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Retinal vessels are the only deep micro vessels that can be observed in human body, the
accurate identification of which has great significance on the diagnosis of hypertension,
diabetes and other diseases. To this end, a retinal vessel segmentation algorithm based on
residual convolution neural network is proposed according to the characteristics of the
retinal vessels on fundus images. Improved residual attention module and deep
supervision module are utilized, in which the low-level and high-level feature graphs are
joined to construct the encoder-decoder network structure, and atrous convolution is
introduced to the pyramid pooling. The experiments result on the fundus image data set
DRIVE and STARE show that this algorithm can obtain complete retinal vessel
segmentation as well as connected vessel stems and terminals. The average accuracy
on DRIVE and STARE reaches 95.90 and 96.88%, and the average specificity is 98.85 and
97.85%, which shows superior performance compared to other methods. This algorithm
is verified feasible and effective for retinal vessel segmentation of fundus images and has
the ability to detect more capillaries.

Keywords: retinal vessel segmentation, convolution neural network (CNN), residual network, fundus image,
attentional mechanism, deep supervision

1 INTRODUCTION

The deep neural network is a typical bio-inspired intelligence computation technique, which based
on the principles of biological processes that the connectivity pattern between neurons resembles the
organization of the animal visual cortex. Due to the incredible abilities to solve complex problems, it
has attracted much attention from many scholars and have been successful applied to solve complex
real-world problems (Sun et al., 2020b; Sun et al., 2020¢; Chen et al., 2021a; Jiang et al., 2021a).
Retinal vascular occlusion, hypertensive arteriosclerosis and diabetic retinopathy are the most
common diseases in retinal diseases and also the main cause of blinding in the world (Horton et al.,
2016). It is estimated that the number of people with vision loss will double by 2050 (Varma et al.,
2016). Early detection and treatment can preserve 90% vision and also help the auxiliary medical
management departments to formulate preventive measures to reduce the number of newly
diagnosed cases and reduce the medical related economic burden (Das, 2016; Guo et al.,, 2018;
Sun et al,, 2020a). The morphological structure of retinal vessels has important reference value for the
diagnosis of the diseases. Accurate and rapid segmentation of retinal vessels is necessary for the
treatment. However, the segmentation requires manual labeling by experts at present, which is not
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FIGURE 1 | Schematic diagram of residual module.

only time-consuming and laborious, but also not accurate enough
to carry out large-scale labeling and segmentation. It is significant
to develop retinal vessel segmentation algorithms to improve the
intelligence of computers in the aspect of disease diagnosis and
health screening. Due to the excellent performance of bio-
inspired computation method (Deng et al, 2020; Zhao et al,
2020; Tao et al, 2021a; Jiang et al., 2021b), researchers tried
various types of algorithms to improve retinal vessel recognition,
focusing on the segmentation and extraction of detailed
information of connected vessel stems and terminals.

In addition, retina is one of the most reliable, stable and hard-
forged information among all the biological features used for
identification. As early as the 1930s, some foreign scholars
proposed the unique theory of the distribution of retinal
vessels. Subsequent studies have shown that the distribution of
retinal vessels is different, even for twins (Cao et al., 2017; Zhang
2020). Aside from changes in retinal features due to trauma and
disease, the shape of the retinal vessels remains stable throughout
life, making it ideal for identification. In the foreseeable future,
retina recognition technology has a great hope to be applied to
online payment, access control, automatic withdrawal and other
civil fields with high security requirements. Therefore, the
research on retina recognition technology has great value and
good prospects.

In this paper, we proposed a novel retinal vessel
segmentation algorithm based on residual convolution neural
network, which involves three major steps: 1) the residual
learning is introduced in the network structure; 2) the atrous
spatial pyramid pooling is built to learn the feature information
of different receptive fields; 3) the residual attention module and
deep supervision module are applied to improve the accuracy of
identifying the capillaries.

The main contribution of this work is to propose the novel
algorithm for segmenting retinal vessel from fundus images. It
outperforms many recent works, including several methods using
deep learning. The proposed algorithm can obtain complete
retinal vessel segmentation, including connected vessel stems
and terminals, especially the capillaries, and is fast and easily
scalable to any fundus image size. Three more specific
contributions are also worth mentioning. Firstly, an improved
residual attention module is built and combined with a designed
deep supervision module, that successfully solves the problem of
gradient disappearance and gradient explosion caused by the
depth of convolutional neural network. Secondly, an encoder-
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decoder network structure is constructed, in which the low-level
and high-level feature graphs are joined together. It effectively
avoids inefficient learning and sharing in training. Thirdly, atrous
spatial pyramid pooling is constructed by introducing the atrous
convolution, that effectively enlarges the receptive field while
reducing the number of training parameters. Our proposed
algorithm can be used to help doctors diagnose retinal disease,
and could also support future computer-assisted diagnosis, health
screening, and retina identification.

