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We present a software tool, called cMatch, to reconstruct and identify synthetic genetic
constructs from their sequences, or a set of sub-sequences—based on two practical
pieces of information: their modular structure, and libraries of components. Although
developed for combinatorial pathway engineering problems and addressing their quality
control (QC) bottleneck, cMatch is not restricted to these applications. QC takes place
post assembly, transformation and growth. It has a simple goal, to verify that the genetic
material contained in a cell matches what was intended to be built - and when it is not the
case, to locate the discrepancies and estimate their severity. In terms of reproducibility/
reliability, the QC step is crucial. Failure at this step requires repetition of the construction
and/or sequencing steps. When performed manually or semi-manually QC is an extremely
time-consuming, error prone process, which scales very poorly with the number of
constructs and their complexity. To make QC frictionless and more reliable, cMatch
performs an operation we have called “construct-matching” and automates it. Construct-
matching is more thorough than simple sequence-matching, as it matches at the functional
level-and quantifies the matching at the individual component level and across the whole
construct. Two algorithms (called CM_1 and CM_2) are presented. They differ according
to the nature of their inputs. CM_1 is the core algorithm for construct-matching and is to be
used when input sequences are long enough to cover constructs in their entirety (e.g.,
obtained with methods such as next generation sequencing). CM_2 is an extension
designed to deal with shorter data (e.g., obtained with Sanger sequencing), and that need
recombining. Both algorithms are shown to yield accurate construct-matching in a few
minutes (even on hardware with limited processing power), together with a set of metrics
that can be used to improve the robustness of the decision-making process. To ensure
reliability and reproducibility, cMatch builds on the highly validated pairwise-matching
Smith-Waterman algorithm. All the tests presented have been conducted on synthetic
data for challenging, yet realistic constructs - and on real data gathered during studies on a
metabolic engineering example (lycopene production).
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INTRODUCTION

Overview
With the rapidly developing international interest in
sustainability and the move away from economic reliance
on hydrocarbons, a more bio-based economy requires the
development of a range of different biologically based
methodologies and processes (Kitney et al., 2019; Bell et al.,
2021). For industrial applications these need to possess high
levels of reliability and reproducibility. Inherent in this
approach is the need to move away from human-based
operations to much higher levels of automation, AI and
machine learning. As will be described later in the paper,

an aspect of metabolic engineering—namely, combinatorial
pathway engineering - is seen as an important development
area. Combinatorial pathway engineering workflows are
iterative, Design-Build-Test-Learn workflows (Carbonell
et al., 2018; Hillson et al., 2019; Opgenorth et al., 2019)
based on a four-stage process: Combinatorial Design,
Construction, Titration Assays and Data Analysis. Between
the construction and assays stages, lies a verification
phase—Sequencing followed by Quality Control (QC)
(Figure 1). QC is crucial from a reliability and
reproducibility standpoint. The core subject of this paper is
a new methodology called cMatch that makes a significant
improvement to QC.

FIGURE 1 |Quality control in combinatorial pathway engineering workflows (A)Quality control lies at the junction between the construction and assay phases of the
workflow and acts as a binary check on whether the workflowmay proceed or if construction and verification must be repeated. (B) The quality-control software cMatch
uses two types of inputs: a JSON template encoding the positional and combinatorics constraints for a given search space, and sequence data. Sequence data can
either be single-input, long-read data (as with next-gen sequencing) or multiple-input, short read data (typical of Sanger sequencing). Two algorithms, CM_1 and
CM_2 have been implemented—each tailored for a type of input (CM_1 for single input, CM_2 for multiple input). cMatch returns a best match, as well as a ranking of all
the construct in the search space (or an error log).
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Metabolic engineering (ME), can be defined as the “purposeful
modification of intermediary metabolism using recombinant
DNA technology” (Cameron and Tong, 1993). It aims to
maximise the production of a target metabolite, by modifying
native metabolic pathways and/or introducing heterologous
pathways, to achieve, in a reliable and reproducible manner,
economically viable metabolite yields and production rates. In
this context, combinatorial pathway engineering represents a
relatively recent and important family of approaches to
metabolic engineering. Here, one or more of the pathway
components are made to vary simultaneously - in marked
contrast to the classic approach, based on identification of
bottlenecks in the pathway and subsequent rounds of gradual
optimization to lift these bottlenecks (Yadav et al., 2012; Xu et al.,
2017).

The development and adoption of combinatorial pathway
engineering has been made possible by the convergence of
advances in several domains. The first is the availability of
efficient DNA modular assembly methods. A range of DNA
assembly methods have now been developed (Ellis et al., 2011;
Casini et al., 2015) that make extensive use of characterized
biological parts and libraries - such as CIDAR Moclo (Iverson
et al., 2016) or BASIC (Storch et al., 2015). It is, of course, in
general desirable and efficient to use such characterized libraries
(Bultelle et al., 2016) and match design with construction. In the
context of pathway engineering, these characterized libraries of
elements (including plasmid backbones, regulatory elements such
as promoters and RBS, CDS, terminators) can be utilized to
introduce genetic diversity by offering several levels of gene copy
number, plasmid copy numbers, transcription and translation
levels, enzymatic activity among others (Jeschek et al., 2017).

Combinatorial pathway engineering is appealing as it yields,
with only a few degrees of freedom, a large number of levels over
which to tune intricate pathway expression. It also does not
require as deep a knowledge of the pathway as the classic
debugging approaches (Naseri and Koffas, 2020). But it is not
without its own set of challenges. For example, consider the 5-
gene violacein pathway (Myeong et al., 2016) arranged in a single
operon. A simple translation-based optimization (where RBS in
front of each enzyme coding region is changed) yields 105

possible combinations for a small library of 10 RBS. Varying
more components in the design (e.g., the promoter driving the
operon or adding degradation tags to the enzymes) expands the
design space by further orders of magnitude. Such large spaces
fast become prohibitively expensive and difficult to investigate by
brute force or even one-factor-at-a-time methods (the issues of
factor interaction and non-linearity notwithstanding).

The set of methodologies known as Design of Experiments
(DoE) (Gilman, 2021) have become popular to deal with the
design and highly-complex multifactorial optimization of large-
scale combinatorial spaces. DoE methods are very amenable to
automation, as works by (Carbonell et al., 2018) and (Rajakumar
et al., 2019) have demonstrated. They have been adapted to
identify the media and culture conditions that maximize yield
of the metabolic pathway (Singleton et al., 2019) (Azubuike et al.,
2020), or the optimization of a cell-free system (Spice et al., 2020).
In the context of metabolic pathways, these methodologies have

been applied to choose regulatory elements such as promoters
(Blazeck et al., 2012) and 5′UTR (Salis et al., 2009), or to modify
other popular dosage parameters such as plasmid copy number
(Ajikumar et al., 2010) and codon usage, (Hanson and Coller,
2018; Wu et al., 2019). (Xu et al., 2017) showed how the five gene
violacein pathway could be simplified to three operons as two of
then encoded enzymes had no impact on the output. DoE
methods can be unsuited to the estimation of parameters.
Optimal Experimental Design (OED) can be used when a
model is available for the pathway. The goal then becomes to
design a set of experiments so the model parameters may be
estimated more reliably (Abt et al., 2018; Smucker et al., 2018).
OED typically aims to maximize the information content
(computed from the Fisher Information Matrix or with some
Bayesian approaches) of the new experimental iteration (Nishii,
1993). Despite their proven track record in reducing the number
of experiments and improving reliability, both sets of methods
still require sampling at least a few percent of the design space
(Lee et al., 2013) - potentially a very large number.

