, but it is
difficult to ignore the negative effect of some growth factors on
the repair of cartilage, such as BMP2 can induce endochondral
solidification (Zhou et al., 2016) and BMP7 may induce
heterotopic ossification (Spiro et al., 2010); therefore,
additional research is needed to assess the combinatorial effect
of different growth factors.

Transforming Growth Factor β Family
Growth factors play a crucial role in the processes of cell
proliferation, extracellular matrix synthesis, phenotype
maintenance, induction of dedifferentiated chondrocytes or
MSCs, and cartilage formation. The members of the
transforming growth factor β (TGFβ) family are
particularly paramount for these roles (Freyria and
Mallein-Gerin, 2012; Dexheimer et al., 2016). Members of
the TGFβ family include TGFβs, BMPs, and growth and
differentiation factors (GDFs) (Thielen et al., 2019). The
TGFβ family regulates cell-fate decisions during
development, and tissue homeostasis and regeneration.
The members of the TGFβ family are major participants in

FIGURE 2 | Signal transduction mediated by growth factors plays an important role in the regulation of cell growth, differentiation and development in many
biological systems. There exists cross-talk among the members of the TGF-β superfamily to regulate the redifferentiation of chondrocytes. TGFβs bind to its receptor
TGFβ receptor Ⅰ (TGFβRⅠ) and Ⅱ (TGFβRⅡ) to form a complex, and BMPs bind to its receptor BMP receptor Ⅰ (BMPRⅠ) and Ⅱ (BMPRⅡ), Acv receptor (AcvR) to form a
complex.
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cartilage and bone formation, tumorigenesis, fibrotic
diseases, immune dysfunction, and various congenital
diseases (Wozney et al., 1988; David and Massagué, 2018).

Humans express three types of TGFβ, including TGFβ1,
TGFβ2, and TGFβ3 (Chen and Ten Dijke, 2016). TGFβs are
secreted by chondrocytes and combine with their ECM.
Moreover, the TGFβ signaling pathways are related to the
production and maintenance of cartilage ECM (van der Kraan
et al., 1992; Jahr et al., 2019; Bachmann et al., 2020) and have a
positive antiinflammatory effect in cartilage (Rédini et al.,
1993; Takahashi et al., 2005). Of note, the regulation of
chondrocyte hypertrophy is a particularly crucial role of
TGFβ signaling pathways. The signaling transduction of
pSMAD2/3 induced by TGFβs blocks the hypertrophy and
terminal differentiation of chondrocytes (Yang et al., 2001; Li
et al., 2006; Blaney Davidson et al., 2009; Kim et al., 2012). In
some studies, TGFβs are used as a supplement to stimulate the
redifferentiation of cultured chondrocytes in vitro (Jakob
et al., 2001; Lee et al., 2005; van der Windt et al., 2010;
Baugé et al., 2013; Bianchi et al., 2017; Bianchi et al.,
2019). In contrast, the inhibition of the activity of TGFβ1
during cell expansion in vitro increases the redifferentiation
ability of chondrocytes and inhibits their hypertrophy
(Narcisi et al., 2012). TGFβ signaling transduction is
pivotal in the regulation of the dedifferentiation and
redifferentiation of chondrocytes (Dong et al., 2005).
Nevertheless, this is a complex process, and additional
research is necessary to clarify this issue.

In humans, the BMP signaling pathways include more than 20
distinct ligands, four type I receptors (Bmpr1a, Bmpr1b, Acvr1,
and Alk1) and three type II receptors (Bmpr2, Acvr2a, and
Acvr2b) (Antebi et al., 2017). These components can be
combined with each other to assemble hundreds of different
receptor–ligand complexes. Each complex is composed of two
type I receptors and two type II receptor-binding ligands. The
current research shows that the BMP pathway usually operates
through multiple ligands and receptors (Lorda-Diez et al., 2014;
Salazar et al., 2016). For example, BMP9 and BMP10 jointly
regulate the production of vasculature (Ricard et al., 2012; Chen
et al., 2013), and the existence of heterodimers of BMP2/6, BMP2/
7, and BMP4/7 has been confirmed in vivo and in vitro (Bragdon
et al., 2011).

