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Temporomandibular joint osteoarthritis (TMJOA) is a debilitating degenerative

disease with high incidence, deteriorating quality of patient life. Currently, due

to ambiguous etiology, the traditional clinical strategies of TMJOA emphasize

on symptomatic treatments such as pain relief and inflammation alleviation,

which are unable to halt or reverse the destruction of cartilage or subchondral

bone. A number of studies have suggested the potential application prospect of

mesenchymal stem cells (MSCs)-based therapy in TMJOA and other cartilage

injury. Worthy of note, exosomes are increasingly being considered the

principal efficacious agent of MSC secretions for TMJOA management. The

extensive study of exosomes (derived from MSCs, synoviocytes, chondrocytes

or adipose tissue et al.) on arthritis recently, has indicated exosomes and their

specific miRNA components to be potential therapeutic agents for TMJOA. In

this review, we aim to systematically summarize therapeutic properties and

underlying mechanisms of MSCs and exosomes from different sources in

TMJOA, also analyze and discuss the approaches to optimization,

challenges, and prospects of exosome-based therapeutic strategy.
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Introduction

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative

temporomandibular arthropathy characterized by progressive cartilage degeneration,

abnormal subchondral bone remodeling and obvious synovitis (Scrivani et al., 2008;

Toller, 1973). Due to the severe concomitant symptoms such as difficulties in chewing,
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acute or chronic pain, and even maxillofacial deformities, it

severely deteriorates the quality of patient life and leads to the

large resultant socioeconomic burden. Joint cartilage is

composed of chondrocytes and extracellular matrix like

collagen fibers, proteoglycans, and hyaluronic acid. Feature of

avascular structure of cartilage is detrimental to the exchange of

available signaling molecules, migration of progenitor cells, and

adequate supply of nutrients and oxygen, resulting in the

inability of damaged cartilage tissue to regenerate effectively

(Chen et al., 2020). Because of the limited self-healing ability

of cartilage, it has become one of the most difficult joint diseases

to treat. Compared with other joints in the body,

temporomandibular joint has its own characteristics (Macedo

et al., 2017; David and Roberts, 2018). Besides, the layer of

hyaline cartilage covering generalized joints mainly contained

type II collagen, but the cartilage of TMJ is fibrocartilage, which is

a kind of cartilage composed of both type I collagen and type II

collagen. Because of the structural differences, there will be some

differences in treatment strategies when the disease occurs. The

cartilage of TMJ has better multidirectional bearing capacity and

more dense fibers, which are not easy to degrade and are less

affected by aging (Schwartz et al., 2015; Chandrasekaran et al.,

2021). However, when it is damaged, the difficulty of restoring

normal structure (Kuo et al., 2011). Numerous studies have

confirmed that it is a pathological state affected by multiple

factors (Figure 1). Excessive mechanical stress is a major factor

leading to cartilage rupture in TMJ (Su et al., 2014; Huang et al.,

2021; Ootake et al., 2021). Uneven stress distribution in TMJ

caused by occlusal disorder was reported to induce the

hyperactivity of osteoclasts in subchondral bone. Researchers

have demonstrated that inflammation is one of the risk factors of

TMJOA (Li et al., 2019a; Li et al., 2019b; Luo et al., 2019; Lei et al.,

2022). Liu detected synovial fluid from TMJOA patients and

found that the level of inflammatory cytokines was significantly

increased.16 Moreover, genetic factors and age-related reduction

of host-adaptive capacity are also vital in TMJOA (Xu et al., 2003;

Yamaguchi et al., 2014). It is because of the specificality of TMJ

structure and the ambiguity of etiological mechanism that the

treatment of TMJOA has been set up a huge obstacle.

To date, treatment strategies for TMJAO are symptomatic

and limited (Figure 1), only to reduce inflammation and relieve

pain (Thie et al., 2001). Traditional clinical treatments can stop

the progression of the disease to some extent, but they cannot

actively restore degraded cartilage or damaged subchondral bone

(Derwich et al., 2021; Liu Q. et al., 2022; Matheus et al., 2022).