Requirements for Quality Control in
Pathway Engineering
QC takes place post construction, transformation and growth. It
has a simple goal, verifying that the genetic material contained in
a cell matches what was intended to be built. In terms of
reproducibility/reliability, the QC step is crucial. Failure at this
step requires repetition of the construction and sequencing steps,
while it should only be possible to proceed to the next stages of the
workflow once the QC standards have been met.

The development of cMatch, which is the new methodology at
the core of this paper, was born out of the practical experience in
the Kitney Lab gathered during a succession of projects in
pathway engineering (Exley et al., 2019) and automated
robotic platforms (Reynolds et al., 2017; Suckling et al., 2019).
These projects identified the need to make QC a frictionless step
in the workflow, capable to reliably, and robustly, perform at scale
and speed. It was also decided that QC tools should be accessible
to everyone, and in particular, that it should not take dedicated
hardware (no GPUs, no high performance clusters) to run them.
Finally, sequence analysis for a typical construct should take less
than a few minutes - our strategy for removing the bottleneck.
cMatch has been specifically developed to exploit and tackle a set
of five features and constraints that are typical of large-scale
combinatorial spaces and metabolic engineering. These are as
follows.

Tackling the Problem Requires Automation and
Programmatic Access
Quality control quickly becomes a bottleneck when too many
sequences need to be verified - as is the case with large design
spaces. The standard way of identifying a genetic constructs and
its different components involves loading the results of a Sanger
sequencing onto a DNA editing software, e.g., Benchling (https://
www.benchling.com), and painstakingly searching for the
possible components one by one. This quasi-manual process is
extremely time consuming (up to several hours for a few
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sequences) and error prone. It also scales very poorly with the
number of constructs and with the complexity of the constructs.
Differentially identifying close constructs (e.g., using closest RBS)
is extremely challenging. The process also becomes vastly more
cumbersome when comparison is made against not one, but
several members of the same design space. Finally, there is also no
way to assess the reliability of the process—except by repeating it.

To tackle QC at scale, this process needs to be automated.
Decision criteria (including for failure or success) also need to be
built into the process. All parameters driving the process should
be transparent and accessible to the user to change. Finally, to
make results comparable, the process needs to rely on, and return
objective quantitative metrics.

The Synthetic Constructs Share a Well-Defined
Structure, Thanks to Their Modular Design
Modularity has been one of the main drivers of the development
of synthetic biology, alongside characterization and
standardization (Kitney, 2009). These principles have
facilitated the creation of complex systems from the
combination of well-understood, standardized components in
disciplines such as electrical engineering, or computer science.

(Hartwell et al., 1999) argued for the recognition of the
concept of functional modularity as a critical level of biological
organization. Modular design, which aims to combine such
functional modules, has been the main driver behind the
development of libraries of standard characterized components
- from simple regulatory elements such as promoters.

(Alper et al., 2005; De Mey et al., 2007; Redden and Alper,
2015; Zucca et al., 2015; Rao et al., 2021), or degradation tags
(Cameron and Collins, 2014) to more complex components such
as logic gates (Nielsen et al., 2016). Large repositories of DNA
parts, such as the iGEM Registry of Standard Biological parts
(https://parts.igem.org), JBEI-ICE (Ham et al., 2012)), Addgene
(Kamens, 2015) or SynbioHub (McLaughlin et al., 2018), are now
routinely used to assist the engineering of synthetic DNA circuits
and plasmids (Timmons and Densmore, 2020).

Synthetic constructs generated from a modular design share
very specific features:

• The type and relative order of their components are known.
• Their components are drawn from known lists of elements

(often from well-characterized libraries)
• The interfacing of their components is also well-defined.

Most designs will use non-overlapping components; when
this is not the case the overlaps can be strictly defined as they
are parts of the design

A High Level of Precision Is Required in the
Identification of Some Components
The biological functions encoded in the constructs have
sequences spanning several orders of magnitude (CDS are one
kb or more, promoters around a 100bp, UTRs around 50 bp or
less, while degradation tags are often less than 10bp long). Some
very short regulatory components such as RBS can be rationally
designed to span specified ranges of strength (Jeschek et al., 2016),
but minor changes in their sequence will have a significant effect

on their strengths (Salis et al., 2009). These components must
therefore be identified (sequence and location) with the utmost
precision.

A High Level of Precision Is Also Required for
Components Interfaces
Context is the set of interrelated factors that modulate the
operation of biological processes—these factors are either
composition-specific, environment-specific or host-specific
(Cardinale and Arkin, 2012). Environment and host-specificity
are irrelevant to the problem addressed here. Composition
specificity is crucial on the other hand, and takes many forms.
For instance, in an operon, gene order influences effective
transcription rates (Nishizaki et al., 2007). Constructs are also
at risk of several forms of genetic instability, most commonly
deletions caused by homologous recombination and indels—risks
that can be estimated with the EFM calculator (Jack et al., 2015).
Of all composition factors, the interfacing of adjacent regions is
the most important for QC. Expression of functional components
is indeed affected by short adjacent sequences (Espah Borujeni
et al., 2014; Taylor et al., 2019; Tietze and Lale, 2021). A calculator
such as the RBS calculator (Salis et al., 2009) (https://www.
denovodna.com/) now requires 35 bp upstream and 60
downstream to estimate the translation rate of an RBS.

The greatest care therefore also needs to be paid to the accurate
identification of the regions adjacent to the regulatory elements,
as well as to the regulatory regions themselves.

Sequencing Data Will Be Short-but Possibly Spread
Over Several Sequences
Typical constructs will only include a small number of genes (less
than 20, often far fewer as pathways will be refactored over several
plasmids if they are too long). Sequences to analyze will therefore
be several kbp-long or less (considerably less than the length of
genomes). Practically, this implies that cMatch can rely on one of
the most precise matching algorithms, instead of a popular
algorithm such as BLAST (Altschul et al., 1990) which is
better suited to genome length sequences. Finally, sequencing
data for a construct will consist of one sequence spanning the
whole construct, or several shorter sequences covering
complementary fragments of the construct. Discussion in
this paper will be mostly based on the use of Sanger
sequencing (Sanger and Coulson, 1975; Sanger et al., 1977).
Sanger sequencing is the founding method in DNA
sequencing, but it remains popular for applications where
high throughput is not needed, thanks to its wide availability
from a range of for-profit companies. Sanger sequencing is
affected by poor quality in the first 50 bases of the sequence
due to primer binding and deteriorating quality after 700–900
bases. Quality of the sequence can be estimated with a base
calling software such as Phred (Ledergerber and Dessimoz,
2011). Although cMatch was not tested on data generated by
more recent methods (Shendure et al., 2017) such as Next-
generation sequencing (NGS) (Burgess, 2018; Slatko et al.,
2018), which yield much longer reads with lower error-rate,
the authors have no reason to doubt the software will behave
any differently to the way it behaved with Sanger data.
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Construct-Matching with cMatch
To exploit the structures of the constructs, cMatch operates at the
functional (component) level. Since synthetic designs encode a set
of biological functions, and add a set of positional constraints,
cMatch searches for components encoding given functions, and
checks if their combination is admissible (Figure 2A). We call
this operation “construct-matching.” It is a more thorough
operation than simple sequence-matching or alignment, as it
aims to answer a set of questions regarding the modular structure
of the construct, as well as how well each component matches the
data, including

C Structure matching: Does the construct match the design?
○ Are all intended components present ?
○ Does their order match the construct design ?