BMP2 is a recognized chondrocyte maturation and
hypertrophy inducer, and is able to induce cartilage
differentiation, osteogenic differentiation, and
endochondral ossification of stem cells (Zhou et al., 2016).
BMP2’s regulation of chondrocyte redifferentiation is
controversial in different studies. Davidson observed a lack
of articular cartilage hypertrophy in mice overexpressing
BMP2 for 6 weeks (Blaney Davidson et al., 2015). In
addition, overexpression of BMP2 does not have a
significant effect on articular cartilage damage, but it
induces extensive osteophyte hyperplasia (Blaney Davidson
et al., 2015). Rakic and colleagues combined BMP2 with a
Col1a1 small interfering RNA (siRNA) and 3D hypoxia cell
culture to induce chondrocyte redifferentiation successfully

FIGURE 3 | The research progress of gene silencing and expression technology in modulating the chondrocytes redifferentiation.
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(Rakic et al., 2017). It is recognized that the transcription
factor RUNX2 can induce bone formation, but the induction
into cartilage requires the combined application of
transcription factors SOX9 and RUNX2 (Eames et al.,
2004). Perhaps similar to the transcription factor RUNX2’s
role in cartilage formation, BMP2 may be necessary to
regulate the redifferentiation of chondrocytes, and the use
of BMP2 alone to induce chondrocyte redifferentiation is
obviously a wrong method. It is known that BMPs and TGFβs
are usually combined to participate in the proliferation and
differentiation of chondrocytes (Miyamoto et al., 2007;
Shintani et al., 2013). The growth factor mixture is a novel
approach that is used to modulate the redifferentiation of
chondrocytes. A mixture containing TGFβ1, BMP2, GDF5,
BMP6, and fibroblast growth factor 2 (FGF2) has the
potential to stably drive cartilage formation (Mendes et al.,
2018). Similarly, TGF-β1, GDF-5, and BMP-2 as a combined
inducer can significantly stimulate the expression of cell
cartilage genes and secrete collagen type II (Murphy et al.,
2015).

BMP7 promotes the expression of ECM in cartilage.
Previous studies have suggested that BMP7 induces
heterotopic ossification (Spiro et al., 2010); however,
unlike BMP3, BMP7 does not induce excessive osteophyte
proliferation (Hunter et al., 2010). The combination therapy
of BMP7 and TGFβ3 has the advantage to stimulate the

redifferentiation of chondrocytes (Huang et al., 2018). In
addition, a scaffold composition was able to continuously
release BMP7 and TGFβ3 and promote chondrocyte
differentiation (Crecente-Campo et al., 2017). This scaffold
can encapsulate a combination of different growth factors
and exert a synergistic effect between them, to regulate
chondrocyte redifferentiation. An interesting study
demonstrated that, after 4 weeks of injection of human
synovial MSCs overexpressing BMP7 into the thighs of
mice, researchers discovered an implant that histologically
resembled a rudimentary joint (Roelofs et al., 2017), in which
there was articular cartilage, subchondral bone containing
marrow, and a growth plate. This phenomenon warrants
further investigation.

The role of BMP4 and BMP6 in the regulation of chondrocyte
redifferentiation is poorly understood. BMP4 promotes the
secretion of chondrocyte proteoglycan and the expression of
collagen type II (Luyten et al., 1994). Similarly, BMP6
promotes the expression of proteoglycan in human cartilage
(Bobacz et al., 2003; Chubinskaya et al., 2008). However, a
hypertrophic effect of BMP6 has been observed in ATDC5
cells (Ito et al., 1999).

Other Growth Factors
FGF2 is a growth factor with a wide range of mitogenic and cell-
survival activities (Nawrocka et al., 2020). Adding FGF2 to

FIGURE 4 | (A) In terms of cell source, it is feasible to use the cartilage tissue from the patient’s own diseased joint as a cell source for ACI; chondrogenic diseases
such as polydactyly are another potential cell source. (B)Many extracellular environmental factors affect cell redifferentiation; however, proper hypoxia and 3D culture are
beneficial for chondrocyte redifferentiation. Hydrogels are the medium used for 3D cell culture, but the related parameter standard of hydrogels warrants further
investigation. Members of the TGF-β superfamily are currently the most important chondrocyte redifferentiation inducers. The combined application of growth
factors may be a good choice in this context. (C) Research on gene silencing and overexpression for the regulation of chondrocyte redifferentiation is still focused on
growth-factor-related genes; thus, additional investigation is needed in this area.
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chondrocytes cultured in vitro promotes cell proliferation,
induces rapid and reversible cell dedifferentiation, and leads to
the expression of cartilage marker genes and secretion of ECM
after inducing redifferentiation (Jakob et al., 2001; Claus et al.,
2012). Several studies have used FGF2 as an inducer to promote
the expansion of chondrocytes in vitro (Hendriks et al., 2006; Lee
et al., 2017; Endo et al., 2019; Kikuchi and Shimizu, 2020; Song
et al., 2021). After a large number of dedifferentiated
chondrocytes was obtained, other inducers were used to
induce the redifferentiation of chondrocytes (Martin et al.,
2001; Dufour et al., 2019). Similarly, hypoxia combined with
FGF2 to induce in vitro culture may be a better method for the
expansion of chondrocytes in vitro. Moreover, hypoxia combined
with FGF2 may improve the growth rate of cells, reduce the level
of dedifferentiation during expansion, and have a greater ability
to induce redifferentiation (Koh et al., 2017).