Novel radical therapies for osteoarthritis are urgently required. In

recent years, cell-based disease treatment strategies have raised

considerable concerns, especially mesenchymal stem cells

(MSCs) -based therapies (Matheus et al., 2022). Abundant

native MSCs are present in multiple niches in the joint,

including subchondral bone, synovial fluid, and adipose tissue.

In the last decade, increasing evidence has suggested that MSCs

have great potential in the treatment of osteoarthritis. BMSCs

have suggested promising therapeutic efficacy for TMJ cartilage

repair (Ciocca et al., 2013). Although the role of MSCs in the field

of disease treatment cannot be ignored, we still need to

comprehensively understand its non-negligible bottlenecks as

cell therapy strategies. The host exhibited immunological

tolerance toward implanted MSCs and had a potential risk for

malignancies, which might also pose a risk to immunological

cells for controlling an inflammatory milieu (Lalu et al., 2012).

Therefore, it is inevitable to find an alternative approach to solve

the dilemma faced by MSC-based therapy. Numerous studies

have summarized the bio-effect of MSCs is increasingly

attributed to paracrine signaling to transfer its cargo to the

body, among which exosomes are a vital carrier for message

in many biological and pathological processes. Exosomes provide

new perspectives for the development of cell-free and ready-to-

use therapy for treatment of cartilage lesions and TMJOA.

Herein, the present review was aimed at discussing the

therapeutic potential and corresponding mechanism of MSCs,

the biological properties of exosomes derived from diversified cell

sources, and advances in our knowledge of their emerging roles

in managing TMJOA. We also discussed the detailed exosome-

based tissue engineering strategies of TMJOA therapy in the hope

FIGURE 1
Pathogenesis and treatment strategies of TMJOA. TMJOA is a
degenerative temporomandibular arthropathy characterized by
progressive cartilage degeneration, abnormal subchondral bone
remodeling and obvious synovitis. It is a pathological state
affected by multiple factors. Traditional clinical strategies of
TMJOA emphasize on symptomatic treatments and are unable to
halt or reverse the destruction of cartilage or subchondral bone.
MSCs and exosomes are highly promising for TMJOA alleviation.
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of providing inspiration for future investigations. Particularly, we

proposed novel perspectives for the development and

implementation of exosomes as a cell-free regenerative

medicine therapeutic strategy for cartilage repair in TMJOA

and discussed future opportunities and challenges in this

exciting field.

Mechanisms ofMSCs in the treatment
of TMJOA

Since MSCs first discovery by Friedenstein (Friedenstein

et al., 1982), they are commonly used in the treatment of

various diseases, including TMJOA. We conducted a literature

review and found that the application of MSCs in osteoarthritis

was first reported in 1995, and more and more related research is

being carried on, with over 89% of the published in the recent

10 years (Figure 2).

When TMJOA occurs, the dynamic balance between

chondrocyte matrix anabolism and catabolism is disrupted,

accelerating the progression of the disease (Weng et al., 2017).

Zhang et al. (2017) reported BMSCs reversed the loss of cartilage

matrix associated with osteoarthritis and enhanced scavenging

activity of the degraded matrix in deep zone chondrocytes. Lu

et al. (2015) also found that the implanted GFP-BMSCs

differentiated into COL2-positive cells and relieved matrix

degradation in TMJOA. It was indicated that human umbilical

cord matrix-mesenchymal stem cells (hUCMSC) showed

prominent cartilage protective effect and effective cartilage

regeneration potential (Kim et al., 2019). Moreover, Maria

revealed scaffolds loaded with dental pulp mesenchymal stem

cells (DPSCs) effectively supported abundant fibrocartilaginous

tissue formation. Besides, other MSCs, such as adipose-derived

mesenchymal stem cells (ADMSCs) (Ahtiainen et al., 2013) and

synovial fluid derived mesenchymal stem cells (SFDMSCs)

(Koyama et al., 2011), have also been indicated to alleviate

TMJOA by participating in cartilage matrix metabolism.

Uncoupled remodeling of subchondral bone is another

pathological feature contributed to TMJOA (Jiao et al., 2011;

Yang et al., 2014; Zheng et al., 2018; Ibrahim et al., 2019). Human

exfoliated deciduous teeth stem cells (SHED)markedly improved

surface smoothness and bone integrity of the destroyed condylar

in TMJOA mice (Chen et al., 2013). Chen K investigated MSC-

treated groups demonstrated pronounced micro-architectural

changes of the subchondral bone (Tanaka et al., 2008). In

addition, it was reported that the migration of BMSCs

restored subchondral bone loss in mice with TMJOA (Lu

et al., 2015).

Evidence has suggested that sustained inflammation is

involved in the onset and progression of TMJOA (Liu W.

et al., 2017). When stimulated, immune cells in inflammatory

microenvironment release inflammatory factors to affect the

matrix metabolism of chondrocytes to deteriorate TMJOA

(Tanaka et al., 2008) and are also in close correlation with

sensory neuron hyperexcitability to induce the pain of

TMJOA (Magnano et al., 2007; Ou et al., 2021). Buul et al.

found the decreased expression of IL-1β, MMP-1 and MMP-13

in synovial explants when cultured with MSCs conditioned

medium (Van Buul et al., 2012). It was recently shown that

BMSCs injection into the bilateral TMJ region significantly

FIGURE 2
Status of MSCs and exosomes research inOA. (A) The annual number of publications related toMSCs research inOA in the past 27 years. (B) The
annual number of publications related to exosomes research in OA in the past 15 years.
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reversed high levels of TNF-α and IL-1β in TMJOA (Lu et al.,

2015). This is further supported by Hyunjeong Kim’s study (Kim

et al., 2019). The self-assembled peptide hydrogels accelerated

tissue regeneration by anti-inflammatory modulation (Kim et al.,

2016).

Inflammation and immunity go hand in hand (Bartholomew

et al., 2002; Koliaraki et al., 2020; Lim et al., 2021; Pham et al.,

2021). In the pathogenesis of inflammatory diseases,

dysregulation of the host immuno-inflammatory response is

one of the important predisposing factors (Theill et al., 2002;

Hernández et al., 2011). Similarly, Monasterio proposed

cytokines, CCLs and CCRs of the Th1/Th17/Th22 axis were

involved in TMJOA pathogenesis (Monasterio et al., 2018). A

large number of studies have shown that MSCs regulate innate

and acquired immunity in the treatment of OA (Yu et al., 2016).

Tang et al. (2021a) reported that hUCMSCs protected cartilage

from injury by regulating the macrophages polarization and

affecting the joint immune microenvironment, but notably,

there was a stronger regulation ability of immune effector

process in hUCMSCs-exosomes treatment group.

In recent years, although the efficacy of MSCs in treating

TMJOA has been widely studied in animal studies and human

clinical trials, in fact, the problems encountered in clinical

application have been deeply troubling researchers (Table 1).

Donor’s age affects the intrinsic activity and functionality of

obtained cells (Kim et al., 2020). The lack of standardization for

large-scale cell production results in inconsistent cell quality after

expansion. Additionally, the senescence and dedifferentiation of

cells during the expansion in vitro will also affect potential and

increase the risk in the application (Siddappa et al., 2007). More

cautiously, there is a potential of tumorigenicity (Le et al., 2012;

Waterman et al., 2010). Moreover, the issue of cell storage is also

a bottleneck of MSC-based strategy. Whether the biological

activity of MSCs will be affected after repeated

cryopreservation is a great question to be considered in

future. It is noteworthy that there is a paradigm shift that,

rather than direct differentiation to cells of the target tissue,

the therapeutic efficacy of MSCs in tissue repair and regeneration

is predominantly attributed to paracrine signaling, particularly

exosomes (Mayourian et al., 2018; Li et al., 2019; Mori et al., 2019;

Zhang et al., 2019; Zhou Q.-F. et al., 2020). Therefore, exosome-

based therapeutic strategy of TMJOA may be a promising

substitute for MSC-based therapy.

Characteristics of exosomes

It was not until 2006 that Ratajczak proposed for the first

time that mRNA could be delivered by membrane-derived

vesicles (MV) released from the surface of activated eucaryotic

cells and exert positive effects on surrounding cells (Ratajczak

et al., 2006). Exosome-mediated transfer of RNAs was suggested

as a novel mechanism of genetic exchange between cellsT
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(Waterman et al., 2010), occurring within the microenvironment

or at a distance by traffic of exosomes. Exosomes are the smallest

in size ranging from 40 to 160 nm in diameter among the three

main subcategories of extracellular vesicles (EVs). Exosomes of

different cell origin carry their own various bioactive molecules,

containing different types of proteins, DNAs, mRNAs,

microRNAs, lipids, metabolites and so on. It is the diversity of

contents that illustrates the diversity of exosome functions

(Valadi et al., 2007). They are ubiquitously involved in the

basic processes of innate and adaptive immunity and

immune-mediated disease processes (Garikipati et al., 2018). It

was shown that miR-21-5, as a lead cardioactive MSC-exosomal-

microRNA, mediated effects on increasing engineered cardiac

tissues contractility and was suggested as a specific molecular

target for optimizing cardio-therapies (Mayourian et al., 2018).

In recent years, increasing studies have been conducted on the

application of exosomes in the treatment of neurological diseases

(Budden et al., 2021; Xu et al., 2017; Rufino-Ramos et al., 2017).

More attention should also be paid to bottlenecks in exosome

treatment, including the limitation of increasing exosome

production, the difficulty of analyzing the effective

components of exosomes and the better improvement of the

functions of the active component. Encouragingly, the problems

of exosomes faced in the diseases therapy have been gradually

handled via various biotechnology modifies. The composition

and secretion of exosomes are affected by the environment and

signals of donor cells, including hypoxia, heat, and

pharmacological intervention (Pegtel et al., 2010; Fan et al.,

2020). Therefore, changing the culture conditions of donor

cells can meet the clinical needs of exosomes in treating

diseases. Because exosomes are excellent carriers, the direct

insertion of miRNA mimics or siRNAs into exosomes through

electroporation (Ma et al., 2018) and electric pulses (Yang et al.,

2020) has attracted the attention of many researchers. By

modifying exosomes membrane through genetic manipulation

strategy by biotechnology, exosomes can reach the target cells

and tissues according to the predetermined route and play a more

specific role (Kanki et al., 2011; Wang et al., 2018). The

intersection between different cells exosomes and

chondrocytes offered a new insight into the pathogenesis and

treatment of degenerative joint diseases. Many studies have

proposed that exosomes play an irreplaceable role in the

treatment of TMJOA. In the following section, we

summarized the current studies on the therapeutic effects of

exosomes from various cells in TMJOA.

Functional mechanisms and potential
therapeutics of exosomes in TMJOA

The different responses of recipient cells to exosomes are

mainly due to the heterogeneity of exosomes, including their

inconsistent expression of cell surface receptors and different

contents. It means that exosomes from different cells have

different effects on the same type of cell and the same

exosome may also have inconsistent or even contradictory

effects on different target cell types or target tissues66

(Table 2). More and more researchers attempt to obtain

diversified exosomes and apply them in OA treatment to have

a deeper understanding of the occurrence and development of

OA and hope to find more novel targets in molecular

mechanisms of TMJOA treatment (Figure 3). To date, an

increasing amount of literature has indicated that exosomes

from different sources (Figure 2), such as MSCs,

chondrocytes, and synovial fluid in TMJ cavity, are reportedly

important in the treatment of TMJOA. In recent years,

researchers have focused on identifying effective constituents

in exosomes, such as miRNA, for the treatment of TMJOA, with

a view to obtain a more direct, effective, and targeted therapeutic

strategy.

MSCs-derived exosomes

BMSCs have been used the earliest to treat various diseases

because of their outstanding biological characteristics (Li et al.,

2012; Li et al., 2020; Dubus et al., 2022). Certainly, BMSCs-

derived exosomes have also been demonstrated to be ideal agents

for the treatment of osteoarthritis. He Lei investigated BMSCs-

exosome stimulation obviously reversed the inhibition effect of

IL-1β on the proliferation and migration of chondrocytes,

significantly upregulated the expression of COL2A and

downregulated MMP13 in vitro and vivo (Armiñán et al.,

2010). Although the previous studies were less homogenous

due to problems with dose, injection frequency and

management timing, one of the therapeutic functionalities of

MSC-derived exosome is anti-inflammatory efficacy in

promoting functional recovery of matrix metabolism

homeostasis. After evaluation of the influences on injections

of embryonic stem cell-derived-exosomes in TMJ-OA induced

by monosodium iodoacetate (MIA), the underlying molecular

mechanisms of exosome-mediated matrix homeostasis in TMJ

injury repair and cartilage regeneration were clearly elucidated

(Zhang et al., 2019). The obstacle of S-GAG synthesis induced by

IL-1β was broken by the exosome treatment. Also, consistent

with previous experiments, MSCs exosomes reduced

inflammation by suppressing NO and MMP13. Together,

MSCs derivative exosomes inhibit cartilage degeneration and

TMJOA-induced pain by alleviating inflammation in the early

stage, and then promote matrix proliferation and expression as

well as the recovery of subchondral bone structure, and finally

achieve the repair and regeneration of the overall TMJ.

In addition to alleviating inflammatory events in TMJOA,

MSC-exosomes could also inhibit apoptosis of chondrocytes and

activation of the immunity (Cosenza et al., 2017; He et al., 2020;

Wang Y. et al., 2021). A study by Zhu revealed the exosomes from
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TABLE 2 Summary of Roles of Exosomes on Different Target cells in Osteoarthritis.

Target cell
type

Sources of
exosomes

Separation and
extraction

Dose and
delivery

Biological effects Underlying
mechanisms

Reference

Chondrocyte BMSCs Ultracentrifugation 20 μg, 40 μg in vitro;
40 μg/100 μl in
vivo-IA

Proliferation; Migration;
Matrix metabolism

Attenuate IL-1β-induced
inhibition on proliferation and
migration, downregulation of
anabolic markers, and
upregulation of catabolic markers

He et al.
(2020)

BMSCs Ultracentrifugation 12.5 ng, 125 ng,
1.25 µg in vitro;
250 ng/5 µl in vivo-IA

Matrix metabolism;
Apoptosis

Restore anabolic/catabolic
equilibrium; Anti-apoptotic effect

Cosenza et al.
(2017)

SMMSCs Ultracentrifugation 5 μg (10 ×
1011 particles/ml)
in vitro; 30 μ
(1011 particles/ml) in
vivo-IA

Catabolic metabolism Promote proliferation and
migration; Inhibited apoptosis

Wang et al.
(2020)

iPMSCs Ultrafiltration 108particles/ml
in vitro; 8 μl (1.0 ×
1010particles/ml) in
vivo-IA

Migration; Proliferation Enhance the motility; Stimulate
proliferation

Zhu et al.
(2017)

iPFPMSCs ExoQuick-TC kit;
Ultrafiltration

1, 5, or 10 × 108

particles/ml in vitro;
10 μl (1010 particles/
ml) in vivo-IA

Apoptosis; Migration;
Metabolism; Autophagy

Inhibit apoptosis and
promote anabolism; Enhance the
level of autophagy via inhibition of
mTOR pathway

Wu et al.
(2019)

Chondrocytes Ultrafiltration 10 µg/ml, 20 µg/ml
in vitro

Proliferation; Migration Enhance proliferation and
migration

Nikhil et al.
(2022)

Chondrocytes Ultrafiltration 200 μg/ml in vitro;
200 μg in vivo-IA

Metabolism;
Mitochondrial function

Restore chondrocyte metabolism;
Eliminate mitochondrial