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Minimally invasive surgeries, including posterior endoscopic cervical foraminotomy (PECF),
microsurgical anterior cervical foraminotomy (MACF), anterior transdiscal approach of
endoscopic cervical discectomy (ATd-ECD), and anterior transcorporeal approach of
endoscopic cervical discectomy (ATc-ECD), have obtained positive results for cervical
spondylotic radiculopathy. Nonetheless, there is a lack of comparison among them
regarding their biomechanical performance. The purpose of this study is to investigate
the biomechanical changes of operated and adjacent segments after minimally invasive
surgeries compared to a normal cervical spine. A three-dimensional model of normal
cervical vertebrae C3–C7 was established using finite element analysis. Afterwards, four
surgical models (PECF, MACF, ATd-ECD, and ATc-ECD) were constructed on the basis of
the normal model. Identical load conditions were applied to simulate flexion, extension,
lateral bending, and axial rotation of the cervical spine. We calculated the range of motion
(ROM), intradiscal pressure (IDP), annulus fibrosus pressure (AFP), uncovertebral joints
contact pressure (CPRESS), and facet joints CPRESS under different motions. For all
circumstances, ATc-ECD was close to the normal cervical spine model, whereas ATd-
ECD significantly increased ROM and joints CPRESS and decreased IDP in the operated
segment. PECF increased more the operated segment ROM than did the MACF, but the
MACF obtained maximum IDP and AFP. Except for ATc-ECD, the other models increased
joints CPRESS of the operated segment. For adjacent segments, ROM, IDP, and joints
CPRESS showed a downward trend in all models. All models showed good biomechanical
stability. With their combination biomechanics, safety, and conditions of application, PECF
and ATc-ECD could be appropriate choices for cervical spondylotic radiculopathy.
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INTRODUCTION

Cervical spondylotic radiculopathy is usually characterized by
pain and numbness of the neck, shoulders, and arms as well as
restriction of cervical movement, which significantly decreases
quality of life for patients (Yuchi et al., 2019; Chen et al., 2020).
Anterior cervical discectomy and fusion has turned into a
standard procedure for cervical spondylotic radiculopathy
because of its safety, effectiveness, and high fusion rate since
the 1950s (Ruetten et al., 2009; Yang et al., 2014; Ren et al., 2019),
notwithstanding that it may cause some problems such as
degeneration of adjacent segments, loss of intervertebral disc
height, and pseudarthrosis formation (Ruetten et al., 2009; Yang
et al., 2014; Yuchi et al., 2019; Chen et al., 2020). With the
development of full-endoscopic cervical discectomy, the
complications of anterior cervical discectomy and fusion were
managed appropriately (Ruetten et al., 2009;Wu et al., 2018; Ahn,
2020). Full-endoscopic cervical discectomy is generally divided
into two types, i.e., anterior transdiscal approach of endoscopic
cervical discectomy (ATd-ECD) and posterior endoscopic
cervical foraminotomy (PECF) (Yang et al., 2014; Ren et al.,
2020). PECF is an indirect decompression of the technique
through the posterior approach, which requires the removal of
the partial bony structure and soft tissue with a radius of 3–4 mm
around the V-point (inferior margin of the cephalic lamina,
superior margin of the caudal lamina, and the medial border
of facet joints [FJ]) to decompress the nerve root (Kim et al., 2015;
Ahn, 2016;Won et al., 2017;Wu P. H. et al., 2021). The ATd-ECD
technique can achieve precision and direction of approach using
contrast agents, but a tunnel needs to be built in the intervertebral
disc; after that, the endoscopic instruments remove the protruded
disc through the intervertebral space (Lee and Lee, 2014; Quillo-
Olvera et al., 2018; Haijun et al., 2021). Nowadays, PECF and
ATd-ECD have gradually become alternative options for spine
surgeons in treatment of cervical disc herniation because of their
good postoperative stability and high clinical success rate
(Ruetten et al., 2008; Yang et al., 2014).