The rest of this paper is organized as follows: Related Work
discusses the related work contributed by researchers, followed by
the Network Structure, in which each block has been described in
detail. Experiment and analysis indicate the data acquisition,
experimental results, comparison and analysis. Conclusion and
future work conclude the paper with a summary and future
research directions.

2 RELATED WORK

Retina is made up of complex blood vessels surrounding the tiny
nervous system at the back of the eyeball, which contains a large
number of features. Researchers have proposed many retinal
vessel segmentation algorithms over the vyears, including
matching filtering method (Singh and Srivastava, 2016; Roy
et al, 2019), vascular tracking method (Pal et al, 2019
Alaguselvi and Murugan, 2021), image morphology processing
and deep learning method (Grewal et al., 2018; Soomro et al.,
2019).

Traditional image segmentation methods, as matching
filtering method and vascular tracking method, focus on the
various filters design and the image morphology process to
achieve the purpose of retinal vessel segmentation (Li G. et al,
2019; Li J. et al., 2021). In the reference (Pachade et al., 2020), a
unique combination of morphological operations, background
estimation, and iterative thresholds was applied to achieve the
retinal vessel segmentation. Girard et al. (2019) defined branches
by nodes and combined with graph propagation to do the
segmentation and classification, and Li et al, 2020b used a
deep forest-based segmentation algorithm for retinal vessels.
However, in some lesion areas and optic disc edges, these
methods may incorrectly detect points as blood vessels. Fan
et al. (2019) combined the matched filters and morphological
process based on different Gaussian filters in different directions
and vector field divergence. In the meantime, multi-scale wavelet
transforms (Tian et al., 2021) was used to fuse feature images, and
the maximum value of each pixel was calculated to obtain retinal
vessel detection images. But the interference of optic disc will lead
to the degradation of segmentation performance. Dharmawan
etal., 2019a designed a retinal vessel segmentation method based
on adaptive filter. Rodrigues and Marengoni, 2017 proposed a
method based on morphology and wavelet transform, and
Aguirre-Ramos et al. (2018) enhanced vascular contour
through Gabor filter and Gaussian fractional derivative. Lu
et al. (2016) used multi-scale filtering algorithm to preprocess
images and Li et al., 2018 incorporated phase features to segment
the retinal vessels. These traditional segmentation methods
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FIGURE 2 | Schematic diagram of atrous convolution with different expansion rates as (A) r = 1, (B) r = 2, and (C) r = 3.
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FIGURE 3| The structure diagram of the atrous spatial pyramid pooling.

preliminarily achieved retinal vessel segmentation, but it still
needs manual extraction of the image features due to the low
accuracy in details, which may omit key details and fail to achieve
end-to-end segmentation.

Deep learning based segmentation method developed rapidly
in recent years. Yan et al. (2019) used a three-stage network
model to segment the thin and thick vessels respectively, and
then segmented the pixels by fusing the vessels. Liu (2021)
proposed a method based on an optimized BP neural
network, in which image features are extracted by adaptive
histogram, matched filter and Hessian matrix. But the
algorithm can only be applied on lesions in small area,
and the large-scale lesion interference cannot be effectively
avoided. Lu et al. (2021) segmented retinal vessels in fundus
images through an attentional mechanism and conditional
generative adversarial network, and Tang and Yu, 2021
adopted a BP neural network. In Reference (Dharmawan
et al., 2019a), a hybrid algorithm was proposed by using a
directional sensitive enhancement method and U-NET
convolution network to train the enhanced image. But the
algorithm is not optimized for multi-scale image
segmentation, and the segmentation performance of vessels
with lesions still needs improvement. These deep learning
based methods have improved the accuracy of retinal vessel
segmentation, but the segmentation performance still needs
to be significantly improved in order to be widely used in
machine-assisted health screening and identification in the
future.
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FIGURE 4 | The schematic diagram of residual attention module.

