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This work describes a computational methodology for the design of braces for

adolescent idiopathic scoliosis. The proposed methodology relies on a

personalized simulation model of the patient’s trunk, and automatically

searches for the brace geometry that optimizes the trade-off between

clinical improvement and patient comfort. To do this, we introduce a

formulation of differentiable biomechanics of the patient’s trunk, the brace,

and their interaction. We design a simulation model that is differentiable with

respect to both the deformation state and the brace design parameters, and we

show how this differentiable model is used for the efficient update of brace

design parameters within a numerical optimization algorithm. To evaluate the

proposed methodology, we have obtained trunk models with personalized

geometry for five patients of adolescent idiopathic scoliosis, and we have

designed Boston-type braces. In a simulation setting, the designed braces

improve clinical metrics by 45% on average, under acceptable comfort

conditions. In the future, the methodology can be extended beyond

synthetic validation, and tested with physical braces on the actual patients.
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1 Introduction

Scoliosis is a clinical condition marked mostly by a lateral curvature of the spine.

Moderate cases of adolescent idiopathic scoliosis (AIS) are typically treated through

conservative methods (Karimi and Rabczuk, 2018), which try to naturally correct scoliosis

during the growth of the patients. A common conservative treatment is to use orthotic

brace structures (Negrini et al., 2022) that transmit forces to the spine and try to correct

the existing deformities (Kuroki, 2018; Kaelin, 2020). Such scoliosis braces are designed in

a variety of shapes and procedures, but most design methods rely to date on physical

experimentation and prototyping. Even though computational strategies have been

studied to some extent (Cobetto et al., 2016; Vergari et al., 2016), they are typically

limited to evaluating design iterations. The design decisions on the braces are not made by

intelligent computer programs; they are instead made by clinical experts, using

information from simulation models.
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In our work, we try to answer if brace design can be further

automated, devising an intelligent computer program that can

automatically explore the design space of a brace, and select

optimal design parameters. The development of such a brace

design solution faces two important research challenges. First, it

requires a personalized biomechanical model of brace-trunk

interaction. Using this biomechanical model, it is possible to

predict trunk deformations as a function of changes to the brace

design. This simulation is key for computer evaluation of design

metrics, such as a clinical objective and a comfort objective.

Second, the biomechanical model must be embedded within a

numerical optimization solver, which will automatically search

for brace design parameters. State-of-the-art optimization

methods use gradients to efficiently and robustly search for

optimal parameters; therefore, the biomechanics formulation

must allow for the computation of gradients with respect to

design parameters.

In this work, we propose a differentiable biomechanics model

for the optimization of scoliosis brace designs. By formulating

biomechanics simulation as a differentiable function, we can

embed the simulation model within advanced optimization

procedures, and automatically achieve effective brace designs,

with flexible definition of design goal metrics.

The first major component of our approach, presented in

Section 3, is a predictive model of the passive biomechanics of the

trunk.We put the focus on modeling biomechanics elements that

affect the deformation of the thoracolumbar spine under forces

produced by a scoliosis brace. To this end, we largely rely on

previous work for the development of the trunk model (Koutras

et al., 2021) and personalization of its geometry (Koutras et al.,

2022) (mechanical personalization is left as future work).

The second major component of our approach, presented in

Section 4, is an optimization algorithm that relies on

differentiable biomechanics. We show that differentiable

biomechanics can be efficiently formulated by implicitly

linearizing the equilibrium constraints of a biomechanics

simulation engine, and we provide insight into the design of

all elements of the biomechanics model to ensure efficient and

robust differentiation.

We have tested our personalized brace design approach on a

cohort of 5 (potential) patients of AIS. For each patient, we

personalize the trunk model, initialize a Boston brace design

(Périé et al., 2003), and then optimize this design using the

differentiable biomechanics formulation. The results of our

experiments show that a fully automated algorithm manages

to reduce Cobb angle by an average of 7.8°, while keeping brace

forces within a comfortable range of 220 N. To date, we have

limited our experiments to a synthetic study, considering only

simulated brace-trunk interactions. Our work demonstrates the

feasibility of the approach, but real-world application requires

further iterating other aspects of the brace design, as well as

validating the clinical and comfort objectives before letting actual

patients wear the resulting braces.

2 Related work

2.1 Trunk modeling and parameter
estimation

Designing a personalized biomechanical model entails two

tasks: fitting the morphology and connections of anatomical

elements to those of the patient, and parameterizing the

mechanical models to match the response of the patient’s

body. Biomechanical modeling of the spine has received a lot

of attention, with popular approaches largely divided into two

categories. One category follows the Finite Element Method

(FEM, please see (Wang et al., 2014) for a survey of

methods); the other category uses a simpler but more efficient

solution based on multi-body models.

In terms of FEM models, many approaches have been

developed for the lumbar (Xu et al., 2017; Finley et al., 2018;

Dong et al., 2020), thoracic (Aroeira et al., 2017; Aroeira et al.,

2018) or the cervical spine (Lasswell et al., 2017). Furthermore,

Dicko et al., (2015) developed a hybrid lumbar spine model

containing rigid bodies, FEM and contact mechanics, while Clin

et al., (2011) developed a novel method to include gravitational

forces in an FE model. While these methods are potentially

accurate, they require careful estimation of model parameters for

personalized design applications.

FE models of the trunk have been coupled to brace models

and patient geometry for personalized brace design in the context

of AIS (Gignac et al., 2000; Liao et al., 2007; Nie et al., 2009).

Some studies include the evaluation of the effectiveness of these

techniques on large cohorts of patients (Cobetto et al., 2017;

Vergari et al., 2020; Guy et al., 2021).

In terms of multi-body models, de Zee et al., (2007) made a

generic detailed rigid-body model of the lumbar spine. Bayoglu

et al., (2019) developed a multi-body muscoloskeletal model of

the human spine in order to study the spinal loads. Raabe and

Chaudhari, (2016) investigated the jogging biomechanics using a

full-body spine model developed in OpenSim, an open-source

musculoskeletal simulation software. Le Navéaux et al., (2016)

developed biomechanical models based on multi-body dynamics

to analyze the effects of implant density and distribution on curve

correction and the resulting forces on the vertebrae. Ignasiak

et al., 2016 predicted the dynamic spinal loading using a multi-

body thoracolumbar spine model with articulated rib cage.

In the category of multi-bodymodels, a strong effort has been

devoted to finding accurate simplifications of the models and

designing parameter estimation techniques. In our design and

parameterization of a spine-and-trunk model, we borrow insight

and design choices from this collection of work.

Panjabi et al., (1994) studied the mechanical behavior of

the human lumbar and lumbosacral spine as shown by three

dimensional load-displacement curves. Panjabi et al., (1976)

estimated the rotational stiffness coefficients of the thoracic

spine from experiments. Bisschop et al., (2012) and Panjabi
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et al., (1976) found the translational stiffness coefficients of the

thoracic spine through experimental studies. Moroney et al.,

(1988) estimated the load displacement properties of the

cervical spine from experiments. Andriacchi et al., (1974)

estimated the stiffness coefficients of the elastic properties

of the rib cage through simulations. Wilke et al., (2017)

examined the flexibility of every thoracic spinal segment in

an in vitro experiment. Liebsch et al., (2017); Liebsch et al.,

(2019) investigated the kinematic and stiffness properties of

the thoracic spine and the rib cage through experimental

studies.

Moreover, many studies tried to estimate the mechanical

parameters of the soft tissue in the human’s body. Choi and

Zheng, (2005) estimated Young’s modulus and Poisson’s ratio

of soft tissue from indentation using two different-sized

indentors in a finite element analysis. Song et al., (2006)

studied the elasticity of the living abdominal wall in

laparoscopic surgery. Hostettler et al., (2010) measured the

Bulk modulus and volume variation of the liver and the

kidneys in vivo. McKee et al., (2011) compared the reported

values of Young’s modulus obtained from indentation and

tensile deformations of soft biological tissues.

2.2 Optimization-based shape design

As mentioned earlier, some works have considered

computational optimization of scoliosis braces leveraging

simulation models of brace-trunk interaction (Gignac et al.,

2000; Liao et al., 2007; Nie et al., 2009). These works suffer

strong limitations though. On one hand, the biomechanics

models they use are limited, e.g., some limit brace

interaction to point forces applied on the skin surface

(Gignac et al., 2000). On the other hand, the optimization

solvers require complex simulation of trunk biomechanics for

every small optimization step, which turns into large

inefficiencies.

The computational approach explored in this work

considers tight connection between the optimization

formulation and the biomechanics engine, to design

efficient search methods. This approach is popular in the

fields of parameter estimation and computational

fabrication, and it relies on implicit differentiation of the

biomechanics model. For instance, the work of Miguel

et al., (2012) used implicit differentiation of a cloth model

to execute efficient parameter estimation of cloth simulation

models, and the works of Pérez et al., (2015); Pérez et al.,

(2017) used implicit differentiation of rod meshes to explore

shape designs later produced through 3D printing. Recently,

differentiable simulation methodologies have also seen success

in robotics. The applications include the optimization of

control policies (Du et al., 2021; Murthy et al., 2021), or

even the design of sensor networks (Tapia et al., 2020).

It is important to note that computational optimization

methods have been explored for various objects, very different

from braces, but the methodologies could be applicable.

Montes et al., (2020) recently developed a design method

for tight clothing that considers design and comfort

metrics, and accounts for simulation models of both

clothing and the body. Zhao et al., (2021) recently

developed a similar method to design supporting surfaces

for the human body, accounting for metrics that optimize

ergonomics.

3 Trunk and brace simulation model

In this section, we describe the biomechanical model of the

torso, the model and parameterization of the brace, and the

interaction between both. We put all these elements together in a

biomechanics simulation engine that, given a brace geometry as

input, outputs the deformation of the trunk and the forces

between trunk and brace. We borrow the biomechanical

model of the trunk from the work of Koutras et al., (2021),

and we refer to their publication for details.

In the definition of the biomechanical model of the trunk and

brace, we seek a formulation that can be differentiated, to be

efficiently embedded within a design optimization approach. To

this end, we model all biomechanical components using smooth

energy potentials.

3.1 Biomechanical model of the trunk

The purpose of the trunk simulation model is to predict the

deformation of the spine under the action of a scoliosis brace. To

this end, we characterize the trunk as a multi-body system,

consisting of articulated rigid bodies to model the skeleton,

and surrounding soft tissue to model the skin, muscles and

organs. In particular, and following the rationale of (Koutras

et al., 2021), we consider the trunkmodel passive, without muscle

activation. While the exact instantaneous trunk deformation

depends on the instantaneous muscle activity, we consider a

passive trunk model as an approximate average of muscle activity

conditions.

We group all degrees of freedom (DoFs) of the trunk in a

large vector xtrunk. This vector includes: 1) translation and

rotation of all bones in the trunk skeleton (the rotation is

parameterized using incremental axis angle (Taylor and

Kriegman, 1994)); and 2) nodes of a tetrahedral mesh of

the soft tissue. The trunk skeleton includes the bones

relevant for predicting the deformation of the lumbar and

thoracic spine, which are: all lumbar and thoracic vertebrae,

the sternum, the rib cage, and the pelvis. The soft-tissue mesh

is constructed from the surface of the trunk between neck and

waist, and clipped at the shoulders. We provide as input this
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surface as a triangle mesh, together with sample points on the

surfaces of the bones, and we produce a conformal tetrahedral

mesh (Si, 2015). Introducing mesh nodes on the surfaces of

bones facilitates the coupling between skeleton and soft tissue.

We rigidly couple these nodes to the bones, and we remove

them from the DoF vector xtrunk.

The mechanics of the trunk are modeled as a sum of energy

terms parameterized by the DoFs xtrunk. The energy terms

include compliant joint models between skeletal bones Wjoints

(xtrunk), and the soft-tissue internal energyWtissue (xtrunk). We

describe the joint energies Wjoints as 6-DoF joints between

pairs of bones, acting on both their translation and rotation.

By tuning the stiffness of each constraint axis, we effectively

model different types of joints and their anisotropy. We

describe the soft-tissue energy Wtrunk using a Neo-Hookean

strain energy density model, integrated on the volume of the

tetrahedral mesh using a finite-element formulation. As

mentioned above, we refer to (Koutras et al., 2021) for

details on the biomechanical model of the trunk, such as

the definition of the energy terms.

In our study, we use the trunk model to simulate the

biomechanical response of different subjects suffering from

AIS. To adapt the model to each subject, we start from a

template geometry corresponding to a healthy (non-scoliotic)

adolescent female, and then we apply the morphing method in

(Koutras et al., 2022), using as input low-dose radiographs of the

subjects. Full personalization would also require estimating

subject-specific mechanical parameters, but in this synthetic

study we limit ourselves to the default mechanical parameters

listed in (Koutras et al., 2021).

3.2 Model and parameterization of the
brace

There are many different types of scoliosis braces. Designing

a computational solution that explores the different brace types is

a complex task, as the design space is not continuous. Therefore,

for our solution we focus on one particular type of brace,

specifically the classic Boston brace (Périé et al., 2003), which

concentrates brace-trunk forces on three locations. One of these

locations corresponds to the location of peak curvature in the

spine, and the other two locations are above and below, to

produce counteracting forces and a net torque that rotates the

spine in a corrective direction. Note that more modern variants

of the Boston brace consider also other design principles, but we

leave such extensions for future work.

We describe the geometry of the Boston brace as a parametric

surface S(p), which depends on a set of design parameters p.

Figure 1 shows how we model and parameterize the brace

geometry. We start by initializing a reference geometry �S, by
copying the geometry of the trunk surface, clipped at the waist

and under the armpits. This clipped surface covers the scoliotic

portion of the spine. Computer optimization of the brace shape

requires a compact parameterization of its geometry. There are

many possible approaches to define this parameterization, such

as the use of control points and spline surface definitions. In our

prototype solution, we rely heavily on the 3-point design

methodology of Boston braces, and we parameterize the brace

based on X-axis scale s and eccentricity e with respect to the X-

axis center line c at three different heights. Our choice of design

parameters is aimed at maximizing impact on the lateral flexion

FIGURE 1
This figure summarizes the pipeline of our computational brace design methodology. From left to right: (i) Starting from radiographs of a
patient, we obtain a personalized simulation model of the trunk (including the spine, the rib cage, and the surrounding soft tissue). (ii) We initialize a
brace geometry (in semi-transparent purple) by trimming and slightly offsetting the patient´s skin. In this initial brace geometry, we identify the
frontal center line c, and three heights �y1 , �y2 , �y3 where we focus the contact forces between brace and trunk. (iii) We automatically optimize the
eccentricity e and horizontal scale s at the three heights. As a result, the brace deforms the full trunk, and produces a correction of the spine
curvature.
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of the spine; however, since the trunk is modeled fully in 3D and

the axial rotation of the spine is not constrained, the brace will

also produce the physically expected axial rotation. To mimic the

3-point methodology, we pick the height of the maximum spine

curvature, and two heights above and below this location. We

linearly interpolate scale and eccentricity values along the height

of the brace. Formally, given an initial brace point (�x, �y, �z) ∈ �S,
the design transformation returns a point (x � s(�y) · (�x − c) +
c + e(�y), y � �y, z � �z).

In addition to the design transformation, the initial shape

of the brace is transformed to provide pressure on the trunk,

and thus forces on the spine that produce an incremental

correction. This produces the actual brace surface

S(�S, p, xbrace), which depends on the initial brace geometry
�S, the design parameters p, and some brace transformation

DoFs xbrace. Following common designs of Boston braces, we

split the brace surface vertically in two-halves. Each of these

halves is modeled mechanically as a rigid body, i.e., we ignore

the deformation of the brace. On the back of the brace, we

connect the two-halves using a vertical hinge joint. With the

rigid transformation of one-half of the brace, and the angle of

the hinge joint, we define the DoFs of the brace xbrace in the

simulation. On the front of the brace, we connect the two-

halves using a strap. This strap has zero rest-length and a

stiffness kstrap. Then, given strap connections xleft and xright,

the strap is modeled mechanically as a simple spring with

energy

Wstrap � 1
2
kstrap ‖xleft xbrace( ) − xright xbrace( )‖2. (1)

3.3 Contact and regularization

To model the interaction between the brace and the trunk,

we use a potential-based contact model. An alternative would

be to solve contact with hard constraints, but the differentiation

of hard constraints is considerably more expensive (Liang et al.,

2019). Among potential-based contact models, some recent

methods propose highly nonlinear potentials to strongly

enforce non-penetration (Li et al., 2020). However, we opt

for a quadratic potential to improve the convergence of the

design optimization solver.

Given a deformation of the trunk defined by its DoFs

xtrunk, we define a distance field of its surface, ϕtrunk (x, xtrunk),

x ∈ R3. The distance is positive outside the trunk and negative

inside. Based on this distance field, we define a potential

energy that penalizes interpenetration between the brace

surface S and the trunk:

Wcontact � ∫
�S

1
2
kcontact neg ϕtrunk S �S, p, xbrace( ), xtrunk( )( )2 d�S,

neg r( ) � min r, 0( ). (2)

We approximate the integral through finite-element integration

on the triangular surface elements of the brace surface �S.
In our contact model, we do not account for friction between

the brace and the trunk. Friction indeed exists in the real world

when the trunkmoves, but it is always possible to adjust the brace

and let skin relax to remove such friction. Therefore, we are

interested in modeling frictionless interaction.

This said, friction plays another important role in simulation,

as it ensures that the trunk cannot slip through the brace. We

replace this effect with a small regularization term that tries to

maintain the brace in place, by penalizing the norm of the brace

DoFs.

Wreg � 1
2
kreg ‖xbrace‖2. (3)

3.4 Simulation engine

Based on the various energy terms defined in the previous

sections, the total energy of the trunk-brace system can be

computed as:

W � Wjoints +Wtissue +Wstrap +Wcontact +Wreg. (4)

Given a set of brace design parameters p, we wish to predict

the deformation of the trunk produced by the brace. We do this

by solving a static equilibrium problem. For convenience, we

concatenate all DoFs in one large vector x � (xbrace, xtrunk). Then,
we can express the computation of the trunk and brace

configuration as the following minimization of the total energy:

x p( ) � argmin
x

W p, x( ). (5)

At the configuration of minimum energy, the biomechanics

satisfy static equilibrium, i.e., zero net energy gradient or zero net

force everywhere in the brace-trunk system:

− zW p, x( )
zx

T

� f p, x( ) � 0. (6)

Note that the forces on the DoFs, f, are simply the (negative)

gradient of the energy. Static equilibrium is a direct consequence

of the optimality conditions of the optimization. We can also

regard these optimality conditions as biomechanics constraints.

To solve the optimization (Eq. 5), we use Newton’s method with

line search (Nocedal andWright, 2006). On every Newton iteration,

we compute the Jacobian of the forces, i.e., the (negative) energy

Hessian, zfzx � −z2W
zx2 , we solve a linear system for the change in the

DoFs, and we take a safe step that minimizes the energy. Our

biomechanics model is implemented in C++ in SOFA (Faure et al.,

2012), which allows to implement energies, forces, and force

Jacobians in a flexible and efficient way. However, we have built

the Newton solver on Python, with bindings to the SOFA model.
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4 Brace optimization

In this section, we describe the formulation of an

optimization problem for brace design. We start with the

formulation of a design objective function, and we continue

with efficient computation of the objective gradient using our

differentiable biomechanics formulation.

4.1 Design optimization problem

To guide the change of the brace shape, we need a merit

function that quantifies the impact on the spine from a clinical

standpoint. In our approach, we use the Cobb angle (Safari

et al., 2019) to characterize the severity of scoliosis. More

complex, multi-objective merit functions are left for future

work, but are briefly discussed in Section 6. The Cobb angle

measures the largest angle between the superior end plate of a

vertebra and the inferior end plate of some other vertebra,

thus characterizing the maximum bending of the spine. The

Cobb angle Ψ(xtrunk) can be computed from the DoFs of the

vertebrae embedded in xtrunk. Then, our clinical merit

function is:

LCobb � Ψ xtrunk( )
Ψ xtrunk,0( )( )

2

. (7)

Note that the metric is normalized by the initial Cobb angle

Ψ(xtrunk,0, to simplify weighing of the metric across subjects.

However, optimizing the Cobb angle might produce

braces that are uncomfortable or even impossible to wear.

Therefore, we also add the total force applied by the brace on

the trunk as a comfort function, penalizing designs that would

be too uncomfortable. We obtain per-point forces by

differentiating the penalty potential in (Eq. 2), we compute

its squared norm, and we integrate the result over the surface

of the brace:

Lcontact � ∫
�S

k2contact neg ϕtrunk S �S, p, xbrace( ), xtrunk( )( )2 d�S
� 2 kcontact Wcontact. (8)

Adding the clinical metric (Eq. 7) and the comfort metric

(Eq. 8), we obtain the full objective function of the brace design

problem:

L � LCobb + λLcontact, (9)
where λ is the relative weight of the two components of the

objective function. A proper weight adjustment λ of the clinical

and comfort metrics produces designs that are both effective and

comfortable to wear. We consider a Cobb angle of 75% as a

sufficient objective, and a force of 250 N as a reasonable contact

force. Then, a value of λ = 9e−6 assigns equal weight to both the

clinical and comfort metrics.

4.2 Optimization algorithm

Given the brace design objective L in (Eq. 9), the

biomechanics energy W in (Eq. 4), the DoFs of the trunk and

the brace x, and the parameterization of the brace geometry p, the

computation of the brace design can formally be expressed as

finding the brace parameters that minimize the design objective,

subject to biomechanical constraints:

p � argmin
p

L p, x( ), s.t. f p, x( ) � 0. (10)

We rely on numerical optimization methods to automatically

search for brace geometries that produce optimal designs. In our

implementation, we choose the bounded L-BFGS optimization

algorithm (Nocedal andWright, 2006), as it offers a good balance

between speed and convergence. L-BFGS requires the evaluation

of the gradient of the objective function with respect to the design

parameters, i.e., zLzp.
The challenge in the evaluation of this gradient is that a

change of design parameters p affects the DoFs x in a complex

way, through the equilibrium condition (Eq. 6). Due to this

complexity, a common approach to evaluate zL
zp is to use finite

differences. This approach requires solving the static equilibrium

condition for an incremental change to each of the design

parameters. Therefore, it can be formally expressed as:

zL
zpi

� L p + ε ei, argminxW p + ε ei, x( )( ) − L p, arg minxW p, x( )( )
ε

,

(11)

where ei is a unit vector in the direction of the ith parameter, and

ε is a small value. For small parameter sets, finite-differences may

be computationally effective, but their cost grows linearly with

the number of design parameters, and they soon become the

bottleneck of the optimization.

4.3 Differentiable biomechanics

Instead of using finite differences, we leverage our

differentiable biomechanics formulation to compute the

gradient of DoFs with respect to design parameters, zx
zp,

and use this to evaluate the gradient of the objective

function.

With the definition of the objective function (Eq. 9), we note

that the clinical metric LCobb depends only on the DoFs x, while

the comfort metric Lcontact depends on the DoFs but also directly

on the brace design parameters p. Then, the full objective

gradient can be written as:

zL
zp

� λ
zLcontact

zp
+ zLCobb

zx
+ λ

zLcontact

zx
( ) zx

zp
. (12)

Thanks to the implicit function theorem (IFT), the

biomechanics equilibrum constraints (Eq. 6) must be satisfied
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for small changes to the DoFs and the design parameters. Then,

we can differentiate those constraints to obtain:

zf
zp

+ zf
zx

zx
zp

� 0 → zx
zp

� −zf
zx

−1 zf
zp

. (13)

IFT provides an implicit definition of the Jacobian of the

DoFs with respect to design parameters, such that the

equilibrium constraints remain satisfied.

We leverage this Jacobian to differentiate the objective (Eq. 9)

analytically, and substitute it in (Eq. 12) to obtain:

zL
zp

� λ
zLcontact

zp
− zLCobb

zx
+ λ

zLcontact

zx
( ) zf

zx

−1 zf
zp

. (14)

The evaluation of the gradient (Eq. 14) requires substituting

the implicit derivative (Eq. 13). In practice, however, this is done

using the adjoint method:

zL
zp

� λ
zLcontact

zp
− uT zf

zp
,

with
zf
zx

u � zLCobb

zx
+ λ

zLcontact

zx
( )

T

. (15)

On each step of L-BFGS, given a new tentative set of brace

parameters p, we solve the static equilibrium (Eq. 5) to obtain the

trunk and brace DoFs. Then, we solve for the adjoint u in (Eq.

15), and we evaluate the full objective gradient.

4.4 Implementation details

Our optimization is built in Python, using the L-BFGS solver

in scipy. As mentioned in Section 3.4, we use SOFA for the

biomechanics, and then we build the full gradient in Python and

we feed it to the L-BFGS solver. By defining smooth

biomechanics functions with respect to both DoFs x and

design parameters p, we can efficiently evaluate the objective

gradient zLzp. Next, we provide some details about the computation

of the derivative terms in (Eq. 15).

The Jacobian of forces zf
zx is already used by the Newton-type

solver of biomechanics simulation (see Section 3.4), and it

requires all energy terms to be twice-differentiable. This

condition is the default for most energy terms, including

Wjoints, Wtissue, Wstrap, and our ad-hoc term Wreg. In Section

3.3, we also pay special care to design a twice-differentiable

contact model Wcontact.

The gradient of the comfort metric with respect to the DoFs

can be obtained trivially from the contact forces. From (Eq. 8), we

derive that zLcontact
zx � 2 kcontact

zWcontact
zx � −2 kcontact f contact.

The gradient of the comfort metric with respect to the brace

parameters does not differ much from the contact forces. It can

be computed as zLcontact
zp � 2 kcontact ∫ �S

zWcontact
zS

zS
zp d�S. zWcontact

zS

represents per-point contact forces on the brace, which are

then multiplied through the chain rule by the gradient of the

transformed brace with respect to the design parameters, zSzp. This

last gradient can be easily obtained from the definition of the

brace parameterization in Section 3.2.

The most complex term is probably the Jacobian of forces

with respect to brace parameters, zfzp. The forces affected directly

by the parameters are the contact forces (on both the brace and

the trunk) and the strap forces. Similar to the derivation of zLcontact
zp

above, the Jacobian of contact forces can be obtained as the chain

rule of per-surface-point force Jacobians and the gradient of the

transformed brace surface with respect to design parameters,

i.e., zfcontactzp � ∫ �S
zfcontact

zS
zS
zp d�S. The Jacobian of the strap force, zf strapzp ,

is simple, as it just involves two points on the surface of the brace,

as shown in (Eq. 1).

The last necessary term is the gradient of the clinical metric

with respect to the DoFs, zLCobb
zx . To this end, within each iteration

of the optimization, we consider that the vertebrae defining the

Cobb angle do not change. Then, the expression of Cobb angle

becomes a smooth and differentiable formula.

The IFT applied in (Eq. 13) to implicitly define the derivative

of DoFs with respect to design parameters is only valid when the

biomechanics constraints (Eq. 6) are satisfied. For this reason, the

static equilibrium is solved on each L-BFGS iteration. We have

experimented with the accuracy required by the static

equilibrium solve, which in turn affects the accuracy of zx
zp. We

have concluded that a threshold of 1 mN is necessary to this end.

However, this does not affect performance much. We have

observed that, in practice, the solver leverages the expected

quadratic convergence of Newton’s method once the residual

is small.

5 Experiments

This section describes the cases that were evaluated in our

study.We start with a description of the patient data, and then we

provide an analysis of performance of the brace design

methodology. As discussed in the introduction, to date we

have limited our experiments to a synthetic study, and we

evaluate the performance of brace designs only on simulation

models of the patients.

5.1 Test cohort

The proposed computational brace design method was

applied to a cohort of five female potential AIS patients,

ranging from 10 to 13 years old, with an average height of

163.6 cm (±11 cm). The subjects were selected because they

had to be screened for scoliosis based on previous diagnosis

or examination, but subject #2 was not considered an AIS patient

after all, and subject #3 would not require brace treatment in

clinical practice. As discussed in the definition of the clinical

metric in Section 4.1, in our study we use the Cobb angle metric
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(Safari et al., 2019) to characterize the severity of scoliosis, as it is

the standard clinical metric for this purpose. The average Cobb

angle measured on the subjects was 17.4° (±8.9°).

In order to proceed with the study, all patients provided oral

and written consent according to national Danish guidelines and

the Helsinki Declaration, and with approval of the local ethics

committee at University Hospital of Hvidovre (No H-17034237).

For each subject, we captured biplanar radiographs of the trunk,

as they are readily available as part of the regular check-up of

scoliotic patients, using a DelftDI D2RS system with fluoroscopic

exposure (Wong et al., 2021). Then, we followed the procedure in

(Koutras et al., 2022) to morph a template trunk geometry and

obtain personalized trunk biomechanical models. Table 1

provides the individual patient data, as well as the complexity

of the simulation models, characterized by the number of

triangles of the surface mesh (which dominates the cost of

contact computations) and the number of tetrahedra of the

soft-tissue mesh (which dominates the cost of deformation

computations).

5.2 Brace optimization results

Figure 2 illustrates the result of brace optimization for each

subject evaluated in the study. The figure shows the trunk

geometry and the brace geometry before and after the

computational optimization. As evidenced in the images, the

optimization algorithm automatically finds brace designs that

push on the rib cage at the appropriate location to induce a

correction of the spine curvature.

Table 2 compares the Cobb angle before and after applying

the scoliosis brace to each of the subjects. Note that we refer to the

in-brace correction of Cobb angle; our work has no way of

predicting the correction of Cobb angle after brace removal, as

this temporal process is not handled by our simulation model.

On average, the Cobb angle was reduced by 7.8° (±4.9°), which

amounts to a reduction of 45.4% ± 18.9%. Moreover, thanks to

the comfort metric described in Section 4.1, this reduction in

Cobb angle was achieved under average contact forces of 185.8 N

(±29.8 N). None of the subjects reached the limit of 250 N in

contact force, indicating a good balance of the clinical and

comfort metrics in (Eq. 9). An average reduction of 7.8° in

Cobb angle may be considered low with respect to the

reduction achieved by real-world braces (in particular in the

case of subject #3), and we consider two reasons behind this

limitation: 1) The degrees of freedom of our computational

braces are currently far fewer than those of real braces; 2) The

comfort metric may be too conservative. Both limitations are

avenues for further improvement, but they do not challenge the

overall methodology.

Finally, Table 3 summarizes the computational performance of

our proposed optimization algorithm. Thanks to differentiable

biomechanics and the efficient computation of gradients, the

optimizations take 16.4 min on average (±7.3 min). This is in

contrast to the average of 94.1 min required by state-of-the-art

optimization using finite-difference gradients. The average speed-up

across subjects is of 9.2×. This number is particularly affected by the

performance of subject #4, for whom the finite-difference version

suffered considerably worse convergence. Even removing this

outlier case, the average speed-up across subjects is of 4.5×. In

our current parameterization of the brace, described in Section 3.2,

we use just 6 parameters. With a larger number of parameters, the

speed-up of our differentiable biomechanics formulation would be

even higher, as the computation of gradients is insensitive to the

number of parameters.

6 Discussion

In this paper, we have presented a computational method to

design personalized scoliosis Boston braces. The main novelty of

the proposed method is to leverage differentiable biomechanics

to enable efficient use of numerical optimization methods.

Differentiable biomechanics formulates static equilibrium

equations as constraints, and evaluates the relationship

between deformation state and design variables through

TABLE 1 Features of the subjects evaluated in our study. The table indicates the severity of the main spine curve (i.e., the Cobb angle) of each subject,
as well as the size of the simulation meshes used in our optimization algorithm.

Subject ID Gender Age Height (cm) Cobb angle
(deg)

Soft-tissue tets Surface tris

1 female 10 157 28.9 12737 682

2 female 11 179 5.5 11781 596

3 female 13 168 13.5 14144 566

4 female 11 150 22.8 8644 548

5 female 13 164 16.5 13459 598

avg (± std dev) — 11.6 ± 1.3 163.6 ± 11.0 17.4 ± 8.9 12153 ± 2148 598 ± 51
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implicit differentiation. This relationship is then used within the

numerical optimization algorithm to quickly advance toward

optimal brace design parameters. We have shown that the

differentiable biomechanics formulation provides a large

speed-up over state-of-the-art numerical optimization

approaches. And this already large speed-up can even increase

as the versatility of brace designs grows with more complex

parameterizations.

We have demonstrated the use of differentiable biomechanics to

design personalized scoliosis braces for five different potential AIS

patients. The overall methodology combines personalized trunk

simulation models with the differentiable-biomechanics technical

FIGURE 2
Images of all the subjects evaluated in our study. From left to right, (i) before brace optimization, with the initial brace geometry shown semi-
transparent purple, (ii) after brace optimization, with the final brace geometry shown semi-transparent purple, (iii) before brace optimization, just the
initial trunk geometry, (iv) after brace optimization, showing the deformed trunk geometry.
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contribution. Altogether, we demonstrate that it is possible to design

scoliosis braces following a fully computational methodology. The

braces balance a clinical metric and a comfort metric, ensuring that

they are both effective and practical.

Our study and evaluation are to date limited to synthetic

experiments. While the input data belong to real (potential) AIS

patients, we have not fabricated and physically tested the brace

designs. The contribution of our work is to demonstrate that a

computational design methodology is feasible and efficient, but

further work is necessary before actual braces are physically

tested on real patients. One of the elements that requires further

study is the design of the comfort metric. Our current metric

considers the total force on the body surface, but this metric is not

proven to be suitable or sufficient. Therefore, our work should be

complemented with a specific analysis on comfort metrics for

scoliosis braces. Another element that requires further study is

the accuracy of the overall computational approach, as well as the

sensitivity of its various elements. The different computational

elements (i.e., the model geometry, the mechanical model, the

model parameters, or the weight of the clinical vs comfort

metrics) introduce error in the estimated Cobb angle and

contact forces. It is necessary to understand the degree of

possible error, and thus design a tolerance on the contact

forces computed in the simulation. Once the computational

model is fully validated, it will be necessary to execute a

clinical study concentrated on patient-reported outcome

measures, including treatment acceptance and compliance.

In addition to the work necessary for bringing the method to

practice, our methodology could also see some improvements on the

technical choices. Some of the possible extensions include a richer

parameterization of the brace geometry (e.g., using spline surfaces

with control points), or personalization of the mechanical parameters

of the trunk model. Regarding this last extension, using personalized

vs default parameters poses a trade-off between complexity and

accuracy. While designing a personalized model would indeed

increase accuracy, it is interesting to understand the error

produced in practice by a default model.

To conclude, our work has been applied so far only to one type

of scoliosis brace, the Boston-type brace, and considering only Cobb

angle as clinical metric. It would be interesting to address other types

of braces, which would require a different geometric design and a

different parameterization. For practical cases, the optimization

methodology may even search among different brace types, and

find the one that is most convenient for each patient. However, the

TABLE 2Quantitative results achieved by optimization-based brace design on each of the test subjects. The table lists the reduction in Cobb angle (in
degrees and in percentage of the initial angle), as well as the total force on the subject’s trunk as a measure of comfort.

Subject ID Cobb before
(deg)

Cobb after
(deg)

Reduction (deg) % Reduction Force (N)

1 28.9 15.7 13.2 45.6 210

2 5.5 2.0 3.5 63.7 152

3 13.5 11.7 1.8 13.8 187

4 22.8 11.8 11.4 50.0 220

5 16.5 7.6 8.9 54.0 160

avg (± std dev) 17.4 ± 8.9 9.7 ± 5.2 7.8 ± 4.9 45.4 ± 18.9 185.8 ± 29.9

TABLE 3 Performance of our method, using differentiable biomechanics, compared with state-of-the-art optimization using finite differences (FD)
for the computation of gradients. All timings are measured in minutes. We report the number of steps of each optimization, the total time, the
time per step, the total speed-up, and the speed-up per step.

Subject ID Ours FD Speed-up

Steps Time Time/Step Steps Time Time/Step Total Per step

1 9 14.3 1.59 14 89.6 6.40 6.3× 4.0×

2 21 16.6 0.79 22 75.6 3.43 4.6× 4.3×

3 17 23.2 1.36 16 67.3 4.20 2.9× 3.1×

4 25 5.2 0.21 29 142.9 4.93 27.4× 23.6×

5 20 22.8 1.14 24 96.4 4.0 4.3× 3.5×

Avg 18.4 16.4 1.02 21.0 94.4 4.60 912× 7.7×
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challenge is two-fold. First, more complex braces require more

modeling effort; but this can always be approached by

progressively including brace elements of higher impact. Second,

some of the design parameters define a continuous parametric space,

which can be explored by our current numerical optimization

method, but others may define discontinuous or discrete spaces,

which require different optimization methods. For instance,

optimizing the expansion chambers of Chêneau braces might

require topology optimization methods. It would also be

interesting to address richer clinical metrics, which are accounted

for in the design of braces in practice. One example is the addition of

a sagittal-plane metric on top of our current frontal-plane-only

metric (e.g., sagittal-plane isostatic balance as a function of

lumbopelvic incidence). Our overall approach can be extended to

include more advanced multi-objective clinical metrics. For such

extension to be possible without critical changes to the overall

methodology, the new metrics must be computed from the

geometry available in the trunk model, and they must be

(locally) continuous and differentiable.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: The dataset was obtained in the context of

the MSCA Rainbow project, and use is limited to research within

that project. Requests to access these datasets should be directed

to miguel.otaduy@urjc.es.

Ethics statement

The studies involving human participants were reviewed and

approved by University Hospital of Hvidovre. Written informed

consent to participate in this study was provided by the

participants’ legal guardian/next of kin.

Author contributions

KK led the development of the models, implementation of

the methods, and testing and evaluation of results. CK

contributed to the development of the model and the

obtention of the input data. MO contributed to the design of

the methodology, evaluation of results and writing of the paper.

All authors reviewed and agreed to the final manuscript.

Funding

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the

Marie Sklodowska-Curie grant agreement No. 764644, Rainbow.

Acknowledgments

The authors would like to thank the reviewers for their

help in improving the paper, Christian Wong for his help in

the obtention of the patient data, Jesús Pérez for many

insightful discussions, and Maxime Tournier, Matthieu

Nesme and Francois Faure for their help with the

simulation software.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Author disclaimer

This paper only contains the author’s views and the Research

Executive Agency and the Commission are not responsible for

any use that may be made of the information it contains.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fbioe.2022.

1014365/full#supplementary-material

References

Andriacchi, T., Schultz, A., Belytschko, T., Galante, J., and Galante, J.
(1974). A model for studies of mechanical interactions between the human
spine and rib cage. J. Biomechanics 7, 497–507. doi:10.1016/0021-9290(74)
90084-0

Aroeira, R. M. C., Pertence, A. E. d. M., Kemmoku, D. T., and Greco, M. (2017).
Three-dimensional geometric model of the middle segment of the thoracic spine
based on graphical images for finite element analysis. Res. Biomed. Eng. 33, 97–104.
doi:10.1590/2446-4740.08916

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Kardash et al. 10.3389/fbioe.2022.1014365

http://miguel.otaduy@urjc.es.
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1014365/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1014365/full#supplementary-material
https://doi.org/10.1016/0021-9290(74)90084-0
https://doi.org/10.1016/0021-9290(74)90084-0
https://doi.org/10.1590/2446-4740.08916
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1014365


Aroeira, R. M. C., Pertence, A. E. M., Kemmoku, D. T., and Greco, M. (2018).
The effect of hypokyphosis on the biomechanical behavior of the adolescent
thoracic spine. J. Braz. Soc. Mech. Sci. Eng. 40, 128. doi:10.1007/s40430-018-
1061-4

Bayoglu, R., Galibarov, P. E., Verdonschot, N., Koopman, B., and Homminga, J.
(2019). Twente spine model: A thorough investigation of the spinal loads in a
complete and coherent musculoskeletal model of the human spine.Med. Eng. Phys.
68, 35–45. doi:10.1016/j.medengphy.2019.03.015

Bisschop, A., Mullender, M. G., Kingma, I., Jiya, T. U., van der Veen, A. J., Roos,
J. C., et al. (2012). The impact of bone mineral density and disc degeneration on
shear strength and stiffness of the lumbar spine following laminectomy. Eur. Spine J.
21, 530–536. doi:10.1007/s00586-011-1968-2

Choi, A., and Zheng, Y. (2005). Estimation of young’s modulus and Poisson’s
ratio of soft tissue from indentation using two different-sized indentors: Finite
element analysis of the finite deformation effect. Med. Biol. Eng. Comput. 43,
258–264. doi:10.1007/bf02345964

Clin, J., Aubin, C.-É., Lalonde, N., Parent, S., and Labelle, H. (2011). A new
method to include the gravitational forces in a finite element model of the scoliotic
spine. Med. Biol. Eng. Comput. 49, 967–977. doi:10.1007/s11517-011-0793-4

Cobetto, N., Aubin, C.-É., Parent, S., Barchi, S., Turgeon, I., and Labelle, H.
(2017). 3d correction of ais in braces designed using cad/cam and fem: A
randomized controlled trial. Scoliosis Spinal Disord. 12, 24–28. doi:10.1186/
s13013-017-0128-9

Cobetto, N., Aubin, C. E., Parent, S., Clin, J., Barchi, S., Turgeon, I., et al. (2016).
Effectiveness of braces designed using computer-aided design and manufacturing
(CAD/CAM) and finite element simulation compared to CAD/CAM only for the
conservative treatment of adolescent idiopathic scoliosis: A prospective randomized
controlled trial. Eur. Spine J. 25, 3056–3064. doi:10.1007/s00586-016-4434-3

de Zee, M., Hansen, L., Wong, C., Rasmussen, J., and Simonsen, E. B. (2007). A
generic detailed rigid-body lumbar spine model. J. Biomechanics 40, 1219–1227.
doi:10.1016/j.jbiomech.2006.05.030

Dicko, A. H., Tong-Yette, N., Gilles, B., Faure, F., and Palombi, O. (2015).
Construction and validation of a hybrid lumbar spine model for the fast evaluation
of intradiscal pressure and mobility. Int. J. Med. Health Sci. 9 (2). 139–150.

Dong, E., Shi, L., Kang, J., Li, D., Liu, B., Guo, Z., et al. (2020). Biomechanical
characterization of vertebral body replacement in situ: Effects of different fixation
strategies. Comput. Methods Programs Biomed. 197, 105741. doi:10.1016/j.cmpb.
2020.105741

Du, T., Wu, K., Ma, P., Wah, S., Spielberg, A., Rus, D., et al. (2021). Diffpd:
Differentiable projective dynamics. ACM Trans. Graph. 41, 1–21. doi:10.1145/
3490168

Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., et al.
(2012). “Sofa: A multi-model framework for interactive physical simulation,” in Soft
tissue biomechanical modeling for computer assisted surgery. Editor Y. Payan
(Springer), 11, 283–321. of Studies in Mechanobiology, Tissue Engineering and
Biomaterials. doi:10.1007/8415_2012_125

Finley, S. M., Brodke, D. S., Spina, N. T., DeDen, C. A., and Ellis, B. J. (2018). Febio
finite element models of the human lumbar spine. Comput. methods biomechanics
Biomed. Eng. 21, 444–452. doi:10.1080/10255842.2018.1478967

Gignac, D., Aubin, C.-É., Dansereau, J., and Labelle, H. (2000). Optimization
method for 3d bracing correction of scoliosis using a finite element model. Eur.
spine J. 9, 185–190. doi:10.1007/s005860000135

Guy, A., Labelle, H., Barchi, S., Audet-Duchesne, E., Cobetto, N., Parent, S., et al.
(2021). Braces designed using cad/cam combined or not with finite element
modeling lead to effective treatment and quality of life after 2 years: A
randomized controlled trial. Spine 46, 9–16. doi:10.1097/brs.0000000000003705

Hostettler, A., George, D., Rémond, Y., Nicolau, S. A., Soler, L., and Marescaux, J.
(2010). Bulk modulus and volume variation measurement of the liver and the
kidneys in vivo using abdominal kinetics during free breathing. Comput. methods
programs Biomed. 100, 149–157. doi:10.1016/j.cmpb.2010.03.003

Ignasiak, D., Dendorfer, S., and Ferguson, S. J. (2016). Thoracolumbar spine
model with articulated rib cage for the prediction of dynamic spinal loading.
J. Biomechanics 49, 959–966. doi:10.1016/j.jbiomech.2015.10.010

Kaelin, A. J. (2020). Adolescent idiopathic scoliosis: Indications for bracing and
conservative treatments. Ann. Transl. Med. 8, 28. doi:10.21037/atm.2019.09.69

Karimi, M., and Rabczuk, T. (2018). Scoliosis conservative treatment: A review of
literature. J. Craniovertebr. Junction Spine 9, 3–8. doi:10.4103/jcvjs.JCVJS_39_17

Koutras, C., Pérez, J., Kardash, K., and Otaduy, M. A. (2021). A study of the
sensitivity of biomechanical models of the spine for scoliosis brace design.
Comput. Methods Programs Biomed. 207, 106125. doi:10.1016/j.cmpb.2021.
106125

Koutras, C., Shayestehpour, H., Pérez, J., Wong, C., Rasmussen, J., Tournier, M.,
et al. (2022). Biomechanical morphing for personalized fitting of scoliotic torso
skeleton models. Front. Bioeng. Biotechnol. 10, 945461. doi:10.3389/fbioe.2022.
945461

Kuroki, H. (2018). Brace treatment for adolescent idiopathic scoliosis. J. Clin.
Med. 7, 136. doi:10.3390/jcm7060136

Lasswell, T. L., Cronin, D. S., Medley, J. B., and Rasoulinejad, P. (2017).
Incorporating ligament laxity in a finite element model for the upper cervical
spine. Spine J. 17, 1755–1764. doi:10.1016/j.spinee.2017.06.040

Le Navéaux, F., Larson, A. N., Labelle, H., Wang, X., and Aubin, C.-É. (2016).
How does implant distribution affect 3d correction and bone-screw forces in
thoracic adolescent idiopathic scoliosis spinal instrumentation? Clin. Biomech.
39, 25–31. doi:10.1016/j.clinbiomech.2016.09.002

Li, M., Ferguson, Z., Schneider, T., Langlois, T., Zorin, D., Panozzo, D.,
et al. (2020). Incremental potential contact: Intersection-and inversion-free,
large-deformation dynamics. ACM Trans. Graph. 39. doi:10.1145/3386569.
3392425

Liang, J., Lin, M., and Koltun, V. (2019). “Differentiable cloth simulation for
inverse problems,” in Advances in neural information processing systems. Editors
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett
(Vancouver: Curran Associates, Inc.), 32.

Liao, Y.-C., Feng, C.-K., Tsai, M.-W., Chen, C.-S., Cheng, C.-K., and Ou, Y.-C.
(2007). Shape modification of the boston brace using a finite-element method with
topology optimization. Spine 32, 3014–3019. doi:10.1097/brs.0b013e31815cda9c

Liebsch, C., Graf, N., Appelt, K., and Wilke, H.-J. (2017). The rib cage stabilizes
the human thoracic spine: An in vitro study using stepwise reduction of rib cage
structures. PLoS One 12, e0178733. doi:10.1371/journal.pone.0178733

Liebsch, C., Graf, N., and Wilke, H.-J. (2019). In vitro analysis of kinematics and
elastostatics of the human rib cage during thoracic spinal movement for the
validation of numerical models. J. biomechanics 94, 147–157. doi:10.1016/j.
jbiomech.2019.07.041

McKee, C. T., Last, J. A., Russell, P., and Murphy, C. J. (2011). Indentation versus
tensile measurements of young’s modulus for soft biological tissues. Tissue Eng. Part
B Rev. 17, 155–164. doi:10.1089/ten.teb.2010.0520

Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A.,
et al. (2012). Data-driven estimation of cloth simulation models. Comput. Graph.
Forum 31, 519–528. doi:10.1111/j.1467-8659.2012.03031.x

Montes, J., Thomaszewski, B., Mudur, S., and Popa, T. (2020). Computational
design of skintight clothing. ACM Trans. Graph. 39. doi:10.1145/3386569.3392477

Moroney, S. P., Schultz, A. B., Miller, J. A., and Andersson, G. B. (1988). Load-
displacement properties of lower cervical spine motion segments. J. biomechanics
21, 769–779. doi:10.1016/0021-9290(88)90285-0

Murthy, J. K., Macklin, M., Golemo, F., Voleti, V., Petrini, L., Weiss, M., et al.
(2021). “gradsim: Differentiable simulation for system identification and
visuomotor control,” in International conference on learning representations.

Negrini, S., Aulisa, A., Cerny, P., de Mauroy, J., McAviney, J., Mills, A., et al.
(2022). The classification of scoliosis braces developed by sosort with srs, ispo, and
posna and approved by esprm. Eur. Spine J. 31, 980–989. Publisher Copyright: ⓒ
2022, The Author(s). doi:10.1007/s00586-022-07131-z

Nie, W.-Z., Ye, M., Liu, Z.-D., andWang, C.-T. (2009). The patient-specific brace
design and biomechanical analysis of adolescent idiopathic scoliosis. J. Biomech.
Eng. 131, 041007. doi:10.1115/1.3049843

Nocedal, J., and Wright, S. J. (2006). Numerical optimization. 2e edn. New York,
NY, USA: Springer.

Panjabi, M. M., Brand, R. A., Jr, and White, A. A., III (1976). Three-dimensional
flexibility and stiffness properties of the human thoracic spine. J. biomechanics 9,
185–192. doi:10.1016/0021-9290(76)90003-8

Panjabi, M. M., Oxland, T., Yamamoto, I., and Crisco, J. J. (1994). Mechanical
behavior of the human lumbar and lumbosacral spine as shown by three-
dimensional load-displacement curves. J. Bone Jt. Surg. 76, 413–424. doi:10.
2106/00004623-199403000-00012

Pérez, J., Otaduy, M. A., and Thomaszewski, B. (2017). Computational design and
automated fabrication of Kirchhoff-plateau surfaces. ACM Trans. Graph. 36, 1–12.
doi:10.1145/3072959.3073695

Pérez, J., Thomaszewski, B., Coros, S., Bickel, B., Canabal, J. A., Sumner, R., et al.
(2015). Design and fabrication of flexible rod meshes. ACM Trans. Graph. 34, 1–12.
doi:10.1145/2766998

Périé, D., Aubin, C., Petit, Y., Beauséjour, M., Dansereau, J., and Labelle, H.
(2003). Boston brace correction in idiopathic scoliosis: A biomechanical study.
Spine 28, 1672–1677. doi:10.1097/01.brs.0000083165.93936.6d

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Kardash et al. 10.3389/fbioe.2022.1014365

https://doi.org/10.1007/s40430-018-1061-4
https://doi.org/10.1007/s40430-018-1061-4
https://doi.org/10.1016/j.medengphy.2019.03.015
https://doi.org/10.1007/s00586-011-1968-2
https://doi.org/10.1007/bf02345964
https://doi.org/10.1007/s11517-011-0793-4
https://doi.org/10.1186/s13013-017-0128-9
https://doi.org/10.1186/s13013-017-0128-9
https://doi.org/10.1007/s00586-016-4434-3
https://doi.org/10.1016/j.jbiomech.2006.05.030
https://doi.org/10.1016/j.cmpb.2020.105741
https://doi.org/10.1016/j.cmpb.2020.105741
https://doi.org/10.1145/3490168
https://doi.org/10.1145/3490168
https://doi.org/10.1007/8415_2012_125
https://doi.org/10.1080/10255842.2018.1478967
https://doi.org/10.1007/s005860000135
https://doi.org/10.1097/brs.0000000000003705
https://doi.org/10.1016/j.cmpb.2010.03.003
https://doi.org/10.1016/j.jbiomech.2015.10.010
https://doi.org/10.21037/atm.2019.09.69
https://doi.org/10.4103/jcvjs.JCVJS_39_17
https://doi.org/10.1016/j.cmpb.2021.106125
https://doi.org/10.1016/j.cmpb.2021.106125
https://doi.org/10.3389/fbioe.2022.945461
https://doi.org/10.3389/fbioe.2022.945461
https://doi.org/10.3390/jcm7060136
https://doi.org/10.1016/j.spinee.2017.06.040
https://doi.org/10.1016/j.clinbiomech.2016.09.002
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1097/brs.0b013e31815cda9c
https://doi.org/10.1371/journal.pone.0178733
https://doi.org/10.1016/j.jbiomech.2019.07.041
https://doi.org/10.1016/j.jbiomech.2019.07.041
https://doi.org/10.1089/ten.teb.2010.0520
https://doi.org/10.1111/j.1467-8659.2012.03031.x
https://doi.org/10.1145/3386569.3392477
https://doi.org/10.1016/0021-9290(88)90285-0
https://doi.org/10.1007/s00586-022-07131-z
https://doi.org/10.1115/1.3049843
https://doi.org/10.1016/0021-9290(76)90003-8
https://doi.org/10.2106/00004623-199403000-00012
https://doi.org/10.2106/00004623-199403000-00012
https://doi.org/10.1145/3072959.3073695
https://doi.org/10.1145/2766998
https://doi.org/10.1097/01.brs.0000083165.93936.6d
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1014365


Raabe, M. E., and Chaudhari, A. M. (2016). An investigation of jogging
biomechanics using the full-body lumbar spine model: Model development
and validation. J. biomechanics 49, 1238–1243. doi:10.1016/j.jbiomech.2016.
02.046

Safari, A., Parsaei, H., Zamani, A., and Pourabbas, B. (2019). A semi-automatic
algorithm for estimating cobb angle. J. Biomed. Phys. Eng. 9, 317–326. doi:10.31661/
jbpe.v9i3jun.730

Si, H. (2015). Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM
Trans. Math. Softw. 41, 1–36. doi:10.1145/2629697

Song, C., Alijani, A., Frank, T., Hanna, G., and Cuschieri, A. (2006). Elasticity of
the living abdominal wall in laparoscopic surgery. J. biomechanics 39, 587–591.
doi:10.1016/j.jbiomech.2004.12.019

Tapia, J., Knoop, E., Mutný, M., Otaduy, M. A., and Bächer, M. (2020).
Makesense: Automated sensor design for proprioceptive soft robots. Soft Robot.
7, 332–345. doi:10.1089/soro.2018.0162

Taylor, C. J., and Kriegman, D. J. (1994).Minimization on the lie group SO(3) and
related manifolds. Tech. Rep.. Yale University.

Vergari, C., Chen, Z., Robichon, L., Courtois, I., Ebermeyer, E., Vialle, R., et al.
(2020). Towards a predictive simulation of brace action in adolescent idiopathic
scoliosis. Comput. Methods Biomechanics Biomed. Eng. 24, 874–882. 1–8. doi:10.
1080/10255842.2020.1856373

Vergari, C., Courtois, I., Ebermeyer, E., Bouloussa, H., Vialle, R., and Skalli, W. (2016).
Experimental validation of a patient-specific model of orthotic action in adolescent
idiopathic scoliosis. Eur. Spine J. 25, 3049–3055. doi:10.1007/s00586-016-4511-7

Wang, W., Baran, G. R., Betz, R. R., Samdani, A. F., Pahys, J. M., and Cahill,
P. J. (2014). The use of finite element models to assist understanding and
treatment for scoliosis: A review paper. Spine Deform. 2, 10–27. doi:10.1016/j.
jspd.2013.09.007

Wilke, H.-J., Herkommer, A., Werner, K., and Liebsch, C. (2017). In vitro analysis
of the segmental flexibility of the thoracic spine. PLoS One 12, e0177823. doi:10.
1371/journal.pone.0177823

Wong, C., Adriansen, J., Jeppsen, J., and Balslev-Clausen, A. (2021).
Intervariability in radiographic parameters and general evaluation of a low-dose
fluoroscopic technique in patients with idiopathic scoliosis. Acta Radiol. Open 10,
205846012110432. doi:10.1177/20584601211043258

Xu, M., Yang, J., Lieberman, I. H., and Haddas, R. (2017). Lumbar spine finite
element model for healthy subjects: Development and validation. Comput.
methods biomechanics Biomed. Eng. 20, 1–15. doi:10.1080/10255842.2016.
1193596

Zhao, D., Li, Y., Langlois, T., Chaudhuri, S., and Barbic, J. (2021). Ergoboss:
Ergonomic optimization of body-supporting surfaces. IEEE Trans. Vis. Comput.
Graph. 1, 1. doi:10.1109/TVCG.2021.3112127

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Kardash et al. 10.3389/fbioe.2022.1014365

https://doi.org/10.1016/j.jbiomech.2016.02.046
https://doi.org/10.1016/j.jbiomech.2016.02.046
https://doi.org/10.31661/jbpe.v9i3jun.730
https://doi.org/10.31661/jbpe.v9i3jun.730
https://doi.org/10.1145/2629697
https://doi.org/10.1016/j.jbiomech.2004.12.019
https://doi.org/10.1089/soro.2018.0162
https://doi.org/10.1080/10255842.2020.1856373
https://doi.org/10.1080/10255842.2020.1856373
https://doi.org/10.1007/s00586-016-4511-7
https://doi.org/10.1016/j.jspd.2013.09.007
https://doi.org/10.1016/j.jspd.2013.09.007
https://doi.org/10.1371/journal.pone.0177823
https://doi.org/10.1371/journal.pone.0177823
https://doi.org/10.1177/20584601211043258
https://doi.org/10.1080/10255842.2016.1193596
https://doi.org/10.1080/10255842.2016.1193596
https://doi.org/10.1109/TVCG.2021.3112127
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1014365

	Design of personalized scoliosis braces based on differentiable biomechanics—Synthetic study
	1 Introduction
	2 Related work
	2.1 Trunk modeling and parameter estimation
	2.2 Optimization-based shape design

	3 Trunk and brace simulation model
	3.1 Biomechanical model of the trunk
	3.2 Model and parameterization of the brace
	3.3 Contact and regularization
	3.4 Simulation engine

	4 Brace optimization
	4.1 Design optimization problem
	4.2 Optimization algorithm
	4.3 Differentiable biomechanics
	4.4 Implementation details

	5 Experiments
	5.1 Test cohort
	5.2 Brace optimization results

	6 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Author disclaimer
	Supplementary material
	References


