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Magnetic α-Fe2O3/Fe3O4 heterostructure nanosheets were fabricated via hydrothermal
calcination. The activity of penicillin G acylase (PGA), which was covalently immobilized
onto silica-decorated heterostructure nanosheets, achieved the highest activity of
387.03 IU/g after 18 h of incubation with 0.1 ml of PGA. In contrast, the activity of free
PGA reached the highest level when the temperature was 45°C with a pH of 8.0. However,
the activity of free PGA changed more dramatically than immobilized PGA as the relative
conditions changed. Moreover, the Michaelis–Menten constant (Km) and reusability of
immobilized PGA were also explored. The results showed that free PGA Km and maximum
rate (Vmax) were 0.0274M and 1.167 μl/min, respectively. Km and Vmax values of
immobilized PGA were 0.1082 M and 1.294 μl/min, respectively. After 12 cycles of
repetitive use, immobilized PGA remained approximately 66% of its initial activity,
indicating that the PGA immobilized onto the heterostructure nanosheets showed
better stability and reusability than free PGA.

Keywords: magnetic α-Fe2O3/Fe3O4 heterogeneous nanosheets, immobilization, penicillin G acylase, hydrothermal
calcination process, reusability

INTRODUCTION

Currently, magnetic materials are attracting great attention from researchers due to their promising
applications in various fields, such as biotechnology (Alizadeh and Salimi, 2021), catalysis (Liu et al.,
2021a), electrochemistry (Wang et al., 2021), and biosensors (Dalkıran et al., 2019). Iron (II, III)
oxide (Fe3O4) nanocomposites have many applications in the enzymatic immobilization field (Li
et al., 2019), as they contain the Fe3+ (Liu et al., 2016) and Fe2+ antispinel structures. Moreover, Fe3O4

nanocomposites have structural stability (Pakapongpan and Poo-arporn, 2017), light resistance,
good biocompatibility, and good magnetic responsiveness. However, the magnetism of Fe3O4

produces diffusion restrictions (Liu et al., 2021b). Thus, magnetic α-iron (III) oxide (Fe2O3)/
Fe3O4 heterogeneous nanomaterials (Zhuang et al., 2015) have been developed to overcome this
drawback. The magnetic α-Fe2O3/Fe3O4 heterogeneous nanomaterials immobilized with enzymes
(Ansari and Husain, 2012) can be separated by applying an external magnetic field, with the
advantages of low toxicity, biocompatibility, simple operation, biodegradation, and effectively
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reduced capital investment. However, they are also accompanied
by the disadvantages of low chemical stability, high concentration
tendency, and low immobilized enzyme volume (Angelakeris,
2017). Hence, it is of great significance to combine inorganic or
organic materials into magnetic nanocomposites (Pakapongpan
and Poo-arporn, 2017) to improve material stability, delay
oxidation, and enable better application of immobilized
enzymes (Senapati et al., 2018). In this study, the stability of
magnetic nanocomposites in an acidic environment was
improved by coating them with silicon dioxide (SiO2). The
specific surface area of the nanomaterials was significantly
increased, and the abundant surface groups were suitable for
the modification and transformation of nanomaterials, which was
of great significance for enzymatic immobilization.

Immobilization techniques for modifying various enzymes are
affected by many factors, including the carrier used for the
immobilization, properties of the enzyme, solvent type,
immobilization process conditions, and reaction medium
(Sirisha et al., 2016). Therefore, the enzymatic immobilization
approaches should be appropriately selected, according to the
immobilized object characteristics and the application direction
of the immobilization technology (Zhou and Hartmann, 2013).
With the rapid development of science and technology, various
methods of enzymatic immobilization have been developed, such
as the adsorption approach (Fernandez-Lorente et al., 2020),
embedding process (Nadar et al., 2020), binding process (Farid
et al., 2020), and crosslinking approach (Tanabe et al., 2004).
Among these, the crosslinking approach was chosen in the
present study owing to the stability between the substrate and
the enzyme. Commonly used crosslinking agents include
dicarboxylic acid, glutaraldehyde (GA) (Rajesh et al., 2018),
dibutyltin dilaurate, and dimethyl adipic imide.

Penicillin G acylase (PGA) is a critical catalyst in the biological
field (Chen et al., 2018). It can hydrolyze benzylpenicillin
(penicillin G) to produce side chain-free penicillin, which can
be applied to the synthesis of β-lactam antibiotics in the industry
(Xue et al., 2015; Xue et al., 2016). These antibiotics play a critical
role in our daily lives, and they are often used to treat diseases
caused by various microorganisms, ranging from viruses to
bacteria (Yu et al., 2019). As a hydrolytic enzyme, PGA has
mild conditions of reaction, high sensitivity, high activity, and
good substrate selectivity (Liu et al., 2018). However, when free
PGA is used directly, it is easily affected by pH, temperature, and
other environmental conditions. In addition, it was shown to be
challenging to separate free PGA from the reaction system and
purify 6-aminopenicillanic acid (6-APA), a compound used for
the synthesis of semisynthetic penicillin (Wang et al., 2018),
resulting in product contamination and recycling difficulties.
The above reasons limit the application of free PGA in the
industry. Therefore, PGA immobilization has been developed
to solve these problems to a certain extent (Liu et al., 2014; Yang
et al., 2014).

In the present study, magnetic α-Fe2O3/Fe3O4 heterogeneous
nanosheets were successfully fabricated via hydrothermal
calcination. The magnetic nanomaterials were first coated with
a silicon layer and then functionalized with glutaraldehyde (GA).
PGA was successfully immobilized onto functionalized

heterogeneous nanosheets, and the properties of immobilized
PGA were evaluated. The immobilization process is shown in
Figure 1.

EXPERIMENTAL DETAILS

Fabrication and Characterization of
α-Fe2O3/Fe3O4 Heterogeneous Nanosheets
Briefly, 0.541 g of FeCl3·6H2O and 0.094 g of NaH2PO4·2H2O
were completely dissolved in 80 ml of distilled water by stirring
with a magnetic stirrer and hydrothermally heating at 220°C
for 24 h. The obtained suspension was rinsed with absolute
alcohol and distilled water several times to remove impurities
and then centrifuged six times. After removing the supernatant,
the obtained intermedium solution was placed in a vacuum
drying oven for 12 h to obtain the magnetic α-Fe2O3 nanosheets.
Finally, 0.1 g of α-Fe2O3 nanosheets were uniformly mixed
with 0.4 g of C6H12O6·H2O at a heating velocity of 3°C/min,
and calcined at 600°C for 4 h (Liu et al., 2020). Magnetic α-
Fe2O3/Fe3O4 heterogeneous nanosheets were obtained after
grinding.

Scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) were used to evaluate the
morphology of the magnetic α-Fe2O3/Fe3O4 heterogeneous
nanosheets. Phase identification of the nanomaterials was
performed by x-ray diffraction (XRD), and a vibrating sample
magnetometer (VSM) was used to measure the magnetic
properties of the products.

Preparation of α-Fe2O3/Fe3O4@SiO2-CHO
Nanocomposites and Penicillin G Acylase
Immobilization
First, 1.0 g of α-Fe2O3/Fe3O4 heterogeneous nanosheets mixed
with 200 ml of distilled water was transferred into a round bottom
flask with a magnetic stirring bar and heated at 80°C for 3 h. Then
10 ml of 1.0 M Na2SiO3 was slowly added to the resulting
suspension with rapid stirring. Simultaneously, a small amount
of 2.0 M HCl was added to the solution to maintain pH 6.0. The
magnetic α-Fe2O3/Fe3O4@SiO2 nanomaterials were successfully
obtained after several rounds of washing and centrifugation, and
finally drying. Next, 0.1 g of magnetic α-Fe2O3/Fe3O4@SiO2

nanomaterials were placed in a mini centrifuge tube, and
0.2 ml of 25% glutaraldehyde (Sinopharm Chemical Reagent
Co., Ltd., Shanghai, China) with 1 ml of 0.05 M phosphate-
buffered saline (PBS, pH 7.0) was added to the tube and
stirred for 2 h. After this period, the solution was centrifuged,
and the supernatant was removed. Magnetic α-Fe2O3/Fe3O4@
SiO2-CHO nanocomposites were successfully fabricated after
rinsing with 1 ml of 1.0 M NaCl.

Then, 4.6 ml of diluted PGA solution, prepared with 0.1 ml
penicillin and 4.5 ml PBS (pH 8.0), was added to 0.1 g of magnetic
α-Fe2O3/Fe3O4@SiO2-CHO nanocomposites. The solution was
uniformly mixed following a shaking time of 18 h. After
centrifugation, the content of enzymatic protein in the upper
liquid was stained with Coomassie blue G250 (Sinopharm
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Chemical Reagent Co., Ltd., Shanghai, China) for its
quantification.

Thermostability and pH Effect on Penicillin
G Acylase Enzymatic Activity
First, 2 ml of PBS (pH 8.0) or 4 μl of PGAwere mixed with 0.1 g of
magnetic α-Fe2O3/Fe3O4@SiO2-CHO nanocomposites
immobilized with PGA. Five milliliters of 4% penicillin K
solution (Aladdin, Shanghai, China) was added to each
mixture and incubated for 5 min at room temperature After
this time, the mixture was centrifuged, and 1 ml of the
supernatant was added to 4 ml of deionized water to compose
a 0.5 ml of mixture, and later combined with 3.5 ml of
paradimethylaminobenzaldehyde. The UV-vis absorbance of
this final solution was measured at 415 nm after an incubation
time of 5 min.

For measuring the pH effects, 2 ml of PBS with various pH
values (ranging from pH 6.0 to 9.0) was added to 4 μl of free PGA.
Simultaneously, 0.1 g of α-Fe2O3/Fe3O4 nanosheets immobilized
with PGA, was mixed with 2 ml of PBS at various pH values
(6.0–9.0). Enzymatic activity was monitored based on the steps
mentioned above.

To evaluate the thermostability of the composites, free and
immobilized PGAs were mixed with the PBS solution with the pH
value that resulted in higher enzymatic activity, and heated at
various temperatures (ranging from 20°C to 60°C) for 5 min.
Enzymatic activities were monitored based on the previous
experimental steps.

Twenty mini centrifuge tubes were prepared, and 0.5 ml of free
PGA and 2 ml of PBS were added to each tube. The tubes were
divided into four groups and heated at 30°C, 40°C, 50°C, or 60°C.
One sample from each group was heated during five different
periods (2–10 h). Subsequently, 5 ml of 4% penicillin K solution
at room temperature was added to each one of the 20 tubes. In

another set of 20 mini centrifuge tubes, 0.1 g of nanosheets
immobilized with PGA was added to 2 ml of PBS only.
Enzymatic activity was monitored based on the previously
mentioned experimental steps.

Immobilized Penicillin G Acylase Kinetics
and Reusable Property
To study the enzymatic kinetics of immobilized PGA, various
concentrations of penicillin K solution (0.01, 0.0125, 0.017, 0.025,
and 0.05 mM) at 37°C were used to determine the initial
hydrolysis rates of PGA, using the Lineweaver-Burk plot.

The immobilized PGA property was evaluated by adding 5 ml
of 4% penicillin K solution to a mixture of 0.1 g of the
nanomaterials immobilized with PGA plus 2 ml of PBS after
5 min. The UV-vis absorbance of the supernatant at 415 nm was
measured after centrifugation. The procedures mentioned above
were repeated after various rinsing steps with PBS, until the
activity of the immobilized PGA was reduced to a certain extent.

RESULTS AND DISCUSSION

Characterization of α-Fe2O3/Fe3O4

Nanosheets and α-Fe2O3/Fe3O4@SiO2

Nanocomposites
The SEM morphology (Figure 2A) and TEM image (Figure 2B)
of the prepared heterogeneous nanosheets calcined at 600°C for
4 h showed that the product morphology remained as nanosheets
and did not change after calcination. It can be seen that the
magnetic α-Fe2O3/Fe3O4 nanosheets exhibited slight aggregation
due to the magnetism of the heterogeneous nanosheets. However,
they are generally well dispersed. The average diameter and
thickness, measured with the Nano Measurer, reached

FIGURE 1 | The process of penicillin G acylase (PGA) immobilized onto α-Fe2O3/Fe3O4 heterogeneous nanosheets.
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approximately 240 and 40 nm, respectively. The x-ray diffraction
(XRD) pattern of the magnetic α-Fe2O3/Fe3O4 heterogeneous
nanosheets is depicted in Figure 2C. The characteristic peaks at
24.1°, 33.1°, 35.6°, 40.8°, 49.4°, 54.0°, 62.4°, and 63.9° (Liu et al.,
2020) were consistent with those of the standard card of Fe2O3

(JCPDS No. 33-0664), which represent 012, 104, 110, 113, 024,
116, 214, and 300 crystal faces, respectively, indicating the
formation of hematite (Mehdizadeh et al., 2020). However, the
ratio of the sample peak intensities at 33° and 35.7° was
significantly lower than that of the standard Fe2O3 card. This
phenomenon could be attributed to the existence of Fe3O4, as the
peak at 35.7° exhibited a higher intensity. Based on the standard
card of Fe3O4 (JCPDSNo. 19-0629), the peak intensity of Fe3O4 at
35.7° was higher than the peak intensity at 33°. In contrast, Fe2O3

exhibited a higher peak intensity at 33° than at 35.7°. Hence, this
phenomenon suggests the successful formation of Fe2O3/Fe3O4

heterogeneous nanomaterials. Figure 2D shows that the
magnetic saturation strength of the prepared heterogeneous
nanosheets was 25.1 emu/g, which was slower than the
previously prepared Fe2O3/Fe3O4 nanoparticles and Fe2O3/
Fe3O4 nanotubes. However, the magnetic saturation strength
of the Fe2O3/Fe3O4 nanosheets was higher than that of the
Fe2O3/Fe3O4 nanorods. Therefore, we could apply the external
magnetic field method to attract immobilized materials for
separation and reduce the aggregation of magnetic
nanomaterials.

The element types and contents of the fabricated
nanomaterials are shown in Figure 2E. The proportion of Fe
to O was 0.47, according to the data in the figure, meaning that
divalent iron and ferrous iron (Liu et al., 2020) might exist. The
x-ray photoelectron spectroscopy (XPS) of the Fe2O3/Fe3O4

heterostructure nanosheets is shown in Figure 2F. As

FIGURE 2 | The scanning electron microscopy (SEM) morphology (A), transmission electron microscopy (TEM) image (B), x-ray diffraction (XRD) pattern (C),
hysteresis loops (D) EDS spectrum (E), x-ray photoelectron spectroscopy (XPS) spectrum (F), the chart of pore diameter distributions (G), and N2 adsorption and
desorption diagram (H) of magnetic α-Fe2O3/Fe3O4 heterogeneous nanosheets.
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investigated in previous studies, the characteristic peaks at
around 711 and 724 eV represent the Fe 2p1/2 and Fe 2p3/2
curves, the positions of which were relevant to the ionic states of
Fe. The peak at approximately 719 eV corresponds to the satellite
peak of Fe3+. With the increase in iron oxidation in the
compound, the characteristic peaks all moved toward high
binding energy. The Gauss–Lorenz method was adopted to fit
the Fe 2p3/2 curve. Peaks of high binding energy at
approximately 711 and 713 eV were attributed to Fe3+, while
the peak at approximately 709 eV was attributed to Fe2+, which
indicated the existence of Fe3O4. The BET spectra of magnetic α-
Fe2O3/Fe3O4 heterogeneous nanosheets are displayed in Figures
2G,H. The average pore diameters were focused on 3–4 nm, and
the specific surface area of the prepared heterostructure
nanosheets was approximately 14.82 m2/g.

The SEM morphology of the magnetic α-Fe2O3/Fe3O4@SiO2

nanocomposites is shown in Figure 3A. The surface of the
magnetic α-Fe2O3/Fe3O4@SiO2 nanocomposites was rough,
which could be attributed to the SiO2 coating. The magnetic
α-Fe2O3/Fe3O4@SiO2 nanocomposites also showed slight

aggregation, proving the existence of magnetism in the
prepared nanocomposites. The EDS spectrum of Fe2O3/
Fe3O4@SiO2 is shown in Figure 3B, revealing that the
elemental composition of the prepared products included Si,
O, and Fe. As observed in Figures 3C,D, the specific surface
area of the silica-decorated heterostructure nanosheets was
approximately 12.65 m2/g. The size of the specific surface area
was mostly related to the pore structure of the material. The pore
diameter of the nanocomposites was approximately 3 nm. The
specific surface area and mesoporous structure increased the
possibility of enzymatic immobilization onto magnetic
nanomaterials.

Molecular Docking Analyses
The automatic docking enzyme program (Zhang et al., 2020) was
implemented to generate the docking between PGA and
penicillin K, and the results are shown in Figure 4. The
location of the active sites might influence the activity of the
enzyme. This property enhanced the binding affinity of PGA to
the substrate. The presence of Fe2O3 weakened the diffusion

FIGURE 3 | SEM morphology (A), EDS spectrum (B), the chart of pore diameter distributions (C), and N2 adsorption and desorption diagram (D) of α-Fe2O3/
Fe3O4@SiO2 nanocomposites.
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limitation caused by Fe3O4 (Esmaeili et al., 2011). However, these
processes could not be performed using bare Fe2O3/Fe3O4

heterogeneous nanosheets. Therefore, it was necessary to
create an appropriate interface for the active site. SiO2 can
provide a large amount of silica hydroxyl groups, which can
be used as a coating on the surface of heterogeneous nanosheets
and immobilize the carrier of PGA (Pan et al., 2019; Chen et al.,
2020). In addition, a suitable immobilization method was used.
Glutaraldehyde (GA) is a powerful crosslinking agent that reacts
with the free amino group in PGA and does not damage PGA
after crosslinking with its active site (Liu et al., 2020). The kinetics
model was established by molecular docking to study the
mechanism of enzyme immobilization and find the best
binding pattern between the two molecules, which was of
great value for investigating the immobilization conditions.

Optimization of Penicillin G Acylase
Immobilization Conditions
Overall, Figure 5A shows the Fourier Transform infrared
spectroscopy (FTIR) of PGA, Fe2O3/Fe3O4 nanosheets, Fe2O3/

Fe3O4@SiO2, α- Fe2O3/Fe3O4@SiO2-CHO, and Fe2O3/Fe3O4@
SiO2-CH�N-PGA. Figure 5A (a) shows the absorption peaks of
PGA. As illustrated in Figure 5A (b), the stretching vibration of
the Fe–O bond from magnetic Fe2O3/Fe3O4 heterogeneous
nanosheets was significant to the absorption peak at 550 cm−1.
The peaks at around 781 and 836 cm−1 in Figure 5A (c)
successfully evidenced the SiO2 coating of Fe2O3/Fe3O4

nanomaterials, due to the stretching vibration of the Si–O
bond. Similar to Figure 5A (c), the stronger peak caused by
the modification of GA appeared at approximately 596 cm−1 in
Figure 5A (d). The enhanced absorption peak at 1,650 cm−1 in
Figure 5A (e) corresponds to the characteristic peak of PGA,
which is caused by the stretching vibration of the C�N bond.
FTIR spectrum analysis showed that PGA was successfully
immobilized onto the silica-decorated heterostructure
nanosheets. Thenceforth, to obtain the optimum time for PGA
immobilization, 2 ml of PBS was shaken with immobilized PGA
for various periods (6–24 h) at a frequency of 115 rpm. After each
incubation time, 5 ml of the 4% penicillin K was added to the
PGA solution, followed by another 10 min of reaction. The
enzymatic activity of the centrifuged supernatant is shown in

FIGURE 4 | Orientation confirmation of PGA (A), and molecular docking mode of penicillin K and PGA (B).

FIGURE 5 | The Fourier transform infrared (FTIR) spectra (A) of the PGA immobilization process and the influences of time (B) and concentration (C) on the activity
of PGA.
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Figure 5B, which shows that the activity trend first increased and
then dropped with the extension of immobilization time. The
enzymatic activity reached the highest level of 387.03 IU/g at 18 h.
The reason for the decreased activity was that the immobilized
PGA was inactivated with extended immobilization time. The
influence of various concentrations on immobilized PGA is
represented in Figure 5C. First, 2 ml of PBS was prepared
with different amounts of free PGA (0.05, 0.1, 0.15, and
0.2 ml). The following experimental procedures for free PGA
were similar to those of the immobilized PGA mentioned above.
The activity initially exhibited an upward trend and then
decreased. When the concentration was 0.58 g/L, the
enzymatic activity reached the highest level. The increasing
trend might be due to the magnetic nanomaterials that were
not completely connected with the PGA. As the concentration
increased, excess PGA was not covalently bonded with the
nanomaterials but was absorbed on the nanomaterials, which
resulted in a smaller specific surface area and masking of the
active spots. The decreasing trend after 18 h was caused by less
contact between the immobilized enzyme and its substrate.

Evaluation of Immobilized and Free
Penicillin G Acylase Kinetics and
Reproducibility
The influence of pH and thermostability was investigated to
monitor the highest activity of immobilized and free PGA.
The results in Figure 6A show that the trend of the enzyme

activity increased first and then dropped with the pH increment,
reaching the highest level at pH 8.0. Therefore, the activities of
free PGA at 20°C–60°C were determined at pH 8.0 after 10 min of
reaction. As shown in Figure 6B, the activity increased first and
then dropped dramatically with the increment in the temperature
of the reaction, reaching the maximum activity at 45°C. As
observed from the graph, free PGA activity varied more
dramatically than the immobilized PGA, which suggested that
the immobilized PGA exhibited greater thermal stability than free
PGA. Above all, the nanomaterials improved the structure of
PGA, preventing conformational changes and degeneration in
extreme environments. The thermostability was analyzed based
on previous experiments, as shown in Figures 6C,D, respectively.
The immobilized and free PGAs were cultured in PBS (pH 8.0) at
30°C, 40°C, 50°C, and 60°C for different intervals (2–10 h). When
the heating time and the reaction temperature increased, the
relative activity of both immobilized and free PGA decreased to a
certain degree. As observed clearly in the figure, the activity
dropped intensely at 50°C and 60°C. This phenomenon may be
attributed to the destruction of the activity center. Immobilized
PGA exhibited higher activity than free PGA at 30°C and 40°C.
This could be because the immobilized carrier decreased the
conformational change of the active center of the PGA. The
conclusion drawn from these analyses reveals that PGA
immobilized onto magnetic Fe2O3/Fe3O4 heterogeneous
nanomaterials may be conducive to the application of enzymes.

Different concentrations of penicillin K acting as the substrate
reacted with free and immobilized PGA during different periods.

FIGURE 6 | The pH value (A), temperatures (B), and thermostabilities on free (C) and immobilized PGA (D), the Lineweaver-Burk diagram (E) and the reproductivity
of immobilized PGA (F).
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The corresponding initial velocities were measured by linear
regression analysis after measuring the amount of 6-
aminopenicillanic acid (6-APA).

The Lineweaver-Burk diagram was constructed by linear
regression analysis, as shown in Figure 6E. The Km value
(0.108 mM) of the immobilized PGA was approximately four
times the Km value (0.027 mM) of free PGA. This could be
attributed to the formation of a diffusion layer around the
immobilized PGA, which had a stereoscopic effect on the
substrate. Therefore, this may reduce the binding of the PGA
active site with its substrate and lessen the affinity between the
immobilized PGA and the substrate.

The regenerative performance of PGA can determine its
practical value in industrial applications. The reusability of
immobilized PGA is clearly shown in Figure 6F, and the
percentage of residual activity was determined using the initial
activity as the control (100%). As revealed in the picture, the
activity of immobilized PGA onto nanomaterials dropped with its
reuse, which was associated with the loss of some parts of the
enzyme in the carrier separation. However, the activity remained
around 66% after multiple cycles, which suggested that the
immobilized PGA exhibited good reusability (Sheldon and
Van Pelt, 2013).

CONCLUSION

Magnetic α-Fe2O3/Fe3O4 heterogeneous nanosheets were
fabricated via a hydrothermal calcination process (Liu et al.,
2020; Hong et al., 2021). The magnetic saturation strength of
the prepared nanosheets reached a maximum of 25.1 emu/g after
calcination for 4 h. The average diameter and thickness of the
magnetic nanosheets were approximately 240 and 40 nm,
respectively. PGA was immobilized onto the modified carrier

by covalent crosslinking, which effectively improved the catalytic
performance of PGA. In contrast to free PGA, immobilized PGA
exhibited better stability and reusability, with catalytic activity
remaining at 66% of the initial activity after 12 cycles. The present
study suggests that immobilizing PGA onto magnetic α-Fe2O3/
Fe3O4 heterogeneous nanosheets can play a critical role in
catalytic applications.
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