3 NETWORK STRUCTURE

Residual Module

To avoid the inevitable problems of deep neural networks as
gradient disappearance and gradient explosion, residual learning
(Chen et al, 2020; Feng et al, 2020; Yang et al, 2021) is
introduced into the network. The parallel method is applied
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FIGURE 5 | Structure diagram of the retinal vessel segmentation network.

and the identity mapping is added to the output of the stacked
convolution layer. It can effectively improve the feature extraction
ability of the network. The function can be expressed as

F(x)=H(x)-x (1)

where x represents the input; F(x) represents the output of the
jagged edge. If F(x) = 0, it becomes an identity mapping,
while the input and output of the residual module are equal.
H(x) represents the final output of the residual module. The
structure of the proposed residual module is shown in
Figure 1. Different from the ordinary residual module,
the 1 x 1 convolution is added to the identity mapping to
adjust the number of channels, whose function can be
expressed as

H(x) = F(x) + g(x) 2)

Here g(x) represents the output of the convolution on the
identity map.

The residual mapping of the residual module contains two 3 x
3 convolution layers and each convolution layer is processed by
batch normalization (BN) (Awais et al., 2020) to accelerate the
network convergence. Modified linear unit (ReLU) is used as the
activation function, and L2 regularization is introduced to avoid
network over-fitting. A dropout layer (Wang et al., 2019) (with
random inactivation rate = 0.2) is added between the two stacked
convolutional layers in the residual module to randomly discard
some neurons during training, in order to prevent over-fitting
and enhance generalization performance of the network.

Atrous Spatial Pyramid Pooling
The receptive field of the convolution layer is related to the size of
the convolution sum. Larger size means larger receptive field and
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stronger feature extraction capability of the network, but it also
means more parameters to be trained. By utilizing atrous
convolution, also called expansion convolution or extended
convolution, firstly proposed by Chen et al, 2018, the
receptive field can be enlarged without increasing the number
of training parameters of the network. Compared with traditional
convolution, atrous convolution introduced a hyperparameter
called expansion rate r. The larger the value of r is, the larger the
receptive field will be. When r = 1, the atrous convolution is equal
to the ordinary convolution. Figure 2 is the schematic diagram of
atrous convolution with different expansion rates.

In order to enlarge the receptive field of the network without
adding too many parameters, so as to increase the feature
extraction capability, we utilize the outputs of atrous
convolution with different expansion rates and stack them to
form the atrous spatial pyramid pooling (ASPP) (Li M. et al,
2021; Lian et al,, 2021), The structure is shown as Figure 3.

This module is mainly composed of four parallel atrous
convolution. including a 1 x 1 ordinary convolution (r = 1)
and three 3 x 3 atrous convolution with expansion rate r = 2, 3
and 4 respectively. The number of convolution kernels of each
convolution layers is set as 128. The outputs of the four
convolution layers are concatenated as the total output of the
ASPP. The multi-scale characteristic information of different
receptive fields can be learned with different expansion rates,
which can increase the recognition ability of small vessels. In
addition, it also reduces the parameters that need to be trained
and increases the training speed of the network.

Residual Attention Module

With the rapid development of deep learning, it has become
particularly important to add attention mechanism into the
network in recent years. The attention mechanism of image
recognition is mostly constructed by masks. Essentially, it is to
train the weight of another layer to identify the key information in
the image, so as to increase the sensitivity of the network to the
key information. The network can be trained to notice the key
areas of each image to generate attention. Spatial transformer
network (STN) model (Xu et al, 2021b) uses the attention
mechanism to transform the spatial information of the
original picture into another space while retaining the key
information. In the meantime, Reference (Hu et al, 2020)
proposed a SENet model, whose core idea is to learn the
weight of each channel through the attention module, in order
to generate attention in the channel domain.

In this paper, we propose a residual attention module, whose
network structure is shown as Figure 4. This module is mainly
composed of two parts, mask branch and trunk branch, whose
output is represented by M(x) and T(x) respectively. Batch
normalization and Rectified Linear Unit (ReLU) activation
functions are used by default for all 3 x 3 convolutional
layers. The trunk branch is composed of two 3 x 3
convolution layers and jump connections, which is used to
extract feature information. In the mask branch, two down
sampling and two up-sampling are carried out. After the
process of Sigmoid activation function, a mask M(x) with the

CNN-Based Retinal Vessel Segmentation Algorithm

FIGURE 6 | Original Image in different channels: (A) Original gray image,
(B) Red channel image, (C) Green channel image, and (D) Blue
channel image.

same size as the output of the trunk branch is obtained as the
weight of the trunk output T(x). It can be expressed as

H(x) = (1+M(x)T (x) 3)

where x represents the input, M(x) represents the output of the
mask branch, T(x) represents the output of the trunk branch, and
H(x) represents the output of the residual attention module.