C Quality of the matching: How close is the matching?
○ Are there any components affected by Mutations? If so, to
what extent

○ Are there any insertions and/or deletions ?

cMatch derives a standardized matching score for each
component. These scores and their weighted average are then
used to automate the decision-making and quantify the reliability
of the prediction through a set of global matching scores
(Figure 2B).

Separating the components in the construct helps address
several of the previously listed challenges.

• All functional modules are dealt with in parallel. Homology
(matching) scores can be standardized against their lengths,
yielding an immediate insight into where the discrepancies
between data and ideal sequences are located. This is
important when dealing with short, regulatory
components, and their adjacent regions.

• It is easy to generate global matching metrics from the
individual component scores. Equal weight can be given to

FIGURE 2 | Construct Matching in Action (for a Two-gene Operon Design). Construct-matching performs two complementary tasks. (A) Structure Matching: this
step and checks whether the data correspond to an admissible construct, that is contains all the specified components in a combination that matches the design
template. (B) Quantification of the Matching: each component has its own matching/homology score, from which a global score is derived.
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the components and the geometric mean can be calculated.
Conversely, some components, such as CDS, may be
omitted from the global scores if the user decides
mutations in these regions are of little concern.

cMatch is built on top of the highly validated Smith-
Waterman algorithm (Needleman and Wunsch, 1970; Smith
andWaterman, 1981). This choice was born out of the need for
a high level of precision in the identification of some
components and their interfaces. These stringent
requirements place cMatch in sharp contrast to applications
such as barcoding (Woodruff et al., 2017), where short barcode
sequences (with a space of possibilities in the billions) are used
to identify constructs in a design space of several thousands/
millions. Exact string comparison, as implemented in
annotation tools such as Benchling’s Auto Annotate
(https://help.benchling.com/en/articles/2835801-auto-
annotate-sequences), is the fastest form of matching but it is
impractical for QC, as it does not offer any way to deal with
mutations or indels (insertions/deletions), and more generally
fails as soon as data differ from the expected sequences
(without being able to assess to what degree they differ).
The two standard algorithms in bioinformatics Smith-
Waterman and BLAST (Altschul et al., 1990) were
considered for cMatch. BLAST is very popular thanks to its
speed and is the algorithm of choice to deal with long and
genome-length sequences (Goujon et al., 2010; Donkor et al.,
2014) stored in the many biological databases (Lakshmi and
Ramyachitra, 2020). But it is not as precise as Smith-
Waterman, which is designed to return the optimal local
alignment (Wieds, 2007). Smith-Waterman is much slower
and is costly in terms of computer power and resources. This
concern was overlooked, as the sequences to be analyzed and
the corresponding constructs are several kbp-long or less
(considerably less than the length of genomes), which
remains tractable. The fact the algorithm is deterministic
(unlike BLAST), which is important for reproducibility, and
the availability of a highly validated biopython
implementation (Chapman and Chang, 2000) were
compounding factors for our choice.

It is worth emphasizing that cMatch is not a sequence
annotation tool (although its matching phase has a lot in
common with such tools), but a QC tool. Indeed cMatch relies
on knowledge of the structure of the (ideal) construct - from
which an annotation can already be derived. Some sequence
annotation (e.g., including a comparison of sequencing data to
the ideal sequence) is a possible by-product of the construct-
matching process, but not its main objective.

Comparisons with the recent range of auto-annotation tools
for plasmids and constructs of similar length remain instructive.
Beside its choice of sequence-matching method, the component-
matching phase of cMatch differs from tools such as Benchling
Auto-annotate (https://help.benchling.com/en/articles/2835801-
auto-annotate-sequences) and pLannotate (McGuffie and
Barrick, 2021) in several ways. Unlike pLannotate, it does not
use external databases as sources for the components. CMatch
also offers full programmatic access and lets the user change the

matching parameters. Only the sequence-annotate features
offered by the recent SYNBICT (Synthetic Biology Curation
Tools https://github.com/SD2E/SYNBICT) project offer a
similar level of flexibility (and also use pairwise matching).

But where cMatch differs from this set of tools in an important
way is at the second stage: it goes much further than sequence
annotation, as it performs a set of QC operations on top of
component matching, and offers ways to quantify the entire
process (only SYNBICT defines a threshold to accept/reject
annotations, but it does not utilize a template in any way).
cMatch also exploits modularity in order to offer comparisons
not against one construct, but an entire design space.

METHODS—ALGORITHMS FOR
CONSTRUCT-MATCHING

We now present our solution to the construct-matching
problem. A lightweight data structure encoding a construct
template and the search space, is introduced in Supporting
Data Structures section. Two construct-matching algorithms
are presented. The first algorithm is a sequence-based algorithm
based on a brute force investigation of the design space
(Sequence Matching Algorithm section) - it is included for
comparison purposes and to highlight the benefits of the
component-matching approach adopted by the other
algorithms. Finally, the construct-matching algorithm
(Component-Matching Algorithm section), based on a
component matching strategy and step-by-step
reconstruction is presented, as well as an extension to deal
with multiple inputs.

Supporting Data Structures
Construct-matching has two distinct components:

C A construct to be identified (the “target” of the analysis) by
way of sequencing results. All sequences take value in the
IUPAC dictionary (https://www.bioinformatics.org/sms/
iupac.html). These sequences are the input of the algorithm.

C A “search space.” The constructs contained in the search
space will be referred to as “candidates” - they are possible
output values for the identity of the target construct. The
search space is left to the user to define. In a straightforward
QC scenario (henceforth referred to as “minimal QC,” the
search space only includes one construct - the construct
intended for construction. In more thorough QC checks, it
can extend to the whole design space for the construct (we
call this scenario “maximaml QC.” The search space is
specified by two search constraints (they are the
parameters of the algorithm)
○ A template describing the modular structure of the

construct (type of the components and relative order)
and thus providing a set of structural constraints for the
space of possibilities

○ For each component of the template, a library of
admissible elements—providing a description of the
combinatorial element of the problem
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Figure 3 shows the search constraints for a two-gene construct
example.

C Template (Figure 3A): The construct has 6 components (1
promoter, 2 RBS, 2 CDS and a terminator) arranged in an
operon pattern.

C Combinatorics (Figure 3B): A promoter library of 5, 2 RBS
libraries of 10, 2 CDS libraries of 1 and a Terminator library
of 1 are used.

Even with such a simple example, the power of the template is
apparent. There are 5 × 10 × 1 × 10 × 1 × 1 � 500 admissible
combinations. If the relative order of the components is not
imposed, there are 6! � 720 as many ways to arrange the
components, i.e., 360,000 (mostly non-functional). These
numbers further increase exponentially if components can go
missing or feature more often than once.

CMatch requires knowledge of component location and
interfacing for the template description. Component location
could either be absolute or relative, but absolute locations were
rejected as impractical. Sanger sequencing indeed often returns
sequences of poor quality at the start and end (possibly truncated,
often with bases with a phred-quality score too low to have a value
safely assigned to them). Since sequence data are 1D structure
(strings), it is enough for components to be listed in relative order,
in the 5′ to the 3′ direction. The template structure encodes this
order explicitly, through the value of “template_location” - an
integer starting at 1 (to be more user friendly) and incrementing
as one moves 3′-ward. This is needed to implement the slicing
operations necessary to combine reconstructions when several
sequences are used as inputs. The template also specifies a global
parameter for component interfacing: a maximum overlapping
term epsilon (in bp, default value set to 0) to deal with scars
between components, deal with undefined components, and
more generally provide flexibility when data are poor quality.

