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It remains a big challenge in clinical practice to repair large-sized bone defects

and many factors limit the application of autografts and allografts, The

application of exogenous scaffolds is an alternate strategy for bone

regeneration, among which the silk fibroin (SF) scaffold is a promising

candidate. Due to the advantages of excellent biocompatibility, satisfying

mechanical property, controllable biodegradability and structural

adjustability, SF scaffolds exhibit great potential in bone regeneration with

the help of well-designed structures, bioactive components and functional

surface modification. This review will summarize the cell and tissue interaction

with SF scaffolds, techniques to fabricate SF-based scaffolds and modifications

of SF scaffolds to enhance osteogenesis, which will provide a deep and

comprehensive insight into SF scaffolds and inspire the design and

fabrication of novel SF scaffolds for superior osteogenic performance.

However, there still needs more comprehensive efforts to promote better

clinical translation of SF scaffolds, including more experiments in big animal

models and clinical trials. Furthermore, deeper investigations are also in

demand to reveal the degradation and clearing mechanisms of SF scaffolds

and evaluate the influence of degradation products.
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1 Introduction

Caused by trauma, tumor and other pathological factors, bone defects can lead to

dysfunctions and destruction of the musculoskeletal system (Burger et al., 2022). It

remains challenging to achieve ideal bone regeneration in clinical practice (Lee et al., 2022;

Mirkhalaf et al., 2022). Autografts and allografts are commonly applied to repair defected

bones, but many factors limited their applications (Kundu et al., 2013; Guo et al., 2021).

The application of exogenous scaffolds as bone substitutes seems an alternate strategy.

The ideal scaffolds for bone regeneration should provide a biomimicking

microenvironment to promote desirable cellular responses, which possess excellent

biocompatibility, optimized mechanical properties, desirable morphology and
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structure. The desired biodegradability with safe by-products and

controllable diffusion is also important (Zhang and King, 2020).

Among plenty scaffolds, silk fibroin (SF) is a promising

candidate with numerous researches (Wenhao et al., 2020; Shen

et al., 2022). In the structure of SF, the light (L) chains, heavy (H)

chains and the hydrophobically linked glycoprotein P25 are

crosslinked to form an H-L complex with anti-parallel beta-

sheets (β-sheets) (Figure 1) (Wongpinyochit et al., 2018; Zuluaga-

Velez et al., 2021). SF scaffolds have many advantages, including

excellent biocompatibility, satisfying mechanical property,

controllable biodegradability and structural adjustability (Zhang

et al., 2021; Zuluaga-Velez et al., 2021; Li and Sun, 2022).

Compared with biodegradable synthetic polymers such as poly

(lactic acid) (PLA), SF scaffolds exhibit better biocompatibility

and cell adhesion performance (Wenk et al., 2011). Besides, due

to the formation of ß-sheets, SF scaffolds have better mechanical

properties than collagens and chitosan (CS), with ultimate tensile

strength of 300–740MPa (Koh et al., 2015; Wang et al., 2020).

However, compared with native bone tissue, the mechanical

properties of pure SF scaffolds are still insufficient (Melke et al.,

2016; Soundarya et al., 2018). Further improvement is in demand

to achieve better osteogenic capacity (Wu et al., 2021). Due to

outstanding tunability, SF can be modified into different formats

for certain applications, such as films, hydrogels and porous

structures (Bakhshandeh et al., 2021). Besides, different organic

and inorganic components can be mixed with pure SF to

fabricate hybrid scaffolds to improve mechanical and

biological performance (Wu et al., 2021). Another important

modification method is surface modification, including physical

modification, chemical modification and surface

functionalization by bioactive components, which can make

as-prepared SF scaffolds more bioactive (Hardy et al., 2018;

Wang et al., 2019; Moses and Mandal, 2022).

Despite the large number of related researches, there still

lack deep investigations on the long-term in vivo safety of SF

scaffolds, which is closely related to the degradation products.

The studies on degradation and cleaning mechanism of SF

scaffolds are also far from satisfactory. It can be helpful to

deeply understand the in vivo interaction of SF scaffolds with

hosts’ tissues to better inspire further modifications. Moreover,

among numerous fabrication techniques and modification

methods, it can be difficult to make a suitable choice for

different applications, where a comprehensive classification

and summary can be helpful.

Herein, we summarize the cell and tissue interaction with SF

scaffolds, the fabrication techniques and modifications for better

bone regeneration (Figure 2). We hope to give a deep insight into

the SF scaffolds applied in bone regeneration and inspire research

enthusiasm for better development and improvement of SF

scaffolds.

2 Cell and tissue interaction with Silk
fibroin scaffolds

As a highly dynamic vascularized tissue, bone tissue consists

of cellular components, extracellular matrix (ECM) and

minerals. Through achieving a deeper understanding of SF’s

interaction with cellular and non-cellular components, the

design of advanced SF-based scaffolds can be better inspired.

2.1 Immune response

Silk materials have been proved biocompatible with long

history of application, but some rarely-happened adverse

FIGURE 1
Illustration of SF structure including the heavy chain and light chain. (Wongpinyochit et al., 2018). Copyright 2018 American Chemical Society.
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immunological events cannot be ruled out, which may be

caused by the presence of silk sericin (SS) proteins. Wang et al.