Retinal Vessel Segmentation Network

The structure of the segmentation network proposed in this paper
is shown as Figure 5, which is mainly composed of encoder,
decoder and three deep supervision modules.

The large size of the input image may affect the
segmentation, so it is necessary to cut apart the fundus
image. The image is cut by windowing of 64 x 64 pixels,
and the sliding step is set to be 16. The dataset can be
expanded by randomly flipping, rotation and cropping the
images. In Figure 5, the width and height of the input
image of the network is 64, and the number of channels is
1, which is written as 64 x 64 x 1. During each step, the size of
the image and the number of channels will change. The number
represents the width x height x channel number, as shown in
Figure 5. In the encoder network, the residual module and the
ASPP, together with the residual attention module, will not
change the width and height of the image, but increase the
number of channels. The 2 x 2 maxpooling layer reduce the
width and height of the image by half and keeps the number of
channels constant. In the decoder network, up-sample block
doubles the width and height of the image, and the residual
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FIGURE 7 | Two cases of gray histogram: (A, D) Original color image, (B, E) Gray image of the green channel and (C, F) Gray histogram of (B, E).
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module adjusts the number of channels. After each stage of up-
sampling and residual modules, stack with the branches on the
encoder. The dimension of the image after decoder network is
64 x 64x64. Finally, after the residual module and the
convolution layer with kernel size of 1 x 1, the width and
height of the image became 64 and the number of channels is 1.
As a result, the dimension of the output image is 64 x 64 x 1.

Three branches are introduced in the encoder as the input of
the three deep supervision modules with different layers and
blocks. The output of the three deep supervision modules and the
output of the decoder are used together to calculate the loss
function and update the weight parameters. Up-sampling is
carried out by means of transposed convolution, and a
symmetric coding-decoding network is constructed by splicing
the low-level features of encoder and high-level features of
decoder with the method of jump connection. A 1 x 1
convolution is used at the last layer of the decoder to adjust
the number of channels to 1. Finally, the Sigmoid activation
function is used to scale the output to the range from 0 to 1, which
can be expressed as

)=

1+e™ @
where x represents the input of the activation function, f(x)
represents the output of the activation function, whose value is
normalized.

The loss function of the network is composed of the loss
generated by three depth supervision modules and the trunk
network. The function can be written as

Loss = SLoss1 + fLoss2 + fLoss3 + fLoss4 (5)

Here, Loss represents the total loss of the network, Loss1, Loss2
and Loss3 represent the loss generated by the three deep
supervision modules respectively, and Loss4 represents the loss

generated by the output layer of the decoder. f=1- zi(‘x:;

epochs represents the iteration times of the current network,
and epochs represents the total iteration times of the network. It
can be seen that as the iteration of the network approaches 0, the
weight of loss B generated by the deep supervision module
decreases gradually.

Since the pixel number of vascular and non-vascular may can
be quite different, the binary cross entropy loss function with
weight coefficient (Li X. et al., 2019; Jamin and Humeau-
Heurtier, 2020) is adopted to reduce the uneven distribution
of positive and negative samples, and its mathematical
expression is defined as

Loss(n) = -1/m ZZI oy log(j/‘,-) +(1-9)(1- yi)l0g<1 - )7,-),
n=1234 (6)

Here, Loss(n) represents the Loss1, Loss2, Loss3 and Loss4 in
Eq. 5, with n = 1,2,3,4 respectively; m represents the total
number of pixels in the input image; y; represents the label
with value of 0 or 1, 0 represents background, and 1
represents blood vessel. y; represents the output of the
network, 0=X_/m, 1-0=X,/m, where X_ and X,
represent the number of non-vessel pixels and the number
of vessel pixels respectively.
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FIGURE 8 | Histogram equalization results: (A, E) Gray image of green channel, (B, F) Original gray histogram of (A, E) separately, (C, G) Image after local
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The batch size of the training is 20, the network iterates for 500
times, the learning rate is set at 0.001, and Adam is used as the
optimizer.