For simplicity reasons, cMatch encodes both template and
combinatorics constraints, as well as sourcing information in a

single JSON file (see Supplementary Material for examples of
valid JSON files).

The “template” portion of the file encodes the construct
template (structural constraints and corresponding
combinatorics). A template lists its components, while a
component lists the source for the library containing the
sequence data, as well as positional information for the
component. In the case of the two-gene operon used as an
example in Figure 3A, the “template” structure is as follows.
To make the hierarchical structure more evident, the instances of
components have been shaded in green.

Sourcing information is encoded into another portion of the
file (in a structure called “component_sources”). All
component libraries are listed—each one points to a
repository address, and lists its elements. An element points
towards the file containing the sequence of the element. To
simplify data import, only text, JSON, GenBank and SBOL file
formats are supported. In the case of the two-gene operon, the

FIGURE 3 | The two sets of search constraints for a 2-gene operon. (A) The template specifies the types of the components and their positional arrangements. (B)
The list of possible elements for each component yields the combinatorial element of the problem.
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“component_sources” structure is as follows. To make the
hierarchical structure more evident, the instances of
libraries have been shaded in blue.

Sequence Matching Algorithm
Given prior knowledge of a construct template, and its libraries of
components, a simple solution to QC consists of a purely
combinatorial generation of all the candidates, followed by
brute force matching of their sequences (Figure 4):

1) Combinatorial Step (Figure 4A): generate all possible
combinations in the search space from the template and
libraries of components, and the corresponding sequences.

2) Matching Step (Figure 4B: for each generated sequence,
compute the matching score to the target sequence with
the Smith and Waterman pairwise alignment algorithm.

3) Output Step (Figure 4C: return the combination(s) with the
highest scores.

Such an approach does not seek to exploit the modularity of
the constructs. Issues with such an approach are four-fold.

1) It is very rigid in the way it builds the candidate sequences, and
makes it difficult to apply overlapping options.

2) The computational cost of a pure combinatorial approach fast
becomes prohibitive, as the number of candidate constructs
increases exponentially.

3) The performance of pairwise matching algorithms degrades
fast as the sequences increase in length - due in no small part

to their attempt at finding the best matches by inserting and
deleting base pairs (see benchmark results in Results -
Applications and Benchmarks section). Matching an input
sequence against complete construct sequences will quickly
prove costly in terms of time and memory utilization.

4) The approach naturally gives more weight to the longer
components like the CDS to the detriment of very short,
yet important ones like RBSs, because it only computes a
global matching/homology metric.

In the rest of this work, this algorithm is called CM_0
(“Construct Matching 0”) - the null index indicating that it is
a stepping stone to the final algorithm(s). All construct-matching
algorithms are tested against CM_0 in the Results section.

Component-Matching Algorithm
We have developed a component-based algorithm (referred to as
CM_1), which performs the operation we have called construct-
matching. Unlike CM_0, CM_1 utilizes the information contained
in the template, and focuses on function-encoding components
and their admissible combinations - before ranking them. A
pseudo-code implementation of CM_1 can be found in the
Supplementary Section S3. CM_1 proceeds as follows (Figure 5):

1) Component Matching Step (Figure 5A): This step looks for the
components in the target—looping over all libraries of
components, to match each library element to a subsequence
of the input sequence, and assigning a matching score
(normalized by the length of the component) and a position
to each of them in the process. Pruning follows: onlymatches with
a score above a user-specified threshold are kept.

2) Reconstruction and Pruning Step (Figure 5B): Identified
components are recombined into a list of admissible
constructs. Rather than using a purely combinatorial approach,
where all possible combinations are generated and then pruned
against the template, an iterative reconstruction—based on
dynamic programming has been implemented (See
Supplementary Section S2). A combinatorial approach proves
extremely costly when the input contains repetitions and
components are detected in several locations, as the number of
possible combinations expands by several orders of magnitude
(See Synthetic Benchmarks section for an example). Instead, the
reconstruction applies positional constraints (E.G. “component 3
must be located before component 4”) as early as possible to
prune out entire branches of the reconstruction tree.

3) Output Step (Figure 5C): At the end of the reconstruction, all
remaining paths are assigned a global score (we use the
geometric mean of the components scores). The
combinations with the highest scores are returned.

By performing construct-matching rather than mere
sequence-matching, CM_1 returns a great deal more
information than CM_0 - it identifies and locates all the
components in the construct, confirms their combination
matches the template, and returns individual homology/
matching scores for each of these components - a crucial
source of information to identify where the mutations are.
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Having access to a lower level of information allows us to deal
with the function-encoding components (however long or small)
in parallel. This allows us to apply options to specify acceptable
interfaces between these components, which is useful when data
are of poor quality and components can not be precisely located
(see the lycopene example, in Results Real Life Example -
Lycopene Operon section). It also allows us to generate global
matching metrics from the individual component scores.

Working at component level opens up a set of strategies to
limit computation times and resource utilization. First it avoids
matching long sequences to long sequences and can be
parallelized. Also, it enables us to avoid combinatorial
explosion, by only using the best matches from each library,
and then pruning reconstruction paths as early as possible.

CM_1 relies on a sequence being available that covers the
whole construct, and that can therefore be used as an input. Such
an assumption may not be met in general use. Using multiple
sequences as inputs instead of a single one is very common with
Sanger sequencing, as it only returns reads of a limited length
(∼500–700bp). Using several sequences also gives flexibility
regarding the portion of the construct that requires
identifying. Such flexibility is desirable, as some components
are more important than others for given applications, and
their presence can be deduced thanks to prior QC checks. In

the practical application described in Real Life Example -
Lycopene Operon section, reverse primers originating in the
CDS were used that only covered a few hundred base pairs of
the CDS - but gels were run to check the constructs were of the
expected sizes.

To widen the application range of the construct-matching
algorithm, we have extended CM_1 so it may support multiple
sequences as inputs. The new algorithm (henceforth referred to as
CM_2) utilizes a split-apply-combine strategy (Wickham, 2011),
where the first step of the process (the split phase) mirrors the
sequencing of fragments of the construct. CM_2 proceeds as follows:

1) Partition Step: From the input data (Sub_sequencei) and the
global template, a set of sub-problems {(Sub_sequencei,
Sub_Templatei)}i�1 . . . N. are generated.

2) SubSequence Analysis: CM_1 is applied in parallel to all the
sub-problems - which are also all cheaper to solve than the
original problem due to their smaller size.

3) Recombination Step: The results of the individual analyzes are
combined into a final construct matching the original
template

CM_2 implements a pair of simple operations on the template
structure, namely slicing for the partition step and addition for

FIGURE 4 | Visual Representation of the Construct-Matching Algorithm CM_0. CM_0 is a sequence matching algorithm that fails to exploit modularity. It is made of
three steps. (A) Step 1 - CM_0 generates the sequences for all possible constructs in the search space. (B) Step 2 - These candidate sequences are matched to the
input sequence—returning for each a global matching score. (C) Step 3 - Constructs with the highest scores are returned.
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the recombination step. Both operations are detailed in the
Supplementary Section S4. Instructions regarding the slicing
are contained in the JSON input—instructions used in the
lycopene example are as follows:

RESULTS—APPLICATIONS AND
BENCHMARKS

The performance for all three algorithms presented in
Methods—Algorithms for Construct-Matching section will now
be compared. All benchmark results are derived for a series of
realistic scenarios based on common construct designs. The
chosen pathways (both for naturally-occurring pigments) are
classic examples in combinatorial pathway engineering. To test
whether the construct-matching algorithms conform to our
original remit regarding speed and common hardware, all
computations have been performed on the personal daily
driver of one of the authors, a Lenovo ThinkPad X220.

