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Purpose: To develop and evaluate a deep learning-based method to localize

and classify anterior cruciate ligament (ACL) ruptures on knee MR images by

using arthroscopy as the reference standard.

Methods: We proposed a fully automated ACL rupture localization system to

localize and classify ACL ruptures. The classification of ACL ruptures was based

on the projection coordinates of the ACL rupture point on the line connecting

the center coordinates of the femoral and tibial footprints. The line was divided

into three equal parts and the position of the projection coordinates indicated

the classification of the ACL ruptures (femoral side, middle and tibial side). In

total, 85 patients (mean age: 27; male: 56) who underwent ACL reconstruction

surgery under arthroscopy were included. Three clinical readers evaluated the

datasets separately and their diagnostic performances were compared with

those of the model. The performance metrics included the accuracy, error rate,

sensitivity, specificity, precision, and F1-score. A one-way ANOVA was used to

evaluate the performance of the convolutional neural networks (CNNs) and

clinical readers. Intraclass correlation coefficients (ICC) were used to assess

interobserver agreement between the clinical readers.

Results: The accuracy of ACL localization was 3.77 ± 2.74 and 4.68 ± 3.92 (mm)

for three-dimensional (3D) and two-dimensional (2D) CNNs, respectively.

There was no significant difference in the ACL rupture location performance

between the 3D and 2D CNNs or among the clinical readers (Accuracy, p <
0.01). The 3D CNNs performed best among the five evaluators in classifying the

femoral side (sensitivity of 0.86 and specificity of 0.79), middle side (sensitivity of

0.71 and specificity of 0.84) and tibial side ACL rupture (sensitivity of 0.71 and

specificity of 0.99), and the overall accuracy for sides classifying of ACL rupture

achieved 0.79.
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Conclusion: The proposed deep learning-based model achieved high

diagnostic performances in locating and classifying ACL fractures on knee

MR images.
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1 Introduction

Anterior cruciate ligament (ACL) injuries are common

sports-related musculoskeletal diseases (Spindler and Wright,

2008) that increase the risk of developing posttraumatic

osteoarthritis and require an early diagnosis and intervention

(Wang et al., 2020). In current clinical practice, most orthopedic

surgeons will perform ACL reconstruction in patients with ACL

injuries (Reijman et al., 2021). However, reconstruction surgery

has many disadvantages, such as anterior knee pain (Janani et al.,

2020), muscle atrophy (Lindström et al., 2013), and loss of

proprioception at the reconstructed surgical site. In addition,

native gait kinematics cannot be restored and revision surgery, if

necessary, can be difficult due to tunnel widening and

malpositioning (Aga et al., 2017; Kraeutler et al., 2017). In the

1970s and 1980s, open primary ACL repair was commonly

performed but was eventually abandoned due to poor surgical

results and complications (Feagin and Curl, 1976; Taylor et al.,

2009). With the development and application of arthroscopy,

biotechnology, stronger internal fixation techniques, and more

rational postoperative rehabilitation, ACL repair has received

renewed attention from orthopedic surgeons (van der List and

DiFelice, 2017; DiFelice and van der List, 2018; Mahapatra et al.,

2018; Ahmad et al., 2019; Hoogeslag et al., 2019; Murray et al.,

2020; Li, 2022). Isolated ACL repair has been reported using

various techniques including suture anchor primary ACL repair,

internal brace ligament augmentation, bridge-enhanced ACL

repair (BEAR), and dynamic intraligamentary stabilization

(DIS) methods (Heusdens, 2021). Sherman et al. (Sherman

et al., 1991) were the first to classify ACL tears

arthroscopically according to both tear location and tissue

quality and named it “Sherman classifications” in 1991. More

recently, Van der List et al. (van der List and DiFelice, 2016)

proposed a treatment algorithm based on the modified Sherman

classification and suggested that only proximal ACL tears with

good to excellent tissue quality should be repaired. Note that the

key question now is how to identify the location and tissue

quality of the injured ACL to determine if ACL repair surgery can

be performed. Currently, MRI is a non-invasive method that

demonstrates excellent sensitivity and specificity for the

diagnosis of ACL injuries (Odgaard et al., 2002). Several

studies have suggested that MRI may help surgeons to predict

the reparability of ACL tears (van der List et al., 2017; van der List

and DiFelice, 2018; Mehier et al., 2022). Mehier, C. et al. (Mehier

et al., 2022) proposed three classification criteria for ACL tears

based on tear location and tissue quality, includingMRI Sherman

tear location (MSTL), MRI Sherman tissue quality (MSTQ), and

simplified MRI Sherman tissue quality (S-MSTQ) classifications.