ATd-ECD generates greater iatrogenic disc injury and causes
intervertebral space decrease (Ren et al., 2020). With regard to
better disc preservation, a similar technique named anterior
transcorporeal approach of endoscopic cervical discectomy
(ATc-ECD) was used subsequently (Choi et al., 2007). ATc-
ECD can relieve the compression of the nerve root by drilling
a hole in the vertebral body, which avoids the unnecessary
destruction of the intervertebral disc and bony stabilizers
because it can reach the region of the protruded disc or
uncovertebral osteophyte through the bone tunnel (Choi et al.,
2007; Kim et al., 2011; Umebayashi et al., 2013; Deng et al., 2016;
Wu et al., 2018; Chen et al., 2021). Ren et al. (2020) reported that
the rate of excellent or good results reached up to 91.4%, and
intervertebral space decrease was reported after ATc-ECD.
However, it was not revealed whether intervertebral space
decrease after ATc-ECD causes the apparent biomechanical
changes of structures, like the intervertebral disc, FJs, and
uncovertebral joints (UJs). Previous experiments focused
primarily on vertebral strength change after operation

(Umebayashi et al., 2013; Ren et al., 2020); thus, the
biomechanics of ATc-ECD need to be further explored in detail.

Aside from a herniated disc, secondary osseous foraminal
stenosis resulting fromUJ osteophytes can also potentially induce
cervical spondylotic radiculopathy (Boreadis and Gershon-
Cohen, 1956; Snyder et al., 2007; Brismée et al., 2009; Clifton
et al., 2020). Previous research demonstrated that the direct
decompression of foraminal stenosis by resecting UJ effectively
relieved the symptoms of nerve compression (Jho, 1997; Saringer
et al., 2002; Saringer et al., 2003; Kotil and Bilge, 2008). MACF is
regarded as an alternative functional surgery and can preserve
segmental motion compared with anterior cervical discectomy
and fusion (Maduri et al., 2020). And it can also represent a
supplement surgery to better improve arm pain after conducting
anterior cervical discectomy and fusion (Lee et al., 2018; Clifton
et al., 2020; Noh et al., 2020). A key step of MACF is the necessary
removal of hypertrophied UJs to expand the intervertebral
foramen and decompress the nerve root (Taşçioğlu et al.,
2001; Clifton et al., 2019). However, UJs are regarded as a
stabilizer to limit cervical posterior translation and lateral
bending, and resection of UJs will disrupt stability and may
add a load on other bearing structures (Kotani et al., 1998;
Wang et al., 2016). Kotani et al. (1998) divided UJs into three
parts, namely, the posterior foraminal part, the posterior half, and
the anterior half, and separately analyzed the stability of each
part; however, the detailed biomechanical responses inside of the
cervical spine were not exposed.

Previous studies showed that PECF obtained better
postoperative stability than did ATd-ECD (Yuchi et al., 2019;
Chen et al., 2020). Still, there is a lack of comparative study of
biomechanics for the four aforementioned minimally invasive
surgeries, and it is unclear which surgery represents optimal
stability. Besides, the variations of UJs have not been discussed
after cervical surgeries. Due to limitations of technology, it is
currently impossible to conduct biomechanical in vivo
experiments; additionally, in vitro experiments are not easy to
carry out, because specimens are expensive and unavailable
(Ames et al., 2005; Yuchi et al., 2019). Finite element analysis
can deal with these limitations and obtain satisfactory results as
well as detailed internal information of the cervical spine;
furthermore, it can possibly provide interpretations for
postoperative symptoms (Yuchi et al., 2019). As a digital
research tool, finite element analysis can assess cervical spine
kinematics or biomechanics, can simulate various clinical
situations, and has been widely applied to spine biomechanical
research so far (Wu W. et al., 2021; Sang et al., 2021).

In our study, we analyze the biomechanical characteristics
after performing different minimally invasive surgeries in light of
range of motion of segments and the pressure on the following
structures: intervertebral disc, FJs, and UJs. The objective of this
study is to assess and compare the cervical biomechanical
performance of the four surgical models (PECF, MACF, ATd-
ECD, and ATc-ECD) against the preoperative three-dimensional
finite element model of normal cervical vertebrae C3–C7. After
analyzing and comparing the changes of ROM, AFP, IDP, FJs,
and UJs CPRESS between preoperation and postoperation, we
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expect to provide useful information for spine surgeons regarding
the selection of operation plans.