The insulin-like growth factor 1 (IGF1) and its downstream
pathway play a major role in normal growth and aging, whereas
the levels of serum IGF1 decrease with age (Frater et al., 2018).
Similar to the role of FGF2, the activation of the IGF1 pathway
could drive the rapid proliferation and hypertrophy of
chondrocytes (Yakar et al., 2018). Several studies have also
confirmed that IGF1 is not conducive to the redifferentiation
of chondrocytes (Frerker et al., 2021). However, the combined
application of IGF1 and TGFβs has been successful in regulating
the redifferentiation of chondrocytes (Witt et al., 2017; Klinder
et al., 2020).

The vascular endothelial growth factor (VEGF) is involved in
angiogenesis and the negative regulation of cartilage growth by
stimulating vascular invasion and ossification (Apte et al., 2019).
Inhibition of VEGF function has a positive effect on cartilage
formation by human-derived nasal chondrocytes (Carlevaro
et al., 2000; Medeiros Da Cunha et al., 2017), and the
obstruction of vascular invasion during bone healing, rather
than osteogenic differentiation, is beneficial to cartilage
formation by bone progenitor cells (van Gastel et al., 2020).
The relevant researches of growth factors have been summarized
and illustrated in Figure 2.

Other Redifferentiation Inducers
Platelet derivatives (such as platelet-rich plasma (PRP),
hyperacute serum (HAS), platelet lysate (PL), and the
<5 kDa fraction of human serum albumin (LMWF5A)) are
used to overcome the dedifferentiation caused by the in vitro
expansion used to achieve a sufficient number of cells and
variable oxygen tension. Recent studies have confirmed that
HAS enhances the proliferation of chondrocytes and PRP
boosts the proliferation and redifferentiation of
dedifferentiated chondrocytes (Jeyakumar et al., 2017;
Jeyakumar et al., 2019). The current research on PL
supports its application to promote the expansion of
chondrocytes; however, there are doubts regarding the
regulation of chondrocyte redifferentiation (Rikkers et al.,
2020; Liau et al., 2021). Recent studies of LMWF5A have

TABLE 2 | Various factors in the extracellular microenvironment modulate the redifferentiation of chondrocytes.

Aspects Factors Modulation of chondrocyte redifferentiation References

Extracellular
microenvironment

Culture temperature Culture temperature of 37°C promotes chondrocyte
redifferentiation

von Bomhard et al., (2017); Ito et al., (2015)

Hypoxia Hypoxia has a positive effect on the redifferentiation of
chondrocytes

Duval et al., (2009); Markway et al., (2013); Das et al.,
(2015); Ollitrault et al., (2015); Rakic et al., (2017); Öztürk
et al., (2017); Jeyakumar et al., (2019)

Three-dimensional
culture

3D culture has a positive effect on the redifferentiation of
chondrocytes

von Bomhard et al., (2017); He et al., (2020); Caron et al.,
(2012); Takahashi et al., (2007); Schulze-Tanzil, (2009);
Mukaida et al., (2005); Ahmed et al., (2014)

Hydrogels The elasticity of hydrogels, the density of the adhesion
sites, and their configuration methods will all mediate the
redifferentiation of chondrocytes; however, there is
currently a lack of standardized methods for evaluating
hydrogels

Schuh et al., (2012); Zeng et al., (2015); Klotz et al., (2016);
Angelozzi et al., (2017); Bachmann et al., (2020); Öztürk
et al., (2020)

ECM DCM has a positive effect on the redifferentiation of
chondrocytes, with the disadvantage that it is difficult to
produce in large quantities

Pei and He, (2012); Yang et al., (2018); Liang et al., (2020)

Transforming growth
factor β family

The effect of a single TGFβ as an inducer is limited, and the
combined application of multiple TGFβ warrants further
research