The diagnostic accuracy of the three criteria was 70% (50/71),

52% (15/29), and 90% (26/29), respectively. Interobserver

agreement was good for MSTL (κ = 0.78) and moderate-to-

good for the MSTQ and S-MSTQ classifications (κ = 0.44 and

0.63 respectively). Based on the above studies (Sherman et al.,

1991; van der List and DiFelice, 2016; van der List et al., 2017; van

der List and DiFelice, 2018; Mehier et al., 2022), we focused

primarily on the localization of ACL injuries, and we simplified

the classification of ACL injury sites to the femoral side, middle

and tibial side, with each classification accounting for one-third

of the entire ACL.

Deep learning has notable advantages in helping clinicians

with limited experience or time in reading MR images and

increasing the accuracy of the MR imaging interpretations

(Shin et al., 2016). Several previous studies have focused on

the application of deep learning for disease diagnoses in medical

imaging; the applications include lung adenocarcinoma (Yu et al.,

2021), abnormal pulmonary nodules (Sim et al., 2020), and breast

masses (Caballo et al., 2020). In the case of diagnosing ACL

injuries, previous work has been limited to the use of deep

learning methods to detect the presence or absence of ACL

injuries (Bien et al., 2018; Liu et al., 2019) and grading the

hierarchical severity staging of ACL injuries on knee MR images

(Namiri et al., 2020; Awan et al., 2021; Javed Awan et al., 2021).

However, deep learning methods have yet to be applied to

localizing the ACL rupture.

The main purpose of our study was to develop and

evaluate a deep learning-based method to localize and

classify ACL ruptures (femoral side, middle and tibial side)

(Sherman et al., 1991; van der List and DiFelice, 2016; van der

List et al., 2017; van der List and DiFelice, 2018; Mehier et al.,

2022) on knee MR images by using arthroscopy as the

reference standard.

The remainder of this article is structured as follows. Some of

the recent work closely related to this study will be discussed in

Section 2. In Section 3, the details of the MRI datasets are

presented, and the architecture, implementation details, and

performance metrics of the fully automated ACL rupture

localization system are presented. The experimental results are

analyzed in Section 4. The advantages and limitations of the

proposed method are discussed in Section 5. Finally, the

conclusion of our study is given in Section 6.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Qu et al. 10.3389/fbioe.2022.1024527

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1024527


2 Recent works

In recent years, various deep learning-based methods have

been developed in ACL segmentation and injury assessment. In

2021, Flannery et al. (Flannery et al., 2021) developed an

automated intact ACL segmentation model based on 2D

U-Net. The reference standard for training the model was the

results of segmentation by an experienced (>5 years) physician,
and the model was evaluated for anatomical similarity and the