MATERIALS AND METHODS

Establishment of Three-Dimensional Model
The data of the C3–C7 finite element model establishment
stemmed from a computed tomography (CT) scan of a
healthy subject (gender: male; age: 25; height: 176 cm; weight:
65 kg). The subject does not have any symptoms of cervical
spondylopathy and feelings of neck discomfort. The
conversion of CT data to STL files was conducted in Mimics
21.0 (Materialise Inc., Leuven, Belgium). Then, the STL files were
imported into the Geomagic Wrap 2017 software (Geomagic,
Inc., Research Triangle Park, NC, United States) for smoothing
the original model. According to the anatomical position and
shape of disc, UJs, and FJs, we used the SOLIDWORKS 2018
(Dassault Systèmes Inc., France) software to generate them step
by step. The construction of the mesh model and the finite
element preprocessing were done using HyperMesh 14.0
(Altair Engineering, Inc., Executive Park, CA, United States).
Finally, the finite element model calculation and analysis were
implemented with the Abaqus 2020 software (Abaqus, Inc.,
Providence, RI, United States). The intact model and its
components are presented in Figure 1.

The intact finite element model consisted of the cortical bone,
cancellous bone, posterior bone, endplate, annulus ground,
annulus fibers, nucleus pulposus, FJ, UJ, and five major
ligaments. The endplate was located between the intervertebral
disc and cancellous bone. The cortical bone and endplate were
assumed as 0.5 mm thin bony shells. The nucleus pulposus was
defined as a non-compressible material, and the volume rate
between nucleus pulposus and annulus ground was 4:6 (Wu et al.,

2019; Hua et al., 2020; Sang et al., 2021). The annulus fibers
accounted for approximately 20% of ground volume, and they
were circumferential around the surface of the annulus ground at
an angle of approximately 15°–45° with respect to the endplate
horizontal plane (Mo et al., 2015). Based on the mesh model, five
ligaments, i.e., anterior longitudinal ligament, posterior
longitudinal ligament, capsular ligament, interspinous
ligament, and ligamentum flavum, were constructed node
to node.

Facet cartilages were split into two equal inferior and superior
parts. The contact method between facet cartilages was modeled
as frictional contact, with the surface-to-surface method.
Additionally, the friction coefficient was 0.1 (Wong et al.,
2020; Wo et al., 2021). The contact between UJs and cortical
bone was identical to facet cartilages. For convenience reasons, we
assumed the UJs as hexahedrons and neglected its anatomical
fissure.

Material Properties and Element Types
The intact finite element model comprised 254,406 elements and
67,194 nodes. Fibers and ligaments were simulated by tension-
only truss elements. The vertebral body was simulated by four-
node tetrahedral elements, and the rest of the material was
simulated by eight-node hexahedral elements. The detailed
material properties (Lee et al., 2011; Cai et al., 2020a; Guan
et al., 2020; Hua et al., 2020; Ke et al., 2020; Wang et al., 2020;
Sang et al., 2021; Wo et al., 2021) of all parts are presented in
Table 1.

Construction of Postoperative Models
All postoperative models were altered on the basis of the intact
model. The four postoperative models are shown in Figure 2. A
tunnel with a 3.9 mm diameter was established on the C5–C6
intervertebral disc from the right front to the left rear based on the

FIGURE 1 | Finite element model of intact C3–C7 and components.
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intact model, and partial annulus fibers were removed in the
building process of the ATd-ECD model. At the V-point of the
C5–C6 left FJ, we built a 7 mm diameter tunnel from inside to
outside, and partial capsular ligament and cartilage were
removed to simulate posterior cervical foraminotomy in
the PECF model. For the MACF model, we removed only
the posterior part of UJs at C5–C6, without disc resection. For
the ATc-ECD model, a 6 mm diameter tunnel was established
from anterior–inferior towards posterior–superior of the C6
vertebral body; additionally, we did not interfere with the
anterior longitudinal ligament and posterior longitudinal
ligament during the process.

Boundary and Loading Conditions
A 1 Nm moment was applied at the surface of the C3 superior
endplate to imitate the movement of cervical spine flexion,
extension, axial rotation, and lateral bending under a 50 N
follower preload. The intermediate node of the endplate was
coupled with each endplate surface, and these coupled nodes were

connected by connector units (Cai et al., 2020b). The follower
load was applied to each connector unit. The direction of the
follower load was approximately tangential to the cervical spine
physiological curve, and the follower load could provide a partial
effect of muscle to the cervical movement (Bell et al., 2018).
Hence, it could simulate physiological conditions better than the
axial compressive load. We calculated the displacement of the
intact model under moment and load during different motions;
then, the displacement load was applied to every surgical model.
The surface of the C7 inferior endplate is always immobilized
completely when the cervical spine is in motion.