4 EXPERIMENT AND ANALYSIS

Database and Training Environment

The network model is established on deep learning framework
based on TensorFlow. The hardware configuration of the
experiment is i5-1100K and GTX1030, and the software runs
on the Winl0 system. The database used for the experiment
includes Digital Retina Images for Vessel Extraction (DRIVE)
(Staal et al., 2004) and Structured Analysis of the Retina (STARE)
(Hoover et al,, 2000). The DRIVE data set has 20 training images
and 20 test images with the resolution of 584 x 584 pixels. The
STARE data set contains 20 images with the resolution of 605 x
700 pixels, in which ten images are used as the training set and the
other ten as the test set.

Image Preprocessing

Environmental factors, such as illumination, interference and
background, will affect the image segmentation, which leads to
unsatisfactory result. Therefore, in order to further improve the
accuracy of vessel segmentation, appropriate preprocessing
operations are required for fundus images. Firstly, the image is
transformed into grayscale image, and secondly, Gaussian filter is
carried out to eliminate the noise. Thirdly, local histogram
equalization (Dhal et al, 2020; Shi, 2021) and Gamma
transformation are performed to adjust the contrast of the image.

4.1.1 Channel Separation

In the fundus examination, an RGB color image is obtained by
the camera, composed of three separate channels: red, green
and blue. The images are shown as Figure 6, in which
(Figure 6A) is the original gray image, that is actually the
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FIGURE 9 | Schematic diagram of Gamma transformation with different
factor y.

average grayscale image of the three channels, and (Figures
6B,C,D are the original images in red, green, blue channel
separately. The three-channel color image is too large and
contains much useless data for subsequent processing. Single
channel image information is enough for all the required
information, which greatly reduce the amount of data
processing and improve the computational efficiency.
Channel compression and conversion is usually carried out
by the weighted average of three images, or an optimal channel
selection. To the human eye, the sensitivity to green is much
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FIGURE 10 | Result of Gamma transform: (A, C) Images after histogram
equalization, (B, D) Images after Gamma transform of (A, C) separately.

higher than the other two colors (Ricci and Perfetti, 2007;
Marin et al,, 2011), as the contrast shown in Figure 6C.
Therefore, the image in green channel is chosen instead of
the original three-cannel image for subsequent image
processing.

4.1.2 Gray Histogram Equalization

Histogram (Li et al., 2020a; Sulewski 2020), also known as mass
distribution map, is used for statistical reports, in which multiple
bars with unequal heights are utilized to represent the distribution
of data. During the image process here, the gray histogram
represents the image distribution of gray level in the range [0,
L-1]. The discrete function can be described as

p(ri) =m/n 7)

Here, n is the total number of images; #; refers to the total
number of pixels at the k™ gray level; ;. refers to the k™ gray level,
and k=0, 1, 2... L-1. In our experiment, L is set as 256. The gray
histogram represents the frequency of pixels at each gray level shows
in the image, with the gray level as the x-axis and the numbers of the
pixels as the y-axis. Figure 7 shows two cases of the gray histogram of
fundus images, with (Figures 7A,D) the original color images,
(Figures 7B,E) the gray image after channel separation; (Figures
7C,F) the gray histogram of (Figures 7B,E) with the vertical axis as
the normalized probability distribution of the pixels.

The goal of histogram equalization is to transform the original
image from a certain concentration range of pixel values to a
wider range so that the contrast between the similar gray value
increase. The specific way is utilizing nonlinear stretch to

CNN-Based Retinal Vessel Segmentation Algorithm

transform the certain histogram to uniform distribution in a
certain range, which can be described as

s=T(r),0<r<L-1 (8)

Here, r represents the pixel gray value before the transformation, s
represents the pixel gray value after the transformation, and T(r)
represents the transformation function. T(r) is a monotone
increasing function in the range of 0< T(r) <L-1, which ensures
that the variables r and s are one-to-one corresponding. 0< r <L-1
and 0 < T(r) < L-1 can ensure the range of gray value after
transformation will not exceed the original one.