(Wang et al., 2020) combined SF and SS in different mass

ratios and detected the immune responses caused by different

scaffolds. The results showed that the macrophages were

activated by the addition of SS and secreted more

proinflammation (M1)-related cytokines. The SF itself

showed satisfying biocompatibility with higher

antiinflammation (M2) phenotype ratio of macrophages. As

for in vivo evaluation, Gorenkova et al. (Gorenkova et al.,

2021) evaluated the immune response of self-assembled SF

hydrogels via Balb/c mice models. The inflammatory response

was comparable or even lower than the benchmark material,

polyethylene glycol (PEG), which did not activate tissue

regeneration and served as the baseline marker for tissue

responses. Overall, these studies demonstrate that the SF

scaffolds can exhibit favorable biocompatibility after

degumming and sterilization.

Despite these encouraging researches, there still exist

problems about long term in vivo safety of SF scaffolds and

long-term immune responses need further investigation to

achieve better understanding. The immune response to

degradation products of SF scaffolds should also be

considered, where the production of proinflammatory

cytokine and phagocytosis may be induced by fractions of SF

fibers (Gellynck et al., 2008). Lundmark et al. (Lundmark et al.,

2005) found that the degradation products of SF could cause

amyloidogenesis and tissue degeneration. Therefore, it is

necessary to carry out long-term studies of SF scaffolds on

their degradation products.

2.2 Osteogenic cellular response

Meinel et al. (2005) claimed that the plain silk scaffolds could

only provide an appropriate environment for cellular

proliferation, where the ingrown cells showed poor osteogenic

differentiation. However, later researches demonstrated that SF

could activate expression of osteogenesis-related genes, including

alkaline phosphatase (ALP), Runt-related transcription factor 2

(Runx2), collagen I (COL I), osterix, osteocalcin (OCN) and

CD29/CD44 (Miyamoto et al., 2013; Panda et al., 2015). Jung

et al. (2013) found the SF could serve as the suppressor of the

Notch pathway, which could down-regulate of osteogenesis and

thus promote osteogenesis. The amide groups and high ß-sheet

contents of SF could also induce osteogenic differentiation, where

the ß-sheet structure could provide a stiff matrix environment for

osteoblasts.

However, considering results of other in vivo experiments,

plain SF scaffolds have insufficient ability to completely

regenerate large bone defects (Mottaghitalab et al., 2015).

Uebersax et al. (2013) implanted two different SF scaffolds

into the long bones of sheep and found the poor bone

formation in both scaffolds. Song et al. (2011) applied SF film

to repair rabbit calvarial defects (φ 8 mm), and found the

calvarial defects actually failed to completely recover after

8 weeks. Notably, when pre-seeded with undifferentiated stem

cells before implanted, the capability of bone formation can be

significantly improved with pre-differentiated cells (Park et al.,

2015; Sartika et al., 2020). Considering the long-term procedure

of autologous cell isolation and culture, the cell-free SF scaffold is

still a better choice.

FIGURE 2
Graphical diagram for fabrication of SF scaffolds and their cell and tissue responses, whichmakes contributions to bone regeneration. (Created
with BioRender.com).
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2.3 Bone resorption

During bone regeneration, it is important to take bone

homeostasis into consideration, which is maintained by the

balance of dynamic bone formation and resorption.

Osteoblasts originate from multipotent mesenchymal stem

cells (MSCs) and secrete the osteoid matrix. Osteoclasts arise

from the mononuclear cell lineage and are responsible for bone

matrix resorption (Borciani et al., 2020).

However, so far, only a few literatures are focused on

interaction between SF scaffolds and osteoclasts. Jones et al.

(Jones et al., 2009) cultured murine osteoblasts and osteoclasts

on SF scaffolds. When monocytes were cultured separately,

cells aggregated together and the expression of tartrate

resistant acid phosphatase (TRAP) was positive, as the

osteoclast marker. However, when co-cultured with

osteoblasts, individual TRAP positive cells spread evenly

amongst osteoblasts, forming a homogeneous layer.

Furthermore, Chon et al. (Chon et al., 2012) reported that

SF hydrolysate could inhibit RANKL-induced TRAP

formation, osteoclast-related gene expression and signaling

pathways in RAW 264.7 cells. Meanwhile, the SF hydrolysate

could induce apoptosis signaling cascades of osteoclasts. On

this basis, SF scaffolds seem an ideal choice for bone

regeneration to repair bone defects with its capacity to

inhibit activity of osteoclasts. However, more researches

should be carried out in this field to further understand the

effect of SF scaffolds on osteoclasts and bone remodeling.

2.4 Vascular ingrowth

The vascular ingrowth is another important factor of bone

regeneration, which can improve oxygen and nutrient

diffusion (Li et al., 2021). It also influences the

differentiation of MSCs into osteoblasts and osteoid

formation (Yan et al., 2019; Song et al., 2020). The

enhanced osteogenic differentiation promotes the secretion

of soluble factors, such as bone morphogenetic protein-2

(BMP-2) and beta-catenin, and in turn benefits the

vascularization process (Niu et al., 2019). During the

biomineralization period, it is also helpful to form

functional vascular networks and thus achieve desired bone

formation.