RESULTS

Model Validation
The loading conditions of model validation were identical with
the previous experiments. The ROM of segments of the
C3–C7 finite element model was calculated under the

TABLE 1 | The mechanical property of the components of the C3–C7 finite element model.

Components Young’s modulus (MPa) Poisson’s ratio Element type Cross-sectional area (mm2)

Cortical bone 12,000 0.3 C3D4 -
Cancellous bone 450 0.29 C3D4 -
Posterior bone 3,500 0.29 C3D4 -
Endplate 500 0.4 C3D8R -
Annulus ground 3.4 0.4 C3D8H -
Annulus fibers 110 0.3 Tension-only truss -
Nucleus pulposus 1 0.49 C3D8H -
Facet joints 10 0.4 C3D8R -
Uncovertebral joints 10 0.4 C3D8R -
Anterior longitudinal ligament 10 0.3 Tension-only truss 6
Posterior longitudinal ligament 10 0.3 Tension-only truss 5
Capsular ligament 10 0.3 Tension-only truss 46.6
Ligament flavum 1.5 0.3 Tension-only truss 5
Interspinous ligament 1.5 0.3 Tension-only truss 10

FIGURE 2 | (A) PECF: a 7 mm diameter tunnel was constructed around the V-point at the C5–C6 left FJ; and partial articular capsular and laminae were removed.
(B) MACF: the posterior part of the left UJ was removed at the C5–C6 segment without disc resection. (C) ATc-ECD: a 6 mm diameter tunnel was designed on the C6
vertebral body left side from anterior inferior towards posterior superior, and endoscopic instruments can reach the region of the compressed nerve root. (D) ATd-ECD: a
3.9 mm diameter tunnel was constructed at the C5–C6 intervertebral space from the right front to the left rear, and the target area was the left lateral recess.
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condition of 1 Nm pure moment and compared with
published data. The predicted ROM was consistent with
in vitro experiments and previous finite element results
(Panjabi et al., 2001; Lee et al., 2016; Liu et al., 2016; Cai
et al., 2020a). The comparison between our results and
previous ones is shown in Figure 3.

ROM
The ROM of operated and adjacent segments is shown in
Figure 4. The most significant increase of the operated
segment ROM occurred in the ATd-ECD, and the ROM
increased by 11.07%, 12.77%, 11.56%, and 10.51% during
flexion, extension, right lateral bending, and right axial
rotation, respectively. For the PECF model, we found that

the ROM of the operated segment increased obviously during
extension–flexion and axial rotation by 8.46% and 10.74%,
respectively. For the MACF model, axial rotation and lateral
bending generated more mobility in the operated segment,
followed by extension motion, and the percentage change
was 6.93%, 4.57%, and 3.56%, respectively. However, the
ROM of the operated segment in ATc-ECD showed a tiny
decrease. For adjacent segments, the ROM of four surgical
models showed a decreasing trend compared with the
intact model.

AFP and IDP
The contour plots of the intervertebral disc pressure at C5–C6 are
shown in Figure 5, and the IDP and AFP variations of different

FIGURE 3 | Validation of the intact C3–C7 finite element model.

FIGURE 4 | The ROM of C4–C5, C5–C6, and C6–C7 in the intact model and surgical models. FLE, flexion; EXT, extension; LLB, left lateral bending; RLB, right
lateral bending; LAR, left axial rotation; RAR, right axial rotation.
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models are shown in Figure 6. In comparison with the other
models, the IDP of the operated segment significantly increased
in the MACF model, and the IDP increased by 13.95%, 9.75%,
and 9.19% during extension, left lateral bending, and left axial
rotation, respectively. For the PECF model, the IDP of the
operated segment increased obviously during left axial
rotation, and the increase rate was 4.96%. On the contrary, in
the ATc-ECD and ATd-ECD models, the IDP of the operated
segment decreased during different motions. The IDP of the
operated segment decreased by 34.01%, 32.07%, 27.19%, 31.51%,
and 28.32% during flexion, left lateral bending, right lateral
bending, left axial rotation, and right axial rotation,
respectively, in the ATd-ECD model; on the other hand, in
the ATc-ECD model, the maximum percentage of decrease
was only 2.09% during extension. The variation trend of the
AFP was similar with the IDP. Different from the IDP variation,
in the ATd-ECD model, the AFP of the operated segment
increased in different motions, and the maximum increase rate
was 7.81% during flexion motion. For the PECF model, the AFP
of the operated segment increased significantly during left axial
rotation by 9.06%. For the MACF model, the AFP of the operated
segment increased significantly during left lateral bending by

11.03%. However, the AFP and the IDP decreased in the adjacent
segments.