We use p,(r) and py(s) to represent the probability density
function corresponding to gray level r and s respectively. The
inverse transformation from s to r can be described as

r=T"(s), 0<s<L-1 9)

The inverse transformation function T'(s) also meets the
monotonically increasing condition in the range of 0 < s < L-
1. According to the theory, if p,(r) and T(r) are known and r = T
'(s) is a monotonically increasing function, the gray level

probability density function py(s) of the image after
transformation is shown as follows:
dr
s = Pr 5 10
P9 = 2 (0[] (10)

The transformation function of the histogram equalization
function can be written as

s=T(r) = (L—I)er,(w)dw (11)

Here, w is the integral variable. It can be seen from the right
side of the Eq. 11 that the integral is the area below the function
curve, so it meets the condition of monotone increasing. As the
integral of p,(r), the probability density function of r, on the
range [0, L-1] is 1, and s takes the maximum value L-1, which
does not exceed the gray range of r, we can get the following
formula as

—| Network

Input

FIGURE 11 | Schematic diagram of windowing and data preparation.
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(Fan et al., 2019), and (D) Results by proposed method.

FIGURE 12 | Comparison of segmentation results of different algorithms on DRIVE data sets: (A) Original fundus image, (B) Reference standard, (C) Results in Ref.

(Fan et al., 2019), and (D) Results by proposed method.

FIGURE 13| Comparison of segmentation results of different algorithms on STARE data sets: (A) Original fundus image, (B) Reference standard, (C) Results in Ref.

ds _dT(r)

dr  dr

—1)— j;pr(w)dw S (L-Dp()  (12)

Substitute Eq. 12 into Eq. 10, the probability density function
Ps(s) can be written as

ps(s)zpr(r)%| I ! |=| OSSSL—l

I(L 1)p, (r)|

(13)

Through the above equation, py(s) is proved uniformly
distributed, which indicates that we can obtain a gray image

with more uniform gray distribution and higher contrast by
histogram equalization transformation.

For digital images, the gray level is discrete, and the sum of the
probability tensity function should be used instead of the integral.
The probability of occurrence of gray level r, is approximately
transformed into

pk(rk)=@, k=0,1,...,L-1 (14)
n

Here, n is the number of all pixels in the image, 1y is the
number of pixels on the gray-level ry, L is the total number of
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FIGURE 14 | Comparation of local segmentation effects on DRIVE data sets: (A) Original fundus image; (B) Original local image; (C) Local reference standard
image; (D) Local segmentation results in Ref. (Fan et al., 2019); and (E) Local results by proposed method.
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FIGURE 15 | Comparation of local segmentation effects on STARE data sets: (A) Original fundus image, (B) Original local image, (C) Local reference standard
image, (D) Local segmentation results in Ref. (Fan et al., 2019), and (E) Local results by proposed method.

/

possible gray-level in the image, so the discrete form of the
transformation function is

.
sk=T(ry) = (L—l)zl;ozj k=0,1,...

output image of gray-level s; through Eq. 15. Different from the
continuous form, the new image generated is not necessarily
completely evenly distributed, but the image tends to be uniform
as well with a higher contrast and a larger grayscale after
transformation.

,L-1  (15)

The operation of discrete histogram equalization is to map
each pixel in the input image of gray-level r; to the pixel in the

For the fundus images, the background will affect the
histogram equalization, so the local histogram equalization
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TABLE 1 | Segmentation performance comparison of different algorithms on

DRIVE.

Method Race Rse Rsp Rauc Years
Rodrigues et al. 0.9465 0.7165 0.9801 - 2017
Li et al. 0.9574 - - 0.9702 2018
Aguirre-Ramos et al. 0.9503 0.7854 0.9662 - 2018
Girard et al. 0.9480 0.7490 0.9770 - 2019
Fan et al. 0.9531 0.7035 0.9763 - 2019
LiZQetal 0.9375 0.6945 0.9729 0.9320 2020
Pachade et al. 0.9405 0.7514 0.9676 - 2020
Lu et al. 0.9559 0.8288 0.9745 0.9786 2021
Liu 0.9582 0.8137 0.9055 - 2021
Proposed method 0.9590 0.8320 0.9885 0.9713 2021

Racc represents the accuracy; Rse represents the sensitivity; Rsy represents the
specificity; Rauc represents the area under the ROC curve.

TABLE 2 | Segmentation performance comparison of different algorithms on
STARE.

Method Race Rse R. Sp Rauc Years
LiZzQetal 0.9461 0.7456 0.9693 0.9524 2020
Pachade et al. 0.9543 0.7769 0.9688 - 2020
Lu et al. 0.9683 0.8432 0.9775 0.9813 2021
Proposed method 0.9688 0.8295 0.9785 0.9820 2021

Racc represents the accuracy; Rse represents the sensitivity; Rsy, represents the
specificity; Rauc represents the area under the ROC curve.