Jakob et al., (2001); Dong et al., (2005); Lee et al., (2005);
van der Windt et al., (2010); Narcisi et al., (2012); Baugé
et al., (2013); Blaney Davidson et al., (2015); Bianchi et al.,
(2017); Crecente-Campo et al., (2017); Roelofs et al.,
(2017); Mendes et al., (2018); Bianchi et al., (2019)

Other growth factors FGF2 and IGF1 induce cell proliferation and
dedifferentiation and, combined with other inducers or
hypoxia, can regulate the redifferentiation of chondrocytes

Martin et al., (2001); Hendriks et al., (2006); Lee et al.,
(2017); Witt et al., (2017); Dufour et al., (2019); Endo et al.,
(2019); Kikuchi and Shimizu, (2020); Klinder et al., (2020);
Song et al., (2021)

Other redifferentiation
inducers

PRP, LMWF5A, and ERK1/2 inhibitors; WNT inhibitors; Cn
inhibitors and oleuropein all show potential to modulate the
redifferentiation of chondrocytes

van der Windt et al., (2010); Zhong et al., (2016);
Jeyakumar et al., (2017); Hausburg et al., (2018); Wang
et al., (2018); Jeyakumar et al., (2019); Varela-Eirín et al.,
(2020)
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shown its potential in inducing fibroblast-like chondrocytes
to redifferentiate into functional chondrocytes (Hausburg
et al., 2018).

Similarly, inhibitors of several important pathways involved in
the regulation of chondrocyte dedifferentiation (such as the
MEK-ERK1/2 and WNT signaling pathways) are used to
explore their role in the regulation of chondrocyte
redifferentiation. The expression of ERK1/2 increases during
the process of chondrocyte dedifferentiation, whereas it
decreases during the process of redifferentiation. Activation of
the MEK-ERK1/2 pathway causes the dedifferentiation of
chondrocytes (Provot et al., 2008). PD0325901, which is an
inhibitor of ERK1/2, reverses the dedifferentiation and leads to
redifferentiation of chondrocytes (Wang et al., 2018). Inhibitors
of the WNT signaling pathway, Dickkopf 1 homolog (DKK1),
and frizzled-related protein (FRZB), have been shown to be
essential for the early steps of chondrocyte differentiation
(Zhong et al., 2016). They are necessary for the promotion of
the redifferentiation of articular chondrocytes and the inhibition
of their hypertrophy and differentiation. Moreover, the activity of
calcineurin (Cn) in human articular chondrocytes is significantly
increased during dedifferentiation. Therefore, studies of FK506,
an inhibitor of Cn, confirmed that it could promote the
expression of the chondrogenesis markers collagen type Ⅱ,
proteoglycan, and SOX9 in expanded chondrocytes (van der
Windt et al., 2010).

Moreover, the natural plant compound oleuropein is a
polyphenol extracted from the leaves and fruits of olives that
has been verified to induce the redifferentiation of chondrocytes
in patients with osteoarthritis (OA) and to reduce the number of
senescent cells in joint tissues (Varela-Eirín et al., 2020). The
relevant researches on the extracellular environment have been
summarized in Table 2.

GENE SILENCING AND OVEREXPRESSION

At present, vectors for the overexpression of genes and interfering
RNAs have been used in studies of the redifferentiation of
chondrocytes. The combined application of a TGFβ3
adenovirus vector and a Col1 short-hairpin RNA (shRNA)
promoted the expression of cartilage marker genes in
dedifferentiated chondrocytes, such as collagen type II and
proteoglycans (Zhang et al., 2011). The siRNA of aminoacyl-
tRNA synthetase-interacting multifunctional protein 1 (AIMP1)
restored the TGFβ signaling pathway in degenerated
chondrocytes, thereby enhancing the chondrogenic potential of
dedifferentiated chondrocytes (Ahn et al., 2016).
Transglutaminase 2 (TG2) is increased in chondrocytes in a
passage-dependent manner, and enhances cell dedifferentiation
(Eckert et al., 2014). Using TG2 siRNA could lead to the
redifferentiation of dedifferentiated chondrocytes by enhancing
the glucose metabolism process (Ko et al., 2017). Sonic hedgehog
(SHH) is involved in the induction of the early chondrogenic
differentiation process of limb mesenchymal cells. The use of an
SHH gene plasmid vector to overexpress dedifferentiated rat
chondrocytes increases the expression of SHH and the