FJs and UJs CPRESS
The FJs and UJs CPRESS variations of different models are
shown in Figure 7. According to the results, the increase of the
operated segment FJs CPRESS in the ATd-ECD was apparent
compared with the other models under different motions. For
the ATc-ECD model, the variation of FJs CPRESS was
inconspicuous. For all models, the PECF generated the
maximum operated segment FJs CPRESS during right axial
rotation, with a percentage increase of 16.77%. The results
suggest that different surgical models had lower effect on
UJs. During lateral bending and axial rotation, the ipsilateral
UJs CPRESS of the operated segment increased significantly
when the cervical spine moved towards the surgical side in the
MACF model, and the percentages were 12.24% and 8.82%,
respectively, whereas the left UJs CPRESS decreased by 53.47%
during extension. For the PECF model, the UJs CPRESS of the
operated segment increased by 9.48% during rotation. The
changes of FJs and UJs CPRESS in adjacent segments were
similar with the ones in ROM and IDP.

FIGURE 5 | The intervertebral disc pressure contour plots of the operated segment during different motions. FLE, flexion; LLB, left lateral bending; RLB, right lateral
bending; LAR, left axial rotation; RAR, right axial rotation; EXT, extension. The bottom of the figure describes the distribution of pressure of the posterior portion of the
intervertebral disc in the contour plot of flexion. In contrast, in the contour plot of the rest of motions, the bottom of the figure describes the distribution of pressure of the
anterior portion of the intervertebral disc in the contour plot of flexion.
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DISCUSSION

This study uses an indirectly validated three-dimensional finite
element model of a normal C3–C7 segment to simulate cervical
minimally invasive surgeries, including PECF, MACF, ATc-ECD,
and ATd-ECD. Through comparison and analysis of the
biomechanical changes of the four minimally invasive

surgeries models, we hope to provide some evidences for
surgeons to support their selection of appropriate surgical plans.
Fromprevious research (Ren et al., 2019; Yuchi et al., 2019; Chen et al.,
2020; Ke et al., 2020), the assessment of biomechanics includes the
following parameters: ROM, IDP, AFP, and FJs CPRESS. However,
the biomechanical characteristics of UJs, which are a unique structure
of the cervical spine, are not completely clear after minimally invasive

FIGURE 6 | The AFP and IDP of C4–C5, C5–C6, and C6–C7 in the intact model and surgical models. (A) Intradiscal pressure. (B) Annulus fibrosus pressure. FLE,
flexion; EXT, extension; LLB, left lateral bending; RLB, right lateral bending; LAR, left axial rotation; RAR, right axial rotation.

FIGURE 7 | The FJs CPRESS and UJs CPRESS of C4–C5, C5–C6, and C6–C7 in the intact model and surgical models. (A) -R, right facet joint; -L, left facet joint. (B)
-R, right uncovertebral joint; -L, left uncovertebral joint. Ipsilateral UJ and FJ bear major pressure during lateral bending, whereas ipsilateral UJ and contralateral FJ bear
major pressure during axial rotation. FLE, flexion; EXT, extension; LLB, left lateral bending; RLB, right lateral bending; LAR, left axial rotation; RAR, right axial rotation.
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surgeries. Therefore, in our study, we constructed the structure of UJs
in the finite element model and calculated the contact pressure of UJs
in the postoperative condition.