The mild inflammatory response can induce the vascular

growth and the ingrowth of vessels into SF scaffolds (Thurber

et al., 2015; Rameshbabu et al., 2020). Usually, SF scaffolds used

for bone regeneration exhibit high porosity and thus allow the

vessel ingrowth, which can be improved by pre-seeded cells

before implantations. Watchararot et al. (2021) seeded human

adipose-derived stem cells (hADSC) onto SF scaffolds and

implanted them into chick chorioallantoic membrane with

the pore diameter of 513.96 ± 4.99 μm and porosity of

77.34 ± 6.96%. A capillary network of spoke-wheel pattern

was induced by the seeded scaffolds 3 weeks earlier than

unseeded scaffolds, indicating an early angiogenesis. Sun

et al. (Sun et al., 2016) also found the co-cultural of

endothelial cells and human mesenchymal stem cells

(hMSCs) could significantly improve angiogenesis of SF

scaffolds which might result from vascular endothelial

growth factor (VEGF) and other angiogenic factors secreted

by the pre-seeded cells.

2.5 Matrix mineralization

Biomineralization of bone ECM is highly dynamic but well-

regulated to obtain diverse organic-inorganic hybrid structures

(Kundu et al., 2020). Native bone ECM exhibits three-

dimensional (3D) structure with porous morphology and

organic-inorganic components. The different physiologic

conditions and ECM compositions also influence the

deposition of hydroxyapatite (HAP) nanocrystals

(Thrivikraman et al., 2019). The mineralized matrix can in

turn induce osteogenic differentiation and the formation of

mature bone tissues (Xiong et al., 2011). Therefore, an ideal

bone graft should have capability to induce biomineralization,

similar to natural bone ECM.

SF scaffolds have been proved able to improve the

deposition of HAP nanocrystals in simulated body fluid

(SBF) solution (Zaharia et al., 2012; Nourmohammadi et al.,

2017; Kundu et al., 2020). The amorphous spacers can serve as

nucleation sites and promote the deposition of HAP crystals,

which is similar to the role of Col I in natural bone (Marelli

et al., 2012; Jin et al., 2015; Vetsch et al., 2015). After

pretreatment, the formation of HAP crystallization can be

facilitated by the electrostatic interaction between the

functional groups and calcium ions (Ca2+) (Choi et al.,

2012). Huang et al. (Huang et al., 2021) fabricated organized

SF film and study the deposition of amorphous calcium

phosphate (CaP) in phosphate buffer saline (PBS) and

enzyme solution, where a mixture of tricalcium phosphate

(TCP) and HAP crystals formed in PBS solution but only

HAP crystals could be observed in enzyme solution. The

difference possibly resulted from the degradation of SF

induced by enzyme, which led to different SF contents and

solution pH environment. Meanwhile, it is also interesting to

find SF scaffolds from different sources have different

performance in biomineralization process. Zhang et al.

(Zhang et al., 2020) compared the effect of Antheraea pernyi

SF and Bombyx mori SF fibers as templates of biomineralization

and found the Antheraea pernyi SF could induce better

mineralization, which resulted from more acidic amino acids

of hydrophilic amorphous fractions. Sahu et al. (2015) also

found nonmulberry SF scaffolds had better osteoconductivity

and biomineralization performance than mulberry SF scaffolds.
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3 Techniques to fabricate Silk fibroin
hybrid scaffolds

The techniques to fabricate different SF-based scaffolds

depend on the formats they appeared in bone regeneration,

such as films, hydrogels and porous scaffolds, which have

been summarized in Table 1.

3.1 Silk fibroin hybrid films

On basis of deposition techniques and drying processes, the

technology to fabricate SF films has been well developed,

including in-situ co-precipitation method (Mobika et al., 2020;

Huang et al., 2022), plasma splashing procedure (Jiang et al.,

2020) and matrix-assisted pulsed laser evaporation (Miroiu et al.,

2010). To achieve better functionalization, during film

preparation, external components can be added, like HAP,

silver (Ag) and other bioactive factors, which makes SF hybrid

films multifunctional and thus further enhance osteogenesis,

including better mechanical properties, angiogenesis,

antiinflammation, antibacterial capacity and so on. Jabbari

et al. (Jabbari et al., 2019) developed a CS/SF hybrid film via

solvent casting method, loading reduced graphene oxide (rGO).

With the addition of rGO, the swelling ratio and conformability

of hybrid film was accordingly increased, and the evaluation of

ALP activity and alizarin red staining also demonstrated the

promoted osteogenic performance.

3.2 Silk fibroin hybrid hydrogels

The cross-linking techniques are widely used to fabricate SF

hydrogels, including mechanical cross-linking, chemical

TABLE 1 Summary of fabrication techniques of SF scaffolds for bone regeneration.