(Laietal., 2015) transformation for the eyeball part is used instead
of global histogram equalization. Figure 8 shows the result of
local histogram equalization. It can be seen from Figure 8 that the
value of background pixels does not change as close to 0, while the
histogram of the eyeball part is obviously stretched and the
contrast improves obviously.

CNN-Based Retinal Vessel Segmentation Algorithm

4.1.3 Gamma Transformation

Gamma transformation (Hoo et al, 2017; Wang et al.,, 2018;
Wang et al,, 2021) can be used to adjust the contrast of gray
images which are overexposed or underexposed. Nonlinear
transformation is utilized to enhance the gray value of the
dark area and reduce the gray value of the overexposed area,
so that the overall detail of the image will be enhanced. The
formula of Gamma transformation can be written as

s=cr’ (16)

Here, r is the input value of the gray image, with the range of
[0,1]; s is the output value after Gamma transformation; c is the
gray scale coefficient, usually equals to 1; y is the Gamma factor,
which controls the stretch of the entire transformation. The
transformation with different Gamma factor y is shown in
Figure 9, where the abscissa and the ordinate represent the
gray value before and after Gamma transformation for a
certain pixel individually. It can be seen that the result differs
with the factor y.

Gamma transformation is used to process the histogram
equalization image, in order to further enhance the contrast. It
is drawn from the experiment that the best contrast enhancement
effect is with p = 1.3. The Gamma transformation results with y =
1.3 are shown in Figure 10.

4.1.4 Training Data Preparation

As the pixel number of fundus images collected by different
instruments is not the same, and also the size of the whole image
is relatively large, the segmentation accuracy will be affected and
small retinal vessels that contains vital information cannot be
extracted when using the full-size images as the direct training
data. Therefore, we adopt a sliding window on the image to
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FIGURE 16 | Comparations of evaluation indicators with different algorithm on DRIVE.
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capture certain areas as input, as shown in Figure 11. Firstly, fill
the background pixel with the value of 0 to widen the height and
the width of the image as integer multiples of 64. Secondly, a
64 x 64 window is used to slide from the upper left corner of the
image, from left to right and top to bottom, with a sliding step as
16. The sliding window of 64 x 64 is fixed in this network, but
the sliding step size can be change. The smaller the sliding step
size is, the more data can be obtained, and larger slide step
means less data obtained. The maximum sliding step size should
not be greater than 64, as greater than 64 results in some aeras
with information will be missed. In the meantime, the sliding
step should not be too small, in order not to get a lot of
overlapping areas. The sliding step is set as 16, as a total of
27380 64 x 64 training data can be obtained from DRAVE data
set, and 15170 64 x 64 training data from STARE data set. The
obtained data are randomly flipped and clipped in each epoch to
ensure that the training data we sent to the network was
different in each epoch.

Evaluation Indexes of Model Performance
Retinal vessel segmentation is to classify pixels and
determine whether each pixel belongs to blood vessels. Four
evaluation methods are used to evaluate the effect of vessel
segmentation, which are accuracy Ry, sensitivity Rs,,
specificity Rg, and ROC curve. The function of the former
three are as follows:

Tp+Ty

Rcc:
A Tp+Ty+Fp+Fy

17)

Tp
Ry = ———— 18
. TP+FN ( )
Ty
Ryp) = —— 19
Sp TN+FP ( )

Here Tp represents true positive, whose value equals to the
number of accurately segmented vessel pixels; Ty represents
the true negative, and its value equals to the number of
correctly segmented background pixels; Fp represents false
positive, with the value equals to the number of incorrectly
segmented vessel pixels; Fy represents the false negative, and
its value equals to the number of wrongly segmented
background pixels. A certain curve can be draw by the false
positive rate (1-Rg,) as the horizontal coordinate and the true
positive rate (Rg,) as the vertical coordinate, which is the ROC
curve (Hoo et al., 2017; Michael et al., 2019). The area under
the curve is defined as Ryyc (Janssens and Martens, 2020;
Muschelli, 2020), and the closer its value to 1, the better the
segmentation effect is.