With regard to the ROM, the ATc-ECD model was closest to
the intact model. Umebayashi et al. (2013) calculated the ROM of the
functional spinal unit in the ATc-ECD using radiography
measurements; the values were 5.0 ± 2.7° and 4.2 ± 3.9° in
preoperative and postoperative conditions, respectively, and there
was no significant difference for the ROM of the functional spinal
unit between the two conditions. A similar situation occurred in our
ATc-ECD model, whereas the ATd-ECD model significantly
increased the segmental ROM compared with the other models,
which was in accordance with existing studies (Yuchi et al., 2019;
Chen et al., 2020). For the PECF model, part of the left-side FJ was
removed at the C5–C6 segment, and FJs play an important role in
limiting rotation and extension–flexion motion (Cai et al., 2020b).
Similarly, the PECF significantly increased the operated segment
ROM during rotation and extension–flexion and was lacking
stability compared to the MACF model in our study. For the
MACF model, the posterior part of the left UJ was resected. UJs
are regarded as a stabilizer to limit cervical posterior translation and
lateral bending; however, the function is undefined in the lower
cervical spine, and there is a hypothesis that UJs provide more
stability in rotation (Penning and Wilmink, 1987). Clausen et al.
(1997) reported that the ROM on the C5–C6 segment increased by
25% and 14% during torsion and lateral bending, respectively, after UJ
resection. Our study also supported this hypothesis by removing the
posterior part of the left UJs in the MACF model. This is probably
because of the greater disc facet angle in the lower cervical spine and
UJs may permit more cervical torsion movement (Milne, 1991). Due
to the surgical models and the intact model moving with the same
displacement, the ROM of adjacent segments performed a
compensatory decrease, which may be related to the increase of
the operated segment (Chen et al., 2020). Hence, judging from the
biomechanical viewpoint, the risk of adjacent segment degeneration
might greatly decrease compared with anterior cervical discectomy
and fusion after minimally invasive surgeries.

With regard to IDP and AFP, the MACF significantly
increased, followed by the PECF model. We speculated that
the UJs, which are load-bearing structures, might have a close
relationship with the intervertebral disc. After removal of the UJs,
there is a shift of a more compressive load from UJs to the
neighboring intervertebral disc. Besides, an equilibrium
mechanism may exit in the MACF and PECF. Rotation or
lateral bending towards the direction of the surgical side
caused IDP and AFP to increase, and the IDP and AFP
decreased when the cervical spine shifted towards the opposite
direction. Our results suggest that the ATc-ECD caused a very
small intradiscal pressure decrease. However, the IDP decreased
significantly after conducting the ATd-ECD, which was
consistent with the previous research of Sun and Chen (Chen
et al., 2020; Sun et al., 2021), and the situation of the AFP increase
was consistent with the study by Yuchi et al. (2019). With the
decrease of IDP, the capacity of the nucleus pulposus of
supporting the load decreased. Afterwards the compressive
load is transferred to the annulus fibrosus, and the height of
the intervertebral disc will not be maintained (Sun et al., 2021).

For that reason, the height of the intervertebral disc decreased in
previous clinical studies after performing the ATd-ECD.

For the FJs CPRESS, the model of the four minimally invasive
surgeries showed an increase of a different magnitude in the
operated segment, and the ATd-ECD model obtained maximum
CPRESS. The increase of the CPRESS might cause joint abrasion
and accelerate joint degeneration (Yuchi et al., 2019). When the
PECF occurred in extension and rotation motion, the CPRESS of
FJs increased significantly but decreased in lateral bending; this
result is inconsistent with the study by Yuchi et al. (2019). This
could be because of the ROM and contact area of FJs increasing
during rotation and extension. Except for the ATc-ECD, the rest
of the models may cause UJ degeneration at the operated
segment, especially in rotation and lateral bending motions.
However, the UJs CPRESS of the surgical side in the MACF
decreased considerably during extension. We consider that the
posterior part of UJs contributes importantly to stability (Kotani
et al., 1998) and that it is the concentration area of pressure
during extension. Therefore, the contact pressure showed an
obvious decrease when removing the posterior part of UJs.

Furthermore, the ATd-ECD may result in irreversible
iatrogenic disc injury and poorer cervical stability; still, Sun et al.
(2021) reported that cervical stability was affected by the approach of
angle and surgical diameter when conducting the ATd-ECD. In their
study, cervical stability changedminimallywhen the angle of approach
was 90°. For building a targeted channel and reducing disc injury as
much as possible, surgeons often need a contrast agent mixed with
methylenum coeruleum; nevertheless, the stain or contrast agent may
bring some potential risk, such as toxic effect and discitis (Yang et al.,
2014). Meanwhile, the intervertebral disc height cannot be lower than
the endoscope diameter, which is currently 3–4mm; thus, an
excessively low disc height is a restriction (Ahn, 2016; Ren et al.,
2020). The ATc-ECD and ATd-ECD are similar in technology.
Previous studies have demonstrated that the ATc-ECD has hardly
any impact on vertebrae strength if surgeons choose an endoscopic
system with a diameter within 6mm and a lateral approach
(Umebayashi et al., 2013; Wu et al., 2018). Also, Ren et al. (2020)
reported that bone defect within 6mm could heal after the ATc-ECD,
and the complete healing rate reached up to 94.28%. Therefore, in this
study, we focusmore on segmental stability rather than bone strength.