accuracy of quantitative metrics (i.e., signal intensity and

volume). The model performed well on anatomical

performance metrics (Dice coefficient = 0.84, precision = 0.82,

and sensitivity = 0.85). The median signal intensities and

volumes of the model were not significantly different from the

ground truth. Recently, the team used a transfer learning

approach to segment the surgically treated ACL automatically

(Flannery et al., 2022). Compared with the intact ACL

segmentation model, the anatomical performance of the

automated segmentation model for surgically treated ACLs

was slightly decreased (repairs/grafts: Dice coefficient = 0.80/

0.78, precision = 0.79/0.78, sensitivity = 0.82/0.80). There were

no significant differences in quantitative metrics between the

ground truth and automatic segmentation of surgically treated

ACLs. In 2018, Bien et al. (Bien et al., 2018) developedMRNet for

detecting ACL tears on knee MR images. Using the labels of three

musculoskeletal radiologists with an average of 12 years of

experience as a reference standard, researchers evaluated the

performance of MRNet and compared it with the performances

of nine other physicians (model/physicians: sensitivity = 0.76/

0.91, specificity = 0.97/0.93). In addition, the area under the

receiver operating characteristic (ROC) curve (AUC) reached

0.82 when validated directly with MRNet on a public dataset

from Clinical Hospital Centre Rijeka, Croatia, and improved to

0.91 after retraining. MRNet took less than 30 min to train on

and less than 2 min to evaluate the public dataset, indicating that

MRNet can improve clinician performance in the interpretation

of medical imaging on both internal and external datasets. In

2019, Liu et al. (Liu et al., 2019) proposed a fully automated ACL

tear detection system by using two convolutional neural

networks (CNNs) to isolate the ACL on knee MR images

followed by a classification CNN to detect ACL injuries on

the selected image sections. A retrospective study of

350 subjects was conducted to evaluate the sensitivity and

specificity of the model and those of the five radiologists in

detecting ACL tears using arthroscopy as the reference standard.

The overall training time was 11.62 h, while the average time for

the model to detect an ACL tear for one subject was 9 s. The

sensitivity and specificity of the model at the optimal threshold

were 0.96 and 0.96, respectively. In contrast, the sensitivity of the

radiologists ranged between 0.96 and 0.98, while the specificity

ranged between 0.90 and 0.98. In 2020, Namiri et al. (Namiri

et al., 2020) proposed a deep learning-based pipeline to isolate the

ACL region of interest (ROI), detect abnormal ACL, and stage

lesion severity using three-dimensional (3D) and two-

dimensional (2D) CNN, respectively. The overall accuracy of

the 3D and 2D CNN in classifying ACL injuries (reconstructed,

fully torn, partially torn, and intact ACLs) was 0.89 and 0.92,

respectively. In a recent study, Namiri et al. (Astuto et al., 2021)

developed a 3D CNN model for full-knee ROI (cartilage, bone

marrow, menisci, and ACL) detection and lesion classification.

Binary injury sensitivity reported for all tissues was between

0.70 and 0.88, while the specificity ranged from 0.85 to 0.89.

3 Materials and methods

3.1 MRI datasets

This retrospective study was performed with approval from

our institutional internal review boards and ethical committees

(Ethics Committee Northeast and Central Switzerland 2018-

01410). The MRI datasets were obtained from 85 patients

with ACL ruptures (Male: 56, Female: 29) with an average age

of 27 (range: 10–57) years who underwent knee MRI

examination and subsequent ACL reconstruction surgery

under arthroscopy between January 2010 and April 2018

(Figure 1). Inclusion criteria were patients younger than

57 years, with no history of previous trauma or surgery on the

injured knee, and MRIs that were performed within 1 month of

injury. The patient exclusion criteria were as follows: (a) partial

tear; (b) multiple ligamentous knee injuries; (c) MRI unavailable

or of insufficient quality; (d) significant lacking information.

All the patients were scanned using a 3.0-T MR Scanner

(Achieva; Philips Healthcare, Netherlands). The MRI datasets

consisted of sagittal T2-weighted turbo spin-echo and coronal

T1–weighted high spatial resolution turbo spin-echo sequences.

The detailed imaging parameters of the sequences are

summarized in Table 1.

3.2 Fully automated anterior cruciate
ligament rupture localization system

In this study, we propose a two-step, coarse-to-fine deep

learning-based pipeline to isolate the specific areas that contain

ACL in the knee and we locate the ACL rupture site using 2D and

3D convolutions with MR images.

Our deep learning framework consists of the segmentation

network that categorizes the knee into 4 distinct anatomic

components and the landmark detection network to localize

the centroid of an ACL rupture (Figure 2). The first segmentation

network was implemented to approximately narrow the specific

areas that contain ACLs; this network was based on a 3D U-Net

architecture (Cicek et al., 2016). Based on the position of the

femoral footprint and tibial footprint, we cropped the patches

containing the ACL from the MR images to eliminate the
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unnecessary details and used them as input images to the

localization CNNs. In the second stage, we compared the

localization performance of the CNNs on 2D slices with 3D

cropped images. All CNNs were developed through a cascaded

approach to create a fully automated processing pipeline. The

detailed network structure for the CNNs is summarized in

Supplementary Table S1 (Litjens et al., 2017).