Scaffold
type

Silk source Fabrication techniques Bioactive components References

Mat Bombyx mori Electrospinning Calcium zinc silicate Hadisi et al. (2020)

Mat Bombyx mori Electrospinning HAP Valarmathi and
Sumathi, (2020)

Mat Bombyx mori Electrospinning Laponite Atrian et al. (2019)

Mat Bombyx mori Electrospinning Bioactive glass (BG) and HAP Liu et al. (2019)

Sponge Bombyx mori Freeze drying Alumina Zafar et al. (2020)

Sponge Bombyx mori Freeze drying HAP Nie et al. (2019)

Sponge Bombyx mori Glycerol crosslinking and
directional field freeze technology

HAP and graphene oxide (GO) Wang et al. (2020b)

Sponge Bombyx mori EDC/NHS click-chemistry method HAP, carboxymethyl CS, cellulose nanocrystals and strontium Zhang et al. (2019)

Sponge Bombyx mori Glutaraldehyde crosslinking and
freeze drying

CS and magnetite Aliramaji et al. (2017)

Sponge Bombyx mori Freeze drying Titanium dioxide (TiO2) Johari et al. (2017)

Sponge Bombyx mori Freeze drying Fluoridated TiO2 Johari et al. (2018a)

Sponge Bombyx mori Freeze drying TiO2 Johari et al. (2018b)

Sponge Bombyx mori HRP-crosslinking, salt leaching and
freeze drying

β-TCP Ribeiro et al. (2019)

Hydrogel Bombyx mori Sonication and crosslinking Vancomycin and halloysite Avani et al. (2020)

Hydrogel Bombyx mori Heating and crosslinking DFO and HAP Wang et al. (2021)

Hydrogel Bombyx mori and
Antheraea assama

HRP-crosslinking HAP and strontium Moses et al. (2020)

Hydrogel Bombyx mori Free radical polymerization
technique

Magnetite Tanasa et al. (2020)

Hydrogel Bombyx mori 3D bioprinting Gelatin, riboflavin, articular cartilage-derived progenitor cells
(ACPCs), dental pulp derived stem cells (DPSCs), hMSCs.

Piluso et al. (2020)

Hydrogel Bombyx mori 3D bioprinting Tris (2,2′-bipyridyl) dichlororuthenium hexahydrate (Ru) and
sodium persulfate (SPS), Human articular chondrocytes (HACs)

Cui et al. (2020)

Hydrogel Bombyx mori Photo-initiated crosslinking Ru, SPS, Bap tista et al. (2020)

Film Bombyx mori In situ co-precipitation HAP Mobika et al. (2020)

Film Bombyx mori In situ co-precipitation Chlorin e6 Huang et al. (2022)

Film Not mentioned Plasma splashing procedure CS, polyethylene terephthalate, HAP Jiang et al. (2020)

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Wu et al. 10.3389/fbioe.2022.1054379

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1054379


crosslinking, enzymatic crosslinking and light triggered

crosslinking techniques. The mechanical cross-linking

technique is simple and economical via ultrasound pulses or

temperature changes. As for chemical cross-linking, enzymatic

crosslinking and light-triggered crosslinking techniques, external

components should be introduced as initiators to achieve better

crosslinking. For example, the horseradish peroxidase (HRP)

cross-linking technique can control the sol-gel transition better

and increase the content of ß-sheets (Moses et al., 2020; Zuluaga-

Velez et al., 2021). Furthermore, immersing SF in methanol or

ethanol can transform α-helix structure into ß-sheet structure

and thus improve the mechanical properties of as-prepared SF

hydrogels (Johari et al., 2018a). Piluso et al. (Piluso et al., 2020)

developed a rapid riboflavin-mediated crosslinking technique to

fabricate cytocompatible SF hydrogel with different riboflavin/

sodium persulfate (Ru/SPS) ratio, which exhibited a viability over

80% for all cell types.

With the development of addictive manufacture, 3D printing

has become an efficient on-demand manufacturing technique for

SF hydrogel, which can help create individual scaffolds of both

small and large scale. Furthermore, the cell-laden 3D bioprinting

technique permits living cells and biomaterials to be placed in

highly organized scaffolds to form complex structures for

different applications, which is one of the latest trends in

regenerative medicine (Buitrago et al., 2018). Sharma et al.

(Sharma et al., 2019) used 3D bioprinting to fabricate a

hBMSCs-laden SF/gelatin/CaCl2 hybrid hydrogel with

sustained release of Ca2+ and increased ß-sheet contents,

which facilitated the osteogenic differentiation and

mineralization of the hBMSCs through Wnt/β-catenin
pathway. However, due to the formation of ß-sheet, the

increase of stiffness and crystallinity can make SF hydrogels

brittle and hard to be remodeled by cells (Partlow et al., 2014). In

order to overcome the challenges for cell encapsulation, different

alternative crosslinking techniques have been explored for cell-

laden SF hydrogels, such as chemical crosslinking, enzymatic

crosslinking and other redox-based crosslinking, among which

photo-triggered crosslinking technique exhibit great potential

(Raia et al., 2017; Cui et al., 2020). Cui et al. (Cui et al., 2020)

developed a rapid photoredox crosslinking technique to fabricate

SF hydrogel, which allowed high cell densities (15 million cells/

mL) for cell encapsulation and retained high cell viability (>80%)

simultaneously. The photocrosslinked SF hydrogel could reduce

spontaneous transition to ß-sheet and possess more stable

mechanical properties, demonstrating the immense potential

of this crosslinking system for biofabrication and tissue

regeneration.