Our results show that the MACF can maintain segmental
stability well, but there are some setbacks to its use. Considering that
the vertebral artery is closely located at the UJ lateral side, vertebral
artery injury could be a serious intraoperative complication when
performing theMACF (Saringer et al., 2002). In addition, the distance
between the lateral wall of the uncinate process and artery is disparate
at different segments. Kim et al. (2012) reported that the shortest
distance is located at the C3–C4 segment, and the farthest distance is
located at the C6–C7 segment. This means that theMACF procedure
cannot be carried out at each segment, and surgeons need to
prudentially estimate the positional relationship between UJs and
vertebral artery before operation. Meanwhile, it is noteworthy that the
gap between UJs and vertebral artery displays a constriction when UJ
hypertrophy or serious disc degeneration occurs (Urbanschitz et al.,
2021). Hence, the risk of vertebral artery injury may further increase.

The spine is formed from complex and interrelated
structures containing the vertebral body, FJ, intervertebral
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disc, ligaments, and muscle tissue, which together contribute
to spine stability and transmission of force, and one structure
degeneration or injury will affect the rest of the structures
(Kumaresan et al., 2001; O’Leary et al., 2018; Vergroesen et al.,
2015). In the present study, the standard model was
constructed on the basis of a healthy cervical spine rather
than a degenerated cervical spine. A degenerated spine has a
decreased segmental motion and intradiscal pressure and
increased FJ load compared with a healthy spine (Hussain
et al., 2010; Vergroesen et al., 2015; Cai et al., 2020a). Hence,
there are differences between healthy and pathological
postoperation models in the calculated parameters,
including ROM, CPRESS, and intervertebral disc pressure.
And it will cause some deviations such that finite element
analysis results completely substitute for a variety of
pathologic postoperative outcomes. However, the
morphology of a pathological cervical spine is diverse,
including different cervical curvatures and intervertebral
disc height loss or not, which causes the diversification of
biomechanical results after operation. In addition, the
indications of different minimally invasive surgeries are not
all the same, which means there are restrictions in choosing an
appropriate pathological model. Though lacking individual
specificity, CT data of a healthy male contribute to the
unification of variables, and the study results are still
universal and adaptable. Our results might be closer to
some clinical cases that suffer from pure cervical disc
herniation without apparent structure change of the
cervical spine.

There are several limitations in our study that should be
reported. Firstly, the validation method of the standard model
is an indirect way of comparison with published data.
Although most finite element analyses of the spine used
indirect validation (Jones and Wilcox, 2008), the accuracy
and precision of finite element results decreased because of
unclear in vitro experiment conditions, large standard
deviation, and lack of specific material properties. Thus, the
calculated pressures of the intervertebral disc and articular
cartilage are not equal to the actual value. Combined with
identical data of in vitro experiments, developing a specific
finite element model might be a trend. Secondly, although the
follow load could provide a part effect of muscle to the cervical
spine, the detailed and complicated function of muscle-to-
spine movement cannot be simulated. Thirdly, there is a lack of
recognized method of constructing UJs. We simplified UJs in
the model, which might lead to loss of some details. Fourthly,
for good convergence in the calculating process, we chose
homogeneous and linear materials. Although they have partial
impact on the localized mechanical environment, they do not
affect the cervical spine kinetics. The material properties need
to be noticed if the direction of the study changes. Overall, our
predicted results might not represent the precise clinical
numerical value, but they could predict a dependable
variation tendency during postoperative cervical surgery in
different motions. For obtaining comprehensive and accurate
biomechanical data, more in vivo and in vitro experiments
should be conducted in the future.

CONCLUSION

In our study, all types of minimally invasive surgeries displayed
good biomechanical stability. From the standpoint of
biomechanics, the physiological status of the ATc-ECD was
close to the normal cervical model, followed by the MACF
model. The ATd-ECD model might significantly accelerate
disc and joint degeneration compared with the other three
types of minimally invasive surgeries. Considering safety and
conditions of application, the PECF and ATc-ECD may be
relatively suitable techniques for cervical spondylotic
radiculopathy. Certainly, surgeons can choose the appropriate
procedures according to their proficiency level and radiological
results, such as intervertebral disc height and types of disc
herniation.
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