3.2.1 2D
This scheme consists of two stages, a slice selection and

landmark localization. The slice selection network was

constructed by a 3D full CNN (Figure 3) with an input size of

6 × 256 × 256, and it had nine sets of convolutional layers and

eight pooling layers. The first eight sets of convolutional layers

were used to extract features with two 1 × 3 × 3 convolution

operations in each layer, while the last convolutional layer was

used for reducing the feature dimension to one channel. The

image size became 6 × 1 × 1 through eight max pooling layers,

which only implemented downsampling on the slice size,

followed by a softmax layer, and the network was trained by

the cross-entropy loss values between the output vector and

standard vector.

FIGURE 1
Inclusion and exclusion criteria. ACL, anterior cruciate ligament.

TABLE 1 Parameters for the knee MRI sequences used to locate ACL rupture.

Parameter T1-weighted high spatial
resolution turbo spin-echo
sequence (min-max, avg)

T2-weighted turbo spin-echo
sequence (min-max, avg)

Repetition time (msec) 567-2000 (691) 652-4714.74 (3165.65)

Echo time(s) (msec) 10-15 (14.847) 13-100 (98.74)

Flip angle (degrees) 90 90

Pixel bandwidth (Hz) 110-239 (213.108) 130-293 (288.23)

Echo train length 1-9 (8.08) 1-17

Section thickness (mm) 2.5-3 (2.525) 3-3.3

No. of sections 24-39 22-39

Signal averages 1,2,3 1,2

Acquisition matrix size 320 × 320 - 1600 × 1600 400 × 400 - 1024 × 1024

Reconstruction matrix size 256 × 256 256 × 256

File type DICOM DICOM

Bit depth (bit) 16 16

DICOM, digital imaging and communications in medicine.
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The landmark detection stage of our method is mainly based

on YOLOF, which is formulated to predict keypoint coordinates

by the bounding box center. YOLOF is one of the latest single-

level detectors, which only uses the final low resolution feature

map C5 to detect objects. We used the ResNet-101 network

(Ranjan et al., 2019) as the backbone network in our training

phase. Based on the real pixel coordinates (usually decimal) of the

rupture point on the axis of the high-resolution slice in the

cropped MRI images, we select the integers on both sides of the

decimal as the slices (2 slices) where the real rupture point is

located. We maintained the slice resolution as 0.25 mm *

0.25 mm in order to use high-precision images that would

ensure the accuracy of the results. We utilized random

rotation, flipping and elastic transformation to enhance the

data and expand our training dataset.

In sum, the selected slice was adopted as the z value of the

final coordinate, and the coordinates (x, y) were obtained by the

predicted bounding box center. After mapping the obtained pixel

coordinates into the physical coordinates of the original MRI

image, the automatic localization of the ACL rupture point was

completed.

3.2.2 3D
The 3D localization scheme was based on the heatmap

regression network, which was adapted from a 3D full

resolution nnU-Net (Isensee et al., 2021). The network has an

encoder-decoder structure. The encoder is comprised of a

sequence of convolution layers with strided convolution

downsampling, which compresses the original input volume

into low-resolution and highly abstracted feature maps. The

FIGURE 2
The convolutional neural network (CNN) pipeline for the deep learning-based fully automated ACL rupture localization system. The proposed
methods including 2D and 3D CNNs consisted of segmentation and landmark detection network connected in a cascaded fashion to create a fully
automated image processing pipeline. ACL, anterior cruciate ligament; BN, batch normalization; Conv, convolution; Norm, normalization; LReLU,
Leaky-ReLU; ReLU, rectified-linear activation; 2D, two-dimensional; 3D, three-dimensional.

FIGURE 3
Flow chart for the slice detection network of 2D CNNs.
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decoder has the same structure with a transpose convolution

upsampling, which processes the downsampling abstracted

feature maps into outputs with the same resolution as the

input, in a way that is symmetrical to what is done in the

compression layers. The feature maps of the same level are

concatenated by a skip connection. All batch normalizations

were replaced by group normalizations, and we used the

combination of Dice loss and focal loss (Lin et al., 2020) as

the loss function to train the model.