synthesis of a variety of cell growth factors (e.g., BMP2 and
IGF1). Rats transplanted with SHH-transfected cells show better
cartilage repair and induction of the redifferentiation of
dedifferentiated chondrocytes (Lin et al., 2014). Connexin43
(Cx43) has been validated as a regulator of the transformation
between chondrocytes and mesenchymal cells. Downregulation
of Cx43 by CRISPR/Cas9 triggers the redifferentiation of OA
chondrocytes (Varela-Eirín et al., 2018). The Kruppel-like factor
4 (Klf4) is a multifunctional transcription factor that regulates
diverse cellular processes, such as cell growth, proliferation, and
differentiation (Ghaleb and Yang, 2017). The Klf4 gene vector
promotes the proliferation and redifferentiation of chondrocytes
and inhibits their dedifferentiation (Gurusinghe et al., 2019). The
relevant research on the gene expression has been summarized
and illustrated in Figure 3.

However, because of ethical issues, the clinical application of
gene editing technology remains controversial. Moreover, gene
silencing and overexpression do not yield a better effect than do
growth factors in regulating the redifferentiation of chondrocytes.

SUMMARY AND PROSPECT

Articular cartilage is indispensable in the life of all vertebrates. It
acts as a buffer against external forces when humans and animals
perform various activities. Excessive activity or trauma can cause
damage to the articular cartilage, which can lead to restricted
movement of the injured joint. Therefore, it is crucial to repair
cartilage to restore joint mobility. Cartilage can hardly repair itself,
and researchers generally believe that it is due to its extremely poor
blood supply and relatively closed intra-articular environment.
Researchers had tried to utilize implanting autologous
chondrocytes to repair cartilage (Brittberg et al., 1994), but
there was no significant effect. Therefore, currently the main
clinical treatment for patients with various cartilage injuries
suffering from restricted mobility and life disorders is joint
replacement surgery. However, the surgical indications for joint
replacement surgery determine the limitations of the applicable
patients, which can only be used in elderly patients. people.
Therefore, repairing cartilage is still the main goal of researchers.

At present, the technical limitation of ACI lies in the low
proliferation ability of autologous chondrocytes. After
proliferation, chondrocytes will dedifferentiate and lose their cell
function, and their ability to synthesize ECM is low. The author
believes that the problem is that the extracellular
microenvironment for autologous chondrocyte expansion
in vitro is very different from the real human in vivo
environment. Regardless of the two-dimensional culture, culture
medium, extracellular matrix and various extracellular mechanical
stimuli are different. Therefore, simulating the extracellular
microenvironment of chondrocytes for differentiation and
redifferentiation as much as possible may be the fundamental
method to solve the technical problems of autologous cartilage
implantation. Obviously, this is very difficult in terms of current
biological technology. This article summarizes various conditions
(cell sources, extracellular environment, growth factors and
redifferentiation inducers, and gene silencing and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7641938

Hu et al. Modulation of Redifferentiation of Chondrocytes

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


overexpression) on the redifferentiation of chondrocytes, hoping to
show some surprising progress in this field, and propose a
preliminary Strategy (represented in Figure 4).

In summary, the redifferentiation of chondrocytes is
modulated at multiple levels. Despite significant progress
in this field, many questions remain to be resolved.
Regarding the extracellular microenvironment, hypoxia
and 3D culture have shown potential to modulate the
redifferentiation of chondrocytes. Although the culture
temperature, ECM, and hydrogel all have the effect of
modulating the redifferentiation of chondrocytes, they all
have their own limitations. For example, a high or low
temperature is not conducive to cell expansion, and the
amount of naturally generated ECM is limited. There is no
doubt that the parameters of the hydrogel also need
standardized evaluation criteria. TGFβ family members are
the most used redifferentiation inducers currently. However,
they involve complex biological pathways, which renders it
difficult to understand the biological effects of a single
member of the TGFβ family. The combined application of
different family members may be an appropriate method.

CONCLUSION

In conclusion, the strategy of regulating the redifferentiation of
chondrocytes is not static, it needs to be adjusted according to

factors such as cell source and cell stage. The ideal strategy for
modulating chondrocytes redifferentiation may have 3D culture,
hypoxia, appropriate temperature, hydrogel or ECM, inducers
suitable for cell expansion phase and cell redifferentiation phase
after expansion, respectively. As we continue to learn more about
these factors in the future, it will be very important to capitalize
on these discoveries by modulating redifferentiation of
chondrocytes for the treatment of cartilage damage related
diseases.
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