Finally, in these benchmarks two forms of quality control - of
opposite complexity will be run:

• Minimal QC: data obtained from sequencing of a construct
are compared to the construct itself. This is the most
common use of quality control—performed to check that
what was actually built matches what was intended.

• Maximal QC: the data are compared to the entire design
space of the construct. This is a more thorough form of QC,
as it offers a form of insurance against errors such as
mislabelling, and further tools to estimate the overall
reliability of the construct-matching process (see
Discussion). Such extensive search is also needed in other
applications such as the pooled approach study discussed in
Discussion section

Synthetic Benchmarks
The construct matching algorithms were first tested on synthetic
data for a construct (Figure 6A) encoding all five enzymes in the
violacein pathway (Figure 6B). Violacein is a classic test bed since
the genes encoding the enzymes necessary for its production, and
the associated regulatory mechanisms have been characterized in

several strains (Myeong et al., 2016). It is also a metabolite with
notable industrial applications whether as a dye (thanks to its
vivid purple colour) or for medical applications (Durán et al.,
2007).

Construct design was based on a simple TU (transcription
unit) pattern (Figure 6A):

• Each enzyme is encoded with its own TU. TUs share the
same promoter (BBa_J23101) and terminator (BBa_B0015),
both mainstays of the iGEM Registry.

• The design fixes the gene order to VioA-VioB-VioC-VioD-
VioE.

• All UTRs can be varied, as per (Salis, 2009; Blazek, 2012). All
positions use the same library of 5 RBS from iGEM registry
(BBa_B0030 to BBa_B0033 and BBa_B0064, chosen to only
differ by a few base pairs).

With this design, the constructs are made of 20 non-
overlapping components, and the design space is of size 55 �
3,125. The TU-based pattern is a challenging case for a
construct-matching algorithm, due to the large number of
repetitions in different locations (all constructs have 5
identical promoters, and 5 identical terminators). RBS
libraries have been chosen to make reconstruction as difficult
as possible (they are identical).

All input data for the violacein example are synthetic
data—generated from the construct template and the specified
components libraries. This was done to be able to compare the
output of the algorithms with the ground truths (and make sure
the correct constructs were identified). All the logs and output
files for all the tests that are discussed below can be found on the
cmatch Github repository at https://github.com/kitneylab/
cmatch. Listed times are indicative of the performance of the
various algorithms, but will vary depending on the user’s
machine.

Testing Algorithm CM_0
The predicted limitations of CM_0 can be illustrated with a few
tests on the synthetic data.

The first test with CM_0 was a minimal QC scenario; the
construct Vio-0000 was used (a construct with 5 identical RBS
B0030), and the operation was repeated N � 10 times. The average
run time was 36.60 ± 0.73 s. When 10 different constructs (Vio-
0000 and 9 other constructs drawn at random) were used as
targets and matched against themselves, the average running time
was 37.89 ± 2.26 s (N � 10 repeats for each target). In all cases, a
perfect score of 1.0 was returned every time—confirming that the
Smith-Waterman algorithm correctly matches identical
sequences. Inspection of the results show the times were
distributed along a bimodal distribution (previous results were
unimodal) with a first mode around 36 s and a second mode
around 42 s. No link between the input and belonging to a mode
was apparent. Those results were attributed to resource
limitations in the system. This stress was expected, as Smith-
Waterman is resource-intensive and the target sequences were
almost 8500bp long.
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Another predictable limitation of CM_0 is apparent when the
search space is expanded - from a few constructs of interest to the
entire design space (maximal QC). As CM_0 is expected to
perform linearly with the number of candidates, identification
was first performed with one target and 10 candidates (Vio-0000
and 9 other candidates drawn at random) and repeated 10 times.
The run time was 370.72 ± 3.99 s. The operation was then
repeated with 100 candidates (Vio-0000 and 99 other
candidates drawn at random). The test was only run three
times (previous results showing little variation), yielding a run
time between 56 and 58 min. Extrapolating from these, if the
whole design space was used as search space (maximal QC,
against more than 3,000 constructs), it would take more than
30 h to identify a target construct with CM_0 - a wholly
impractical time.

Finally, because of its global sequence-matching strategy,
CM_0 offers few insights into the quality of the prediction. In
all instances, the correct construct was identified with a perfect
score of 1.0, but several candidates returned scores above 0.99
since they varied only by a few base pairs from the target.
Furthermore, a global match does not help locate the
discrepancies between data and construct sequences and their
significance.

Testing Algorithm CM_1
CM_1 has two limiting steps: its matching step (affected by the
length of the target sequences, the number and length of the
elements in the component libraries), and its reconstruction step
(affected by the repetitions in the construct and the matching
threshold).

FIGURE 5 | Successive Steps of the Construct-Matching Algorithm CM_1. (A) Step 1 - CM_1 first looks for all components in the target sequence. Poor matches
(low score, in red) are pruned out at this early stage. (B) Step 2 - Components identified in Step 1 are recombined into a list of all admissible constructs. Dynamic
reconstruction was implemented. Amatching score is generated from the individual component matching scores for all possible constructs. (C) Step 3 - Constructs with
the highest scores are returned.
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To test the reconstruction phase of the algorithm, tests were
run with two threshold levels (0.99 and 0.75), and for two targets
of opposite complexity:

• Vio-0007- a construct with 5 different RBS (B0030-B0031-
B0032-B0033-B0064)

• Vio-0000 - a construct with 5 identical RBS (all B0030)

Vio-0007 is the easiest case for reconstruction: after the
matching step, all promoters and terminators will have been
identified in 5 possible locations, but its UTRs will have been
identified at a single location. The reconstruction step needs to
prune a space of possibility of size 510 i.e., 10 millions (more if the
detection threshold is low) down to one construct. Vio-0000 is the
most challenging case. After the matching step, its UTRs will also
have been identified at 5 possible locations. The reconstruction
step needs to prune a space of possibility of size 515 (more than
30 billions). Brute force pruning quickly becomes intractable. The

step-by-step reconstruction was developed for such cases, and to
prune combinations as soon as they break the template
constraints. Performance of the pruning algorithm is
illustrated in Supplementary Section S2 of the Supplementary
Information on the most computationally-challenging case of
maximal QC with Vio-0000.

To assess the influence of the number of elements in
libraries—tests were run for the opposite cases of minimal QC
(against the target itself) and maximal QC (against all the 3,125
members of the design space). All tests were repeated 10 times. In
all cases, the overlapping parameter epsilon was set to 0. Results
for all tests are displayed in Table 1.

In the minimal QC case, with both thresholds and both
targets, the reconstruction yielded only one combination (the
target itself) with a perfect score of 1.0. Overall running time
was larger with CM_1 than CM_0, and was independent of the

TABLE 1 | Performance of the CM_1 Algorithm. Performance was assessed for
constructs of opposite complexity and different reconstruction thresholds.
Results in the top part of the table for the minimal QC scenario show computation
times do not depend on the constructs and threshold. Results in the bottom part
of the table for the maximal QC scenario show similar results.