In particular, in the training phase, we use a 3D Gaussian

function, centered at the manually labeled rupture position, as a

probability heatmap. The probability values are multiplied by a

constant to scale the maximum to 1 (the groundtruth of the

landmark). In the landmark mask, the probability value gradually

decreases from 1 at the center position in the voxel range of the

Gaussian heatmap distribution (the landmark voxels), and the value

of the background voxels is set to zero. Note that we incorporate a

false-positive suppression strategy during the training phase tomake

ourmodel more robust. Specifically, we force the values that are very

close to the landmark voxels (e.g., < 2 mm) to be negative rather

than zero, so they are regarded as invalid voxels to avoid being

calculated in the loss function. Finally, wemark the rupture voxels by

using the standard probability threshold of 0.5 and calculate the

centroid of the whole region as the output coordinate. The heatmaps

were generated using theMatplotlib library (https://matplotlib.org/).

3.3 Definition of simplified classification of
anterior cruciate ligament injury sites on
our deep learning-based model

The ACL rupture was approximately described based on the

line connecting the center coordinates of the femoral and tibial

footprints. The line was divided into three equal parts to indicate

which section (femoral side, middle, and tibial side) the rupture

area was located on, while the rupture area was interpreted as the

coordinate of the perpendicular foot between the rupture point

and the ACL line.

The entire ACL measures approximately 38 mm in length

and 11 mm in width (Girgis et al., 1975). According to our

simplified classification of ACL injury sites, each section accounts

for one-third of the entire ACL, which is approximately 12 mm.

Based on the anatomy of ACL (Girgis et al., 1975) and the study

of Payer, C. et al. (Payer et al., 2016) on medical image landmark

localization, for both 2D and 3D CNNs, a localization failure case

occurred when the distance between the ground-truth location

and the predicted location was larger than 10 mm.

3.4 Implementation

The training and evaluation of our pipeline was done on a

desktop computer running a 64-bit Linux operating system with

8 V100 SXM3-32GB GPUs and CUDA version 10.2. All machine

learning algorithms were implemented in PyTorch with Python

3.7, and each CNN was trained individually. The model was

validated by a fivefold cross-validation. The data were randomly

divided up into 5 non-overlapping groups known as folds and

each fold consisted of 17 MRI images. One of those folds was

retained as the validation set, and the remaining images were

used for training. The average accuracy of all the folds was the

overall accuracy of our system.

3.5 Training and evaluation of the fully
automated anterior cruciate ligament
rupture localization system

The reference standard for training the segmentation

network was the image patch segmentation bounded by a

manually labeled femoral footprint and tibial footprint

performed on the sagittal T2-weighted sequences of all

85 subjects. The labeling of the femoral footprint and tibial

footprint areas was performed by an orthopedic fellow (D.D.,

with 8 years of labeling experience) using the ITK-SNAP

program (https://www.itksnap.org/pmwiki/pmwiki.php). The

reference standard for training the localization network was

the centroid physical coordinate of the rupture region marked

on the MRI of the corresponding patient by an orthopedic fellow

(D.D.) using the location of the arthroscopic ACL injury as the

reference standard.

3.6 Evaluation by clinical readers

To compare the localization accuracy of our pipeline with that of

clinical readers, a 3rd-year musculoskeletal clinician [MY (Resident

1)], a 6th-year musculoskeletal clinician [CYW (Resident 2)], and a

6th-year radiologist [ZC (Fellow)] independently reviewed the MR

images of all 85 patients. The clinical readers identified the site of the

ACL rupture by placing image patches where they believed the ACL

rupture occurred on the sagittal T2-weighted MR images using the

ITK-SNAP program. Then, the centroid physical coordinates of the

manually labeled image patches are calculated and compared with

the coordinates predicted by the deep learning-based model to

evaluate the localization accuracy and classification performance

of the model. All the clinical reviewers had no formal training or

calibration courses prior to evaluating the ACL rupture site.

3.7 Statistical analysis

All the statistical analyses were calculated using SPSS

(Version 26; IBM Corporation, Armonk, NY, United States).