Experimental Results

Figures 12, 13 show the segmentation result on the DRIVE data set
and STARE data set individually, in which (Figures 12A, 13A) is the
original fundus image; (Figures 12B, 13B) is the image of retinal
vessel manually segmented by experts, which is used as the standard
reference; (Figures 12C, 13C) is the segmentation result of the typical
traditional method in Reference (Fan et al.,, 2019); and (Figures 12D,
13D) is the segmentation result based on the proposed method. It can
be observed from Figures 12, 13 that the segmentation image of the
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network is mostly consistent with the expert labeled image, and the
capillaries are much more detailed than the traditional method. The
vast majority of characteristic information for retinopathy
recognition and identification is contained in these details.

Figures 14, 15 show the segmentation results of some local
areas on the DRIVE data set and STARE data set separately, in
which (Figures 14A, 15A) is the original fundus image with the
selected local areas by the blue boxes; (Figures 14B, 15B) is the
original image of selected areas; (Figures 14C, 15C) is the
reference standard images of the selected areas; (Figures 14D,
15D) is the segmentation result based on method in Reference
(Fan et al., 2019); and (Figures 14E, 15E) is the result based on
the proposed method. The chosen local areas include relatively
thick blood vessels, intersecting blood vessels, and thin blood
vessels. It can be observed from Figures 14, 15 that the vessel
pixels division has a higher accuracy in both thick and thin
vessels, resulting in better continuity of blood vessels and fewer
broken vessels, which is more conducive to extract key feature
information.

We compare the segmentation performance of the proposed
algorithm and the methods in the references, applied on DRIVE
data set and STARE data set, as shown in Tables 1, 2
respectively. The accuracy of the proposed method on
DRIVE data set and STARE data set is 0.9590 and 0.9688
respectively. The sensitivity is 0.8320 and 0.8432, while the
specificity is 0.9885 and 0.9785 severally. The accuracy,
sensitivity, and specificity on both data sets are generally
improved compared to other algorithms. The ROC curve
index of the algorithm in this paper is 0.9786 and 0.9820
individually. Though the R,yc is 0.0073 lower than the
latest Reference (Lu al,, 2021), the specificity is
significantly improved by the algorithm proposed in this
paper, and the overall performance is improved in return.
As for the STARE data set, the sensitivity of the proposed
algorithm is 0.0137 lower than that in Reference (Dharmawan
et al., 2019b), but all the other evaluation indicators improved.
Therefore, the segmentation performance of the proposed
method is effectively improved.

Figures 16, 17 are the histogram of the evaluation indexes of
the proposed algorithm and other typical algorithms in DRIVE
data set and STARE data set respectively. It can be seen more
intuitively from the figure that the proposed algorithm has better
segmentation performance and smaller error than other
algorithms.

et

5 CONCLUSION AND FUTURE WORK

The proposed residual convolution neural network based retinal
vessel segmentation algorithm has been proved as an effective
way to extract the blood vessel from the fundus images. The
accuracy of the proposed method on DRIVE data set and STARE
data set reaches 0.9590 and 0.9688 respectively, with the
sensitivity and specificity on both data sets generally improved
compared to other algorithms. It has a better segmentation

CNN-Based Retinal Vessel Segmentation Algorithm

the key feature information of diagnose and identification. In
addition, by introducing the ASPP module, the receptive field is
enlarged and the number of training parameters is reduced,
which means a great potential for sharply increasing the
volume of the identifications data and shortening the
recognition time.

On the basis of this work, it is still necessary to do further
research on obtaining more detailed capillary features, and
further extract features from the fundus image data of
different pathologic conditions, different disease courses, or
different healthy people. Besides, specific criteria are needed to
evaluate the details of the segmentation quantitively. Continuous
research will provide more forceful support for the realization of
computer-assisted retinal disease screening and retina
identification in the future.

In addition, the network structure and construction method
proposed in this paper are of great reference significance to many
other applications. Especially the proposed improved residual
attention module combined with deep supervision module
successfully overcome the gradient disappearance and
explosion in the convolution neural network. The encoder-
decoder network structure effectively avoids inefficient
learning and sharing in training, and the atrous spatial
pyramid pooling significantly enlarges the receptive field while
reducing the number of training parameters. These contributions
have potential implications for other applications of biological
heuristic algorithms, not limited to image processing problem
(Tao et al.,, 2021b), but can even be applied in public opinion
dissemination (Chen et al., 2021b; Chen et al, 2021c) and
behavior analysis (Xu et al., 2021a; Xiang et al., 2021). Further
extended research will provide broader support for future
applications in other aspects.
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