Minimal quality control with CM_1

Threshold = 0.99 Threshold = 0.75

Vio-0000 78.70 ± 6.61 s 83.07 ± 7.26 s
Vio-0007 78.80 ± 0.35 s 79.12 ± 1.05 s

Maximal quality control with CM_1

Threshold = 0.99 Threshold = 0.75

Vio-0000 109.86 ± 15.10 s 99.41 ± 14.31 s
Vio-0007 104.53 ± 4.47 s 106.43 ± 10.60 s

TABLE 2 | Performance of the CM_2 Algorithm. Performance was assessed for
constructs of opposite complexity and different reconstruction thresholds.
Results in the top part of the table are for the minimal QC scenario, and show
computation times are unaffected by the constructs and threshold. Results in the
bottom part of the table are for the maximal QC scenario, and also show
computation times are unaffected by the constructs and threshold.

Minimal quality control with CM_2

Threshold = 0.99 Threshold = 0.75

Vio-0000 10.32 ± 0.15 s 10.22 ± 0.14 s
Vio-0007 9.70 ± 0.08 s 9.52 ± 0.33 s

Maximal quality control with CM_2

Threshold = 0.99 Threshold = 0.75

Vio-0000 10.71 ± 0.17 s 11.43 ± 0.88 s
Vio-0007 10.20 ± 0.03 s 10.06 ± 0.07 s

FIGURE 6 | The 5-Gene Violacein Pathway and its Implementation with a TU-Design. (A) The design is made up of 5 transcription units (hence 20 components) in a
set gene order. All units share the same promoter (BBa_J23101) and terminator (BBa_B0015) - providing a stiff test for the algorithm, due to the large number of potential
repetitions. (B) The violacein pathway is made up of five enzymes (VioA to VioE). Its associated regulatory mechanisms have been characterized in several strains
including E. coli and Yeast.
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target construct. The run time did not change against the
threshold (as there was only one candidate for identification).
Split times (see logs) show that identification of the individual
components only took a few seconds each (except the longer
VioB that took 11 s).

In the maximal QC case, the reconstruction yielded (for both
targets) only one possible reconstruction, the target itself, and did
so with a perfect score of 1.0 for the higher threshold. With the
lower threshold, 2 UTRs passed the matching step for each
template position., and the reconstruction yielded 32 possible
reconstructions. Final selection then identified the correct
construct (the target itself) with a perfect score of 1.0 among
all the candidates. As expected, matching against the whole
design space took longer than against one construct - between
100 and 110 s. The difference corresponded to the time required
to match all the components needed for a full comparison with
the design space.

Split times (see logs) confirm that, for both minimal and
maximal QC tests, reconstruction times were in the
hundredths of a second and the component-matching step
was the limiting step of the whole process. Variations between
runs showed similar results as for CM_0 - times were either
clustered around a main value close or spread in a tail. As with
CM_0, these results were attributed to resource limitations in
the system.

Testing Algorithm CM_2
CM_2 has the same limiting factors as CM_1. All tests in this
section were therefore identical to the tests run on CM_1: same
targets [Vio-0007 and Vio-0000, same two threshold levels (0.99
and 0.75), and overlap epsilon � 0; All tests were also run 10
times] for a minimal QC scenario and a maximal QC scenario.
Input sequences were generated for the five separate
transcription units in the construct (covering them in their
entirety).

Results in both tests (Table 2) show CM_2 performed faster
than for CM_1 by an order of magnitude. This was expected since
it uses much shorter sequences as inputs, and the pairwise-
matching algorithm performs faster with shorter sequences.
Split times (see logs) show that reconstruction times were
negligible and that the few instances of resource limitations
coincided with the matching of the longest sequence VioB.
Running times were similar for both sequences - between 10
and 12 s.

Final Comparison of the Algorithms
Finally, a test to assess what effects the demands of the Smith-
Waterman algorithm have on the performance of all three
algorithms was designed. Specifically, the target (the input
construct) was increased in size and complexity. Since the
reconstruction step of the algorithms is so efficient (repetitions

TABLE 3 | Comparative performance of the algorithms for constructs of increasing complexity and lengths. Performance was estimated for all three algorithms and in the
minimal and maximal QC cases. The test constructs were generated by concatenating the test construct Vio-0000 a number of times.

Vio-0000 ✖1
8.5 kb

Vio-0000 ✖2
17 kb

Vio-0000 ✖3
25 kb

CM_0 Minimal QC: 36.60 ± 0.73 s Failure Failure
Maximal QC: >30 h (est) Failure Failure

CM_1 Minimal QC: 78.70 ± 6.61 s Minimal QC: 524.04 ± 3.16 s Minimal QC: 1776.53 ± 4.74 s
Maximal QC: 109.86 ± 15.10 s Maximal QC: 663.01 ± 2.88 s Maximal QC: 2,197.00s ± 3.51 s

CM_2 Minimal QC: 10.32 ± 0.15 s Minimal QC: 18.86 ± 0.16 s Minimal QC: 27.72 ± 0.76 s
Maximal QC: 10.71 ± 0.17 s Maximal QC: 21.00 ± 0.16 s Maximal QC: 30.04 ± 0.26 s

FIGURE 7 | The 3-Gene Lycopene Pathway and its Implementation with an Operon Design. (A) The lycopene pathway is made up of only 3 enzymes (CrtE, CrtB
and CrtI) - making it a very popular test bed in metabolic and combinatorial pathway engineering. (B) The design is made up of 3 genes in the set order CrtE-CrtI-CrtB. An
inducible promoter is used to drive the operon and an insulating element RiboJ is inserted post promoter.
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are effectively tackled), we concatenated the construct Vio-0000
with itself twice and thrice. This way a test set of three constructs
of increasing lengths and complexity was generated: Vio-0000✖1
(8.5 kb, 5 TUs and 20 components); Vio-0000 ✖2 (17 kb, 10 TUs
and 40 components), and finally Vio-0000✖3 (25 kb, 15TUs and
60 components).

All three algorithms were then applied to all three synthetic
constructs - for the minimal and maximal QC scenarios. Since all
constructs were ideal (no mutations introduced), the overlapping
parameters were set to 0, and detection threshold set to 0.99 (very
high). Input data for CM_2 were generated by slicing the
constructs TU by TU as in previous tests. Results for these
tests are displayed in Table 3.

The results make plain a crucial limitation of CM_0 (the tests
failed due to lack of RAM): its range of application is limited to
shorter sequences. CM_1’s performance also suffered for the
largest sequences. With Vio-0000 ✖1, full analysis took less
than 2 min per construct (a reasonable time for everyday use),
but shot up to 10 min for Vio-0000 ✖2, and 35 min for Vio-0000
✖3 (which would present challenges at scale). This is indicative of
the authors’ experience - CM_1 performs well with sequences of
less than 10 kb, and becomes expensive for sequences above
15 kb. It is worth noting that when genetic diversity is
generated with short regulatory elements, running maximal
QC only adds 20% to the run time (matching short sequences
remains a cheap operation even for long targets). In everyday use,
the run times can be improved by not matching the longer CDS
components (or only fragments of them) and focusing on the
shorter, regulatory components.

Finally, CM_2 which uses short sequences as inputs
remains fast in all cases, and performs linearly with the
construct length. This was expected, since reconstruction
and slice recombination have negligible cost, and slices
take a similar time to be processed.

Real Life Example—Lycopene Operon
To complement the synthetic benchmarks, a real-world use case -
encountered by the Kitney Lab during recent work on lycopene
production (Exley et al., 2019) - will now be discussed. All input
sequences and analysis outputs can be found at https://github.
com/kitneylab/cmatch.

The results are indicative of the kind of real-life
performance and challenges for a combinatorial pathway
engineering project. In particular, they are instructive of
how algorithm parameters must be tweaked to deal with
real, imperfect data.