The p values less than 0.05 were considered statistically

significant. Euclidean distances (mean value ±standard
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deviation, millimeters) between the ground-truth locations and

the predicted locations of the landmarks were used to evaluate

the algorithm localization accuracy. The localization error rate

was defined as the ratio between the number of failure cases and

the total samples. Interobserver agreement between two of the

three independent blinded clinical readers was assessed using

single-measure intraclass correlation coefficients (ICC) with a

two-way random-effects model for absolute agreement. The

performance statistics for the classification of ACL rupture

were reported for sensitivity, specificity, precision, F1-score,

and overall accuracy.

Sensitivity � TP/(TP + FN) (1)
Specif icity � TN/(TN + FP) (2)
Precision � TP/(TP + FP) (3)

F1 − score � TP/(TP + 0.5 p (FP + FN)) (4)
Overall accuracy � correct classif ications

all classif ications
(5)

where TP, TN, FP, and FN are true positive, true negative, false

positive, and false negative, respectively. Also, ’*’ and ’/’ represent

multiplication and division, respectively.

4 Results

Compared with models proposed by Bien et al. (Bien et al.,

2018) and Liu et al. (Liu et al., 2019), the training time for our

pipeline was 60 min, and the average time for the ACL rupture

localization system to locate and classify the rupture site for one

subject was 1.6 s using the trained networks.

Table 2 compares the accuracy and error rates of the proposed

pipeline (both the 2D and 3D methods) with those of the clinical

readers. The mean localization accuracies were 4.68 ±

3.92 [standard deviation] (mm) for the 2D method, 3.77 ± 2.74

(mm) for the 3D method, 8.27 ± 4.47 (mm) for Resident 1, 8.34 ±

3.36 (mm) for Resident 2, and 8.00 ± 5.74 (mm) for Fellow. There

was no significant difference in ACL rupture location performance

between the 3D and 2D CNNs or among the clinical readers

(Accuracy, p < 0.01). The error rates of the 2D and 3D CNNs were

11% (9/85) and 3.5% (3/85), respectively. In comparison, the error

rates of the clinical readers ranged between 31% (28/85) and 40%

(34/85). Table 3 shows the ICC values for interobserver agreement

between the clinical readers in the localization of ACL ruptures on

the same image patches. There was poor tomoderate interobserver

agreement between the clinical readers, with ICC values between

0.19 and 0.54.

TABLE 2 Accuracy and error rate of clinical residents, musculoskeletal
radiology fellow, 2D CNNs, and 3D CNNs in localization of ACL
ruptures.

Accuracy* (mm) Error rate (%)

2D method 4.68 ± 3.92 11 (9/85)

3D method 3.77 ± 2.74 3.5 (3/85)

Resident 1 8.27 ± 4.47a,b 31 (28/85)

Resident 2 8.34 ± 3.36a,b 40 (34/85)

Fellow 8.00 ± 5.74a,b 31 (28/85)

p value <0.01

*Euclidean distances (mean value ±standard deviation) used to evaluate the localization

accuracy.
a,bp < 0.01 vs. 2D method group. p < 0.01 vs. 3D method group.

ACL, anterior cruciate ligament; CNNs, convolutional neural networks; 2D, two-

dimensional; 3D, three-dimensional.

TABLE 3 Intraclass correlation coefficients (ICC) for Interobserver
Agreement between the Clinical Readers in Localization of ACL
Ruptures.

Reader Resident 1 Resident 2 Fellow

Resident 1 NA 0.54 (0.37, 0.68) 0.32 (0.12, 0.50)

Resident 2 0.54 (0.37, 0.68) NA 0.19 (−0.03, 0.38)

Fellow 0.32 (0.12, 0.50) 0.19 (−0.03, 0.38) NA

Data are ICC values, with 95% confidence intervals in parentheses. NA, not applicable.

TABLE 4 Confusion matrices for the clinical residents,
musculoskeletal radiology fellow, 2D CNNs, and 3D CNNs for
performance in sides classifying of ACL rupture on the image patches.