3.3 Silk fibroin hybrid porous structures

Porous SF scaffolds include flat structures and sponge-like

structures. Flat structures can be formed by fibers and exhibit

porous characteristic. Almost all the reported fibers are fabricated

by electrospinning, and only a few are achieved by knitting

machines (Shi et al., 2013; Biagiotti et al., 2022) or spray-

drying/pressing (Dong et al., 2020). Sponge-like structures are

the most common reported format as porous scaffolds, showing

3D porosities (Hollister, 2005). Sponge-like structures can be

achieved by directional temperature field freezing technology

(Wang et al., 2020), salt leaching (Samal et al., 2015; Yan et al.,

2015), sonication (Gholipourmalekabadi et al., 2015), 3D-

printing (Jia et al., 2019), crosslinking (Teimouri et al., 2015;

Aliramaji et al., 2017) and combination of layer-by-layer process

and freeze drying (Jia et al., 2019). The pore sizes of freeze-dried

sponges are below 100 μm, but they can be controlled by

changing solvents, pH and temperature (Kundu et al., 2013).

Via particle leaching, solvent casting or gas-foaming techniques,

the pore structures can be better controlled (Harris et al., 1998).

4 Modifications of silk fibroin hybrid
scaffolds for osteogenesis

The plain SF scaffolds exhibit limited osteogenic activity.

Modifications should be carried out to enhance osteogenic

activity of plain SF scaffolds. In this part, we classify different

modification methods in to three kinds: composition adjustment,

structure design and surface modification.

4.1 Composition adjustment of silk fibroin
hybrid scaffolds

4.1.1 Silk fibroin/inorganics hybrid scaffolds
The bioactive inorganic components applied to form SF/

inorganics hybrid biomaterials include CaP (Gupta et al., 2016;

Shao et al., 2016; Ribeiro et al., 2018), graphene oxide (GO) (Balu

et al., 2018; Wang et al., 2018), titanium dioxide (TiO2) (Pan

et al., 2014; Johari et al., 2018a), silica (SiO2) (Mieszawska et al.,

2010; Maleki et al., 2019) and bioactive glass (BG) (Bidgoli et al.,

2019; Du et al., 2019).

The CaP, SiO2, TiO2, and BG components can be classified

into ceramic biomaterials, exhibiting osteoconductivity, good

compression and corrosion resistance, among which HAP has

been most applied (Wu et al., 2022). HAP has similar structure

and chemical composition with natural bone, which allows

them to provide a biomimetic interface for facilitated

osseointegration. Ko et al. (2018) integrated HAP with SF

scaffolds via blending and alternate soaking, and the

modulus was over two times of plain SF scaffolds, which

also induced better osteogenic differentiation of human

adipose-derived mesenchymal stem cells (hADMSCs) and

bone regeneration of calvarial defects (Figure 3). SiO2 and

BG are also promising for bone regeneration, whose

degradation products show osteoconductive properties
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(Nikolova and Chavali, 2019). Combining TiO2 nanoparticles

with SF scaffolds can facilitate scaffolds with better

biocompatibility and osteoconductivity, where TiO2 can help

SF hybrid scaffolds to mechanically interlock with bone tissues

and promote cell attachment and proliferation (Johari et al.,

2017). TiO2 can also enhance the mechanical properties of

FIGURE 3
In vivo evaluation of the HAP-functionalized SF scaffolds. (A) 3D images of the regenerated calvarial defects treated by different scaffolds and
quantitative evaluation. (B) Goldner’s trichrome staining of regenerated calvarial defects. (C) Osteopontin immunofluorescence staining of
regenerated calvarial defects after different treatments. (Ko et al., 2018) Copyright 2018 American Chemical Society.
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hybrid biomaterials via facilitating the formation of ß-sheet

structure (Pan et al., 2014).

GO is one of graphene derivatives, showing good

biocompatibility and osteogenic activities, which is another

important inorganic component for SF modification. The

great advantage to incorporate GO into SF scaffolds is the

improvement of mechanical property (Balu et al., 2018).

Moreover, SF/GO hybrid scaffolds also show improved

biocompatibility and antibacterial property (Wang et al.,

2018). Shuai et al. (Shuai et al., 2018) developed SF/GO

matrix to evaluate its effect on stem cell fate, where the

modulus increased with introduction of GO and the unique

topography could promote early adhesion and osteogenic

differentiation of hMSCs without additional inducers.

4.1.2 Silk fibroin/organics hybrid scaffolds
The bioactive organic components applied to form SF/

inorganics hybrid scaffolds include synthetic and natural

polymers, such as polycaprolactone (PCL) (Bhattacharjee

et al., 2016; Cengiz et al., 2019; Cengiz et al., 2020), collagen

(Shi et al., 2017; Bandyopadhyay and Mandal, 2020), CS (Bissoyi

et al., 2018), cellulose (Lee et al., 2013; Barud et al., 2015), alginate

(ALG) (Zhang et al., 2015; Patil and Singh, 2019) and so on.

PCL is one of main synthetic polymers applied in SF hybrid

scaffolds (Dong et al., 2021). The as-prepared scaffolds possess

the osteoconductive effect of SF and osteogenic effect of PCL

simultaneously, making it excellent for bone regeneration (Li

et al., 2020). Bhattacharjee et al. (Bhattacharjee et al., 2016)

fabricated SF/PCL nanofibers via electrospinning, where the

tensile strength increased by about one fold and the

osteogenic differentiation was enhanced compared with plain

PCL scaffold.

Introduction of natural polymers seems a feasible

approach to enhance cell attachment and osteogenesis due

to their favorable biocompatibility and biofunctional

components (Wang et al., 2016). SF/collagen and SF/gelatin

hybrid scaffolds can exhibit excellent biocompatibility and

ECM-mimicking structure, which is able to accelerate the

bone formation (Bharadwaz and Jayasuriya, 2020; Wu

et al., 2021). SF/CS scaffolds also have great potential in

bone regeneration due to the bioactive RGD sequence

(Bissoyi et al., 2018). Meanwhile, the combination of

cellulose with SF can improve the biodegradability and

provide more space for bone regeneration (Ni et al., 2020).

Introducing ALG into SF scaffolds can be a promising

approach to overcome the poor cell-adhesive property of

ALG and the ALG can replace the role of gelatin with

lower cost (Patil and Singh, 2019). Perteghella et al.

(Perteghella et al., 2017) developed ALG/SF microcarriers

with spherical geometry and average diameter of 400 μm,

where MSCs adhered rapidly and preserved their potential

of multi-lineage differentiation in this innovative 3D culture

system.

4.2 Structural design of SF hybrid scaffolds

4.2.1 Films
The favorable performance of SF film makes it a promising

strategy for bone regeneration. Li et al. (2022) combined SS and

SF to fabricate hybrid films and the breaking strength and

breaking elongation increased significantly, which also

exhibited faster and well-regulated HAP deposition rate than

plain SF films. Furthermore, topographical pattering of SF films

can help to achieve better osteogenic performance in vivo. Sayin

et al. (2017) prepared collagen/SF hybrid films with

microchannel patterns, and human osteoblasts and adipose-

derived stem cells (ADSCs) were seeded and aligned on the

ridges and in the grooves of the patterned film, where stimulate

anisotropic osteogenesis was simulated.

Notably, SF film is also an effective barrier to avoid collapse

of surrounding soft tissues into the defect cavity and ensure the

successful bone repair. Smeets et al. (2017) evaluated three

different SF films and commercial collagen membranes.

Compare to collagens, the lower resorbability of SF

membranes could promote bone regeneration for a longer

period. Therefore, SF films are able to meet some special

demands of bone regeneration.

4.2.2 Porous scaffolds
Porous SF scaffolds have ideal structures for bone

regeneration due to their great similarity to the in vivo

microenvironment. Varkey et al. (2015) compared the impact

of different SF structures on MG63 cell attachment and

proliferation. The sponge structure showed the highest

porosity of 67% and could maintain its structural integrity,

where the secreted collagen also increased with culture time,

demonstrating the increasing production of ECM. Correia et al.

(2012) also fabricated SF porous scaffolds with different pore

sizes to investigate their effects, where the SF scaffold with

400–600 μm pore sizes showed better HAP deposition and

expression of osteogenic proteins, and further promoted bone

tissue formation, demonstrating the importance of scaffold’s

pore structures.

However, the mechanical properties of SF porous scaffolds

are not satisfying, which limits its application in load-bearing

locations. To obtain better mechanical and biological

outcomes, external components have been incorporated

with SF porous sponges (Kundu et al., 2013). Gupta et al.

(2016) fabricated a biomimetic, osteoconductive tricomposite

scaffold using HAP, SF fiber from Antheraea assama and its SF

solution. The SF-reinforced tricomposite scaffolds exhibited

about 5-fold higher compressive modulus and better

osteogenic capacity. Therefore, SF-based biomimic porous

scaffolds with tough mechanical properties are promising

in application of bone regeneration. However, it is still

insufficient for load-bearing bone and further investigations

should be carried out.
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4.2.3 Hydrogels
Due to the similarity to microenvironmental of natural

tissues, hydrogels have remarkable advantages in bone

regeneration (Liaw et al., 2018). SF hydrogels have been

widely developed via various crosslinking techniques. Ding

et al. (2017) fabricated an injectable SF-based hydrogel via the

combination of water-dispersible SF-HAP nanoparticles and the

thixotropic SF nanofiber hydrogel. This nano-scale hydrogel

system with homogeneously-distributed HAP nanoparticles

showed good biocompatibility and osteogenesis in vitro, as

well as better bone formation in vivo (Figure 4). Ribeiro et al.

(2015) combined SF and nano HAP to develop hybrid hydrogels

with favorable porosity, mechanical properties and

osteoconductivity, which improved cellular metabolism and

ALP activity of MG63 cells. These researches have proved the

efficiency of SF hybrid hydrogels to induce bone regeneration.

Furthermore, SF hydrogels are ideal drug carriers. An

injectable SF-based hybrid hydrogel prepared by

FIGURE 4
Immunofluorescence staining and histological analysis of osteogenic capacity in vitro and in vivo. (A) ALP expression after 7 days in different
hydrogels. (B)OCN expression after 21 days in different hydrogels. (C)OPN expression after 21 days in different hydrogels. The nucleus was stained
blue by DAPI and the F-actin was stained red by tetramethylrhodamine (TRITC) conjugated to phalloidin, while ALP, OCN, and OPN were stained
green by antibodies conjugated with fluorescein isothiocyanate (FITC). (D)HE and immunohistochemistry staining of OCN andOPN in different
hydrogels. (Ding et al., 2017) Copyright 2017 American Chemical Society.
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Roohaniesfahani et al. (2019) exhibited the capacity to release

bioactive silicon, strontium, and magnesium ions simultaneously

to promote osteogenesis and angiogenesis. The seeded

osteoblasts showed promoted cell proliferation, ALP activity,

and enhanced osteogenic gene expression compared to plain

SF hydrogel. The in vivo results exhibited decreased fibrous

capsule formation and increased new blood vessels around the

hydrogel. Besides, multiple SF hydrogels have been prepared to

improve their osteogenic capacities with sustainable release of

bioactive factors (Ding et al., 2019; Avani et al., 2020; Zarrin et al.,

2022). Therefore, SF hydrogels exhibit significant advantages

when serving as bioactive scaffolds for bone repair both as

matrices and carriers.

4.3 Surface modification of SF hybrid
scaffolds

4.3.1 Physical modification
Physical modifications of SF scaffolds include ultraviolet

(UV) treatment, gas treatment and plasma treatment (Lau

et al., 2020). UV irradiation of SF scaffolds can increase

wettability and improve cell adhesion without obvious

weight loss, crystallinity change and strength decrease (Li

et al., 2012; Khosravi et al., 2018). As a powerful oxidizing

agent, ozone (O3) gas treatment can increase the pliability of

SF scaffolds because of the oxidation of amino acid residues

(Li et al., 2012). Plasma treatment of SF scaffolds by different

working gases (SO2, NH3, and O2) can increase the

antithrombogenicity and cellular activity, making it a

potential modification technique for bone regeneration

(Uchida et al., 2014; Ribeiro et al., 2016). Wang et al.

(2019) used a unique vacuum UV/O3 activation method to

treat SF film, which improved the biocompatibility with

BMSCs and osteogenesis in vivo. Kondyurin et al. (2018)

applied plasma immersion ion implantation (PIII) to treat

SF scaffold and receive a carbon-rich structure, which

enhanced its interaction with both proteins and cells and

exhibited significantly higher levels of cell adhesion and

proliferation.

4.3.2 Chemical modification
Considering the active groups of peptide chains, SF scaffolds

have plenty of active modification sites, which allows different

techniques for chemical modification, such as grafting

copolymerization techniques and introduction of chemical

agents (Murphy et al., 2008; Zhou et al., 2017; Zhou et al.,

2018). Hardy et al. (2018) used a simple and rapid

photochemical modification technique to initiate the

polymerization and thus decorated the SF scaffolds with poly

(acrylic acid) (PAA), poly (methacrylic acid) (PMAA), and poly

(allylamine) (PAAm). The results showed that the PAA- and

PMAA-functionalized SF scaffolds can be well-mineralized,

indicating their potential in bone regeneration.

In term of 3D bioprinting of SF hydrogels, modification of

vinyl-containing functional groups can help accelerate

crosslinking process, especially methacrylate, which can make

as-prepared glycidyl-methacrylate-modified SF (SF-MA)

hydrogels photocurable. Barroso et al. studied the effect of the

SF-MA solution pH on the properties of SF-MA hydrogels, where

the SF-MA prepared at pH 5 exhibited better mechanical

properties than that prepared in pH 7 and 8, and the

hydrogel pH did not affect the good biocompatibility of as-

prepared SF hydrogels.

4.3.3 Surface functionalization
As for SF scaffolds, it is necessary to further improve

osteogenesis especially in the repair of critical-sized or weight-

bearing bone defects. Bioactive components and cells loaded on

SF scaffolds have received increasing attention in bone

regeneration. Different cytokines, drugs and pre-cultured cells

can directly regulate cell behavior and promote bone

regeneration.

During cell recruitment, proliferation and osteogenesis,

cytokines play an important role (Lei et al., 2021; Wu et al.,

2021). Loading cytokines on SF scaffolds is a promising method

to direct cell differentiation and promote bone formation,

including BMP-2 (Niu et al., 2017; Song et al., 2018), stromal-

derived factor-1 (SDF-1) (Shen et al., 2016), VEGF (Besheli et al.,

2018; Fitzpatrick et al., 2021), DFO (Wang et al., 2017; Ding et al.,

2019) and so on. Fitzpatrick et al. (2021) generated multi-

functionalized 3D-printed SF/HAP scaffolds loading BMP-2.

VEGF and neural growth factor (NGF) to accelerate bone

regeneration. The modulus of as-prepared scaffolds

significantly increased and the expression of osteogenesis-

related genes (Runx2, OPN, bone sialoprotein) was up-

regulated by the synergistic enhancement of three factors.

Infection and inflammation are significant challenges during

bone regeneration. Drug-loading SF scaffolds seem a promising

strategy to overcome these problems with application of

antibacterial and anti-inflammatory drugs, such as gentamicin

(Sharma et al., 2016), vancomycin (Besheli et al., 2017), Ag

nanoparticles (AgNPs) (Zhou et al., 2017), dexamethasone

(Moses and Mandal, 2022) and so on. Notably, combination

of AgNPs and conventional antibiotics can achieve stronger

antimicrobial performance and thus promote bone

regeneration. Zhou et al. (Zhou et al., 2017) loaded AgNPs/

gentamicin on SF scaffolds with the assistance of polydopamine,

where AgNPs and gentamicin effectively inhibited adhesion and

proliferation of S. aureus, and improved cell adhesion,

proliferation and osteogenic differentiation simultaneously.

(Figure 5). However, it still remains a challenge to avoid rapid

drug releasing and obtain sustainable release and

functionalization in vivo.
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Besides, BMSCs and ADSCs are often seeded on SF

scaffolds before implantation as bioactive components

due to their differentiation potential. Plenty of researches

indicated that pre-cultured BMSCs could

effectively promote bone regeneration (Herrmann et al.,

2015; Gao et al., 2016). Similarly, ADSCs exhibit

anticipated osteogenic performance in different SF

scaffolds, where ADSCs-loaded SF scaffolds can

promote biomineralization and bone formation (Chen

et al., 2016; Sartika et al., 2020). However, ADSCs alone

are hard to achieve ideal differentiation towards

osteoblasts without bioactive molecules or factors. It is

essential to apply bioactive components as osteogenic

inducers.

5 Conclusion and outlooks

SF scaffolds exhibit great potential in bone regeneration due to

advantages of biocompatibility, biodegradability, mechanical

strength and structural adjustability. With the rapid

development of modern technology, a wide range of techniques

has been employed to fabricate different types of SF scaffolds, such

as films, porous scaffolds and hydrogels. For better

functionalization and osteogenesis, SF scaffolds have been

modified with plenty of components to maximize its

mechanical and biological functional properties, such as

angiogenesis, antibiosis, antiinflammation and cell-laden

capacity. Based on recent technical advances in fabrication of

SF scaffolds, researchers can better design and fabricate SF

FIGURE 5
Antibacterial activities and biocompatibility of AgNPs/gentamicin-loaded SF scaffolds. (A) Quantitative evaluation of S. aureus cultured on
different samples after 24 h (B) MC3T3 cell morphologies detected by fluorescent staining of FITC and DAPI (Zhou et al., 2017). Copyright
2017 American Chemical Society.
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scaffolds according to practical demands of bone regeneration.

Especially, with the development of 3D bioprinting, it has been

feasible to achieve accurate shape and structures according the

bone defects, which can accommodate living-cell patterning to

mimic native bone tissues. These encouraging advancements have

open up new opportunities in the application of SF scaffolds in

bone regeneration, where controllable biodegradation and good

mechanical properties are critically required.

Furthermore, SF hybrid scaffolds are able to simulate the natural

bone microenvironment and promote osteogenesis with the help of

well-designed structures, bioactive components and functional

surface modification. However, there still lack sufficient studies on

evaluation of SF scaffolds in big animalmodels such as dogs and pigs,

which is necessary before future clinical applications. Meanwhile,

considering their long-term close contact with tissues and the

potential cytotoxicity and immunogenicity related to degradation

products, it is vital to resolve the concerns of long-term in vivo safety

of SF scaffolds. Therefore, although various techniques have been

developed, it still needs more deep investigations to achieve

comprehensive understanding of SF scaffolds.

Notably, although SF scaffolds have been investigated for a

long time, it still has not been approved by regulatory authorities

for any clinical application in bone regeneration. The clinical

translation of such a Class III medical device can be quite time

and cost-consuming and the translation process from bench to

bedside is still unfamiliar to most researchers. So far, no clinical

trials of SF scaffolds for bone regeneration have been registered in

ClinicalTrials.gov or reported. Taken together, to promote better

clinical translation of SF scaffolds for bone regeneration, more

efforts should be carried out.

• More comprehensive investigations are required for deeper

understanding of the degradation and clearing mechanisms

of different SF scaffolds.

• More high-quality researches are in demand for further

investigation on the degradation products of SF scaffolds to

resolve concerns on the clinical use of SF scaffolds.

• More comprehensive translational researches for SF

scaffolds are needed to make further steps to realize

effective clinical translation, especially experiments in big

animal models and clinical trials.

Overall, SF scaffolds are promising candidates to promote

osteogenesis and have great potential in the field of medical

devices for bone regeneration. This review intends to reveal the

interaction between SF scaffolds and hosts’ cells and tissues, as

well as up-to-date research status, which provides a deep and

comprehensive insight into SF scaffolds for bone regeneration. It

will help provide strong evidence to support the development

and improvement of SF scaffolds for superior osteogenic

performance.
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