Lycopene, a naturally produced bright-red pigment, is a
carotenoid present in many plants and organisms (Yamano
et al., 1994; Gallego-Jara et al., 2015). Its antioxidant
properties make it of high value to the pharmaceutical
industry, and a popular colouring agent (Ciriminna et al.,
2016). Its chemical synthesis is limited by high cost, low yield
and quality (Sevgili and Erkmen, 2019). It is an extremely popular
case study in metabolic engineering, as its pathway (Figure 7A) is
made of only three enzymatic reactions catalyzed by the enzymes
crtE, crtB and crtI (Misawa et al., 1990; Yoon et al., 2006). The
construct design (see Figure 7B) was as follows:

C It used an operon design to reduce the design space
compared to designs based on transcription units, and
limit homologous recombination.

C An inducible pTet_43 promoter drives the operon:
○ The promoter is very tightly shut off in the absence of an
inducer to make sure the transformed cells grow
unencumbered in the overnight culture.

○ The switch from off to ON to OFF is steep and the “ON”
strength of the promoter is high (estimated at RPU � 1.2
from previous iGEM results).

C An insulating RiboJ (Clifton et al., 2018) was inserted post
promoter.

C Gene order was fixed to CrtE-CrtI-CrtB (a common order in
lycopene studies)

C All three RBS in the operon could be changed. For each
position, all 12 RBS from the BioLegio library (RBS-A01 to
RBS-A12) were used—yielding a space of constructs with
1,728 members

Quality control was limited by practical limitations that are
typical Sanger sequencing. Three reverse primers were therefore
designed—all originating a few hundred base pairs into the CDS.
CM_2 was used instead of CM_1, since multiple sequences were
used as input. Before analyzing the real data, simulations with
synthetic data were conducted. As previously, constructs of
opposite complexity (in terms of repetition) were used. BASIC
assembly was simulated with a dedicated Pythonmodule (Haines,
2021). Input sub-sequences were generated by slicing the
simulated constructs as if reverse primers originating from the
end of the CDS were used - no mutations were introduced. The
most extensive form of quality control offered by cMatch was
conducted - that is the constructs were matched against their
entire design space. In all cases, the constructs were identified
with a perfect score of 1. Results from the simulations showed that
processing each test construct took around 40 s. All elements to
match took between 0.5 and 1.5 s to match, even the CDS (CrtE, I
and B being short genes).

Real data for 10 constructs were then analyzed with cMatch.
Maximal quality control was conducted for each of them
(i.e., they were checked against the entire design space,
rather than against themselves). As the primers originated
only a few 100 base pairs into the CDS rather than at their ends,
input sequences were only a third as short (700 vs. 2,000 base-
pairs) as in the test with synthetic data, and processing times
for the matching step were faster by an order of magnitude (see
logs).

Search parameters such as detection threshold and overlap
parameter can be adjusted by the user. They help filter what
components may proceed to the reconstruction phase of the
algorithm. With reliable sequencing data, it is reasonable to set
them up to stringent values (high threshold, no overlap). This
was not the case with the lycopene data. To account for poor
sequence quality (the start and end of the sequences showed low
phred score), the global matching threshold was lowered to 0.5.
Authors’ experience with other datasets has been that input
sequences are often unreliable at their starts and ends and that
one of the most efficient ways to deal with such issues is to lower
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matching thresholds so poorly-matched components can
qualify for the reconstruction steps. Well-matched
components still qualify, and step-by-step reconstruction still
returns the best candidates - only this time the best candidates
include poorly-matched components. Another important and
complementary way has been to relax the constraint on
component-overlapping (via the epsilon parameter). When
the sequence data is corrupted, the pairwise matching
algorithm is prone to using insertions and deletions—leading
to components that may overlap by a few base pairs in some
cases. Increasing epsilon to 3 allowed reconstruction to proceed
successfully when identification of the CDS was poor due to
sequencing issues.

DISCUSSION

We have presented a novel, automatic tool, cMatch, to
reconstruct and identify a synthetic genetic construct from its
sequence, or more practically, a set of sub-sequences. The method
is based on two pieces of information: knowledge of its modular
structure, and its libraries of components. Although first intended
(and developed) for combinatorial pathway engineering
problems and lifting their QC bottleneck, cMatch is not
restricted to these applications. The algorithms can indeed be
applied to any synthetic, modular construct, provided a template
and a list of elements for every position of the template are
available.

Applications
cMatch has been designed to perform an operation that we
have called “construct-matching,” and which is more thorough
than simple sequence-matching or alignment. Construct-
matching is concerned with matching sequence data to
constructs at the functional level, practically searching for
its components, checking if their order matches a given
template, and then quantifying for each component how
they differ from expected components. Working at
component level is important in order to deal with small
regulatory components, and eliminate what biases matching
methods have towards large sequences. For each component a
matching (homology) score is derived. These scores and their
weighted average are then used to quantify the reliability of the
predictions.

Construct-matching also goes further than automated
annotation and sequence alignment, as these matching scores
are used to make decisions regarding the matching
(reconstruction does not proceed unless all components are
identified with sufficient precision, and fails if some
components are missing or no component combination can be
found that matches the template), and to rank the possible
combinations.

To our knowledge no software has been designed to exploit the
advantages of modularity in construct design to perform such a
task—despite the centrality of the concept in synthetic biology,
and the level of friction quality control and similar forms of
verification introduce into project workflows when performed at

large scale, and the obvious reliability and reproducibility issues
associated with these tasks.

As previously stated, cMatch was first intended and developed
for combinatorial pathway engineering problems. These
applications are subject to a particular set of constraints that
require the development of precise, reliable, automated quality
control for their constructs—namely the need to deal with the
large amount of data generated by these applications and the need
for precision in the identification of the small regulatory elements.
cMatch is not restricted to these applications however: it can be
applied to QC for any synthetic, modular construct, provided a
template and a list of elements for every position of the template
are available.

Thanks to the way it exploits construct modularity, cMatch is
also capable of performing two forms of quality control of
opposite complexity (called minimal and maximal QC in this
work):

• Minimal QC: This is the lowest and most common form of
quality control. It aims to check that the sequencing data
correspond to a given construct, or to what degree they
differ.

• Maximal QC: Sequencing data are compared to all the
constructs in the entire design space at once. This is a
more thorough form of QC, as it offers some insurance
against practical errors such as mislabelling. It also offers
estimates of how more likely the best match is compared to
the best other possibilities. This is a useful feature when data
can not be assumed to be completely reliable, or to deal with
the shortest components, for which changes of a few base-
pairs (due to mutations or sequencing errors) may lead to
the identification of different library elements.

cMatch can also be applied to other applications than
quality control, and to the more general problem of
identification of synthetic constructs lying in a specified
design space. A typical example of such need is encountered
when pooled construction workflows are used. These
workflows yield little prior information on the genetic
material—except that it matches a given template, was
assembled from a known set of components and therefore
lies in a, possibly large, space of possibilities. This is
insufficient in general, and the link between colonies and
their genetic material must be re-established, so phenotypic
data may be correlated with genotypic data. This scenario was
encountered by the Kitney Lab during its recent work on the
lycopene pathway. Because lycopene is toxic due to its
propensity to accumulate in cell walls (Taylor and Heap,
2020), the expression of some constructs was hampered -
the issue being particularly severe for operon designs driven
by constitutive promoters as in (Exley et al., 2019). To identify
the viable region of the design space, a novel method to
bootstrap a DoE workflow was developed, based on a
pooled approach. Cells were transformed with random
constructs in a one-pot reaction containing all the different
combinations of the parts. Once transformed and grown,
viable colonies were selected at random, colony-PCR was

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 78513115

Casas et al. CMatch-A Lightweight Construct-Matching Tool

https://www.zotero.org/google-docs/?aryz1b
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


performed. Construct identification was a crucial step of the
workflow that was not tractable without cMatch.

Reproducibility, Reliability and Robustness
Reproducibility, reliability and robustness have been at the core of
the design of cMatch and its algorithms. Automating quality
control (regardless of the way it is accomplished, and what sub-
tasks it performs) obviously prevents analysis from being affected
by considerations affecting human operatives such as fatigue,
waning focus and general human inconsistency. Reproducibility
was improved by making the algorithms deterministic with our
choice of the Smith-Waterman algorithm as the foundation for
cMatch to build on. Only computation times vary for a given
input, and search parameters (template, libraries), and do so
according to available computing resources—benchmark results
in Results—Applications and Benchmarks section with the
violacein example show limited variation in that regard.
Synthetic results from the violacein example show that the
algorithms correctly identify the ground truth and return a
score of 1.0 for all its components. The algorithms are
therefore reliable.

Robustness, defined as “the quality of being strong, and
healthy or unlikely to break or fail” (Def. 1. Cambridge
Dictionary) is, however, more than just reliability and
reproducibility, and extends to other parts of the construct-
matching process - the most important being decision-making
in the face of uncertainty. Unlike the tests with synthetic data, it is
impossible in practice to be sure that an input sequence is itself
reliable and to be fully trusted. Errors can be either due to
sequencing or be indicative of a genuine alteration of the
genetic content caused by a few mutations, some more likely
to alter construct output than others, or at the other end of the
spectrum proof of assembly failure).

cMatch’s algorithms offer several mechanisms to deal with
uncertainty in input data.

The first mechanism helps deal with poor data: users can lower
the constraints for a successful analysis—practically, the
constraints on component-matching (matching threshold) and
reconstruction (admissible overlap). Benchmarking results show
the cost of relaxing these constraints to be minimal thanks to the
efficient step-by-step reconstruction.

The second mechanism is through quantification. Any non-
perfect matching score can be used as a warning flag warranting
further investigation of the construct or some of its components (a
level of analysis unobtainable without a component-based
software). Further investigation can take several forms. It can be
a simple repetition of the sequencing process (in case the best
match is close to the input sequence and it is legitimate to suspect a
sequencing error because discrepancies are located in regions with
low phred score) or a more drastic decision to repeat the
construction. In either case, construct-matching can be repeated
on new sequence data and the best prediction, as measured by the
overall matching score (or any user-defined function on the
component scores), can be retained as the most reliable output.
Previous estimates of construct properties may then need adjusting
- for instance a new estimation of the translation rate can be

computed if mutations are found in a UTR region and it is
concluded the construct has mutated.

Quantification allows the estimation of the distance between
the best match and all the other constructs in the same design
space - thus offering a method to rate how likely the best match is
compared to these other possibilities. This is the idea behind what
we called maximal QC. Depending on the choice of elements in
libraries, some search spaces will yield more conclusive
identifications than others, since their constructs are spread
further from each other. This should come as no surprise,
since manual sequence alignment is notoriously harder and
error-prone when libraries contain elements close to each
other, for instance differing by a few base pairs after they were
generated by random-PCR.

Practical Considerations
cMatch’s algorithms have been developed to be fast enough for
common applications, but also so they do not require special
hardware to run on. The benchmarks in Results—Applications
and Benchmarks section show, analyzing a sequence for a typical
problem (constructs with a few genes, search spaces made of a few
thousand constructs) only takes a fewminutes. Processing a batch
of sequences (a few hundreds for QC), will in no way represent an
obstacle for a project.

Algorithm inputs have also been chosen to be as intuitive as
possible, and so little data conversion must be undertaken before
analysis is run. Input sequences are in the .seq format typical of
Sanger sequencing, or simple txt format. The search parameters
are accessible to the user, and encoded in the human-readable
format JSON. The corresponding file has a simple structure that
can be easily modified (examples of valid JSON files can be found
at https://github.com/kitneylab/cmatch) so data analysis may
start soon after the sequences for the components are
gathered. Finally, the common txt, Genbank, and SBOL
formats are supported for the sequences of the elements in the
component libraries.

The most important consideration for the choice of the
construct-matching algorithms relates to the nature of
the input - whether a single or multiple sequences are
used. This choice is in general a direct consequence of the
sequencing method. CM_2 is the default algorithm for
multiple inputs. It is worth noting that because sequences
used for inputs will be short, some limitations of the Smith-
Waterman algorithm will have limited impact on
performance. CM_1 remains the algorithm to use when a
single sequence is used as input, as would be the case with
NGS sequencing.

An important feature of both CM_1 and CM_2 is that they
were built on top of the Smith-Waterman algorithm for pairwise
matching. This algorithm is extremely reliable, but its
performance suffers with long sequences. When possible,
shorter component sequences should be used - for instance
with CDS or hybrid components. Benchmark tests have shown
that the performance of CM_1 degraded with input sequences
longer than 10 kb - so would CM_2 if such a long sequence
featured in its inputs. Splitting strategies are also being
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investigated to reduce the size of the inputs and speed up
computations at the component-matching step of the algorithms.

Both CM_1 and CM_2 rely on the availability of two specific
pieces of information.

They first rely on the availability of the construct template.
Algorithms for the purpose of sequence investigation (and
template identification) are outside the scope of this
work—construct investigation being of little immediate use
to the Kitney Lab in its everyday workflows. They offer useful
capacities however, for instance as part of an audit of
resources in freezer storage. Variants of CM_1 and CM_2,
that modify the reconstruction phase so all combinations are
pruned not against a set template but under a set of positional
and grammatical rules, will be investigated in
subsequent works.

They also need a full list of the elements in the component
libraries, since they are based on pairwise-matching of known
sequences. In case of missing elements, a possible strategy is to
use a very large library of components from an external
database, lower the pruning thresholds for these components,
and match the large libraries against the target sequence. The
best matches can then be used to locate the missing elements
providing they have enough in common. Because of the high
degree of parallelism in the algorithm, we are confident that
analysis of a sequence will remain tractable. For longer
components, the faster but less reliable BLAST search may be
recommended.

CONCLUSION

cMatch is a simple, lightweight tool to perform quality control of
modular synthetic constructs at speed and scale. Although
originally developed for the application case of combinatorial
pathway engineering and making QC frictionless in optimization
workflows, cMatch can be used in many different settings - we
leave it to the reader to adapt this versatile tool to their own
applications. The use of cMatch has made a significant difference
to the operation of the Kitney Lab, and given a significant boost to
their productivity and to their confidence in the reproducibility of
their results. We are confident other adopters will enjoy similar
benefits.

Tool Presentation
cMatch has been implemented in Python 3.9 and is publicly
available as an open-source package on the Kitney Lab Github
page (https://github.com/kitneylab/cmatch) under MIT

license (https://choosealicense.com/licenses/mit/). The core
functionalities are implemented as three different modules:
matching.py, reconstruction.py and extension.py which
respectively implement the core Sequence, Component
Libraries and Component classes and their matching
methods (calling biopython pairwise2 local alignment
function), the reconstruction and extension functions. All
input and output files are in JSON (for simplicity) except the
sequence files (in .seq). The CMatch package implements the
CM_1 algorithm to analyse a single sequence, and its CM_2
extension for multiple sequences.
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