Predict truth Femoral side Middle Tibial side

Resident1

femoral side 8 0 0

middle 30 30 4

tibial side 5 5 3

Resident2

femoral side 1 0 0

middle 40 32 4

tibial side 1 3 3

Fellow

femoral side 32 10 3

middle 6 13 1

tibial side 5 12 3

2D CNNs

femoral side 28 10 1

middle 13 23 5

tibial side 2 2 1

3D CNNs

femoral side 37 9 0

middle 6 25 2

tibial side 0 1 5

ACL, anterior cruciate ligament; CNNs, convolutional neural networks; 2D, two-

dimensional; 3D, three-dimensional.
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Tables 4, 5 show the confusionmatrices and sensitivity and also

the specificity, precision, F1-score, and overall system accuracy

values for the clinical readers, and also the 2D and 3D CNNs for

evaluating the side classification performance on ACL ruptures on

the image patches in all 85 MR datasets. The confusion matrix

results for the ACL injury classification corresponding to each

evaluator in Table 4 show that the 3D CNNs had the highest

performance on ACL rupture classifications. As shown in Table 5,

both models performed better than the clinical readers in describing

the location of ACL ruptures. The 3D CNNs performed best among

the five evaluators in classifying the femoral side (sensitivity of

0.86 and specificity of 0.79), middle side (sensitivity of 0.71 and

specificity of 0.84), and tibial side ACL rupture (sensitivity of

0.71 and specificity of 0.99). While the overall accuracy of

TABLE 5 Sensitivity, specificity, precision, F1-score, and overall accuracy for clinical residents, musculoskeletal radiology fellow, 2D CNNs, and 3D
CNNs for performance in sides classifying of ACL rupture on the image patches.

Position class Sensitivity Specificity Precision F1-score Overall accuracy

3D CNNs Femoral side 0.86 0.79 0.80 0.83 0.79

Middle 0.71 0.84 0.76 0.74

Tibial side 0.71 0.99 0.83 0.77

2D CNNs Femoral side 0.65 0.74 0.72 0.68 0.61

Middle 0.66 0.64 0.56 0.61

Tibial side 0.14 0.95 0.2 0.17

Resident 1 Femoral side 0.19 1 1 0.31 0.48

Middle 0.86 0.32 0.47 0.61

Tibial side 0.43 0.87 0.23 0.3

Resident 2 Femoral side 0.02 1 1 0.05 0.42

Middle 0.91 0.10 0.42 0.58

Tibial side 0.43 0.95 0.43 0.43

Fellow Femoral side 0.74 0.69 0.71 0.73 0.56

Middle 0.37 0.86 0.65 0.47

Tibial side 0.43 0.78 0.15 0.22

ACL, anterior cruciate ligament; CNNs, convolutional neural networks; 2D, two-dimensional; 3D, three-dimensional.

FIGURE 4
Sagittal views of the cropped MR image, mislocalization and false classification. The predicted rupture point is marked by red circle, while the
true rupture point is green. The deep learning pipeline outputs incorrect localization results due to the Euclidean distance between the true and
predicted rupture point locations being greater than 10 mm, which exceeds themaximum error threshold we set. Amislocalization resulted in a false
classification. The true part of the rupture is the middle side, but the prediction is femoral side.
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clinical readers ranged between 0.42 and 0.56, the overall accuracy of

the ACL localization system for the 3D and 2D CNNs was 0.79 and

0.61, respectively.

Figure 4 displays sagittal views of the cropped knee MR

image, which were processed by the deep learning model for

mislocalization and false classification. The true part of the

rupture is on the middle side but the model outputs a

classification result on the femoral side. The deep learning

pipeline outputs incorrect localization results due to the

Euclidean distance between the true and predicted rupture

point locations being greater than 10 mm, which exceeds the

maximum error threshold we set. Based on our model, the results

of ACL rupture classification are directly related to the accuracy

of its rupture localization, and incorrect localization leads to

incorrect classification.

Figure 5 shows that the predicted rupture point location is

very close to the true rupture point location and the Euclidean

distance between them is within the set error range. The deep

learning model is able to correctly locate the ACL rupture point

and therefore outputs the correct classification.

5 Discussion

Our study describes a fully automated ACL rupture localization

system utilizing a segmentation network adapted from 3D U-Net

(Cicek et al., 2016) for approximately narrowing the specific areas

that contain an ACL. This is followed by a second landmark

detection network based on the YOLOF (for the 2D model) and

3D full resolution nnU-Net (Isensee et al., 2021) (for the 3D model)

with several modifications to localize the ACL rupture within the

cropping patches that contain the ACL rupture region of interest

according to the coordinate. The 3D CNNs achieved the highest

performance among all themodels and clinicians, with a localization

accuracy reaching 3.77 ± 2.74 (mm). The error rate and the overall

system accuracy were 3.5% (3/85) and 79%, respectively. In addition,

the 3D CNNs performed best among the five evaluators in

classifying the femoral side (F1-score: 0.83), middle side (F1-

score: 0.74), and tibial side ACL rupture (F1-score: 0.77).

Previous work using deep learning methods has been limited to

detecting the presence or absence of ACL ruptures or triaging the

lesion severity of ACL injuries on knee MR images. Bien et al. (Bien

et al., 2018) made predictions from three series types of kneeMRIs to

train different MRNets with a pretrained AlexNet, and the

experimental results showed a 0.911 AUC, 0.968 specificity, and

0.759 sensitivity for ACL tears. Namiri et al. (Namiri et al., 2020)

created a deep learning model to predict four lesion severities for the

ACL, used V-Net to segment the knee and determined the ACL

boundaries of the original inputMRI. Then, the cropped images were

tested on the 2D and 3D CNNs, which detected reconstructed, fully

torn, partially torn and intact ACLs. The 2D and 3D CNNs achieved

high overall accuracies of 92% and 89%, respectively. Most recently,

Awan et al. (Javed Awan et al., 2021) trained a customized ResNet-14

architecture utlilizing class balancing and data augmentation, which

performed at an average accuracy of 92% for three classes. The results

showed that the AUC was 0.980 for healthy ACLs, 0.970 for partially

torn ACLs and 0.999 for fully torn ACLs. In contrast to the work

described above, our pipeline has many advantages. Our pipeline

localizes and classifies ACL ruptures on knee MR images, which can

help clinicians roughly determinewhether a patient has a potential for

ACL repair based on the results of ACL injury classification. Based on

the ACL injury treatment algorithm proposed by Van der List et al.

FIGURE 5
Sagittal views of the cropped MR image, correct localization and classification. The predicted rupture point is marked by red circle, while the
true rupture point is green. The model predicted a correct localization, and the system shows a correct classification (the middle side).

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Qu et al. 10.3389/fbioe.2022.1024527

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1024527


(van der List and DiFelice, 2016; van der List et al., 2017), we believe

that proximal ACL injuries (femoral side) have the potential for ACL

repair surgery whereas ACL reconstruction surgery is recommended

for injuries near the middle and tibial sides. In addition, our

localization system is not influenced by human factors. The

interobserver agreement between clinicians in our study did not

perform very well (ICC range between 0.19 and 0.54), which may be

due to inexperience, distraction, and different interpretations of MRI

by clinicians with different specialties. Our pipeline avoids these

problems by using arthroscopy as a reference standard and labeling

the location of the ACL injury on the corresponding MR images.

Furthermore, both CNNs and clinical readers localized ACL rupture

within a set threshold (10 mm), but CNNs performed better than

clinicians in localization (CNNs/clinicians: 3.77–4.68 mm/

8.00–8.34 mm). With accurate localization of ACL injuries, our

system also allows the surgeon to adjust the range of ACL injury

classification to suit the actual situation.

Our study had several limitations. First, our dataset has a small

sample size which only allows for the process of data cross-

validation, and more data are needed to verify the reliability of

our system. Second, proton density-weighted MR sequences are

considered to be commonly used to evaluate knee injuries. MR data

in our study are sagittal T2-weighted and coronal T1–weighted MR

sequences, and more sequences need to be added to train the

localization system to make the results more reliable. In addition,

given the fair interobserver agreement among clinicians, we need

more experienced clinicians to join the evaluators to calculate ACL

injury localization accuracy and classification reliability. Finally, we

can include the negative control group in which there is no ACL

rupture in the development of the deep learning pipeline, whichmay

be of greater translational and applied value to clinical scenarios.

6 Conclusion

In conclusion, our pipeline was found to be more accurate in

locating and classifying ACL ruptures (femoral side, middle, and

tibial side) than clinicians with varying levels of experience, which

may help clinicians determine whether an ACL injured patient has

the potential for ACL repair based on the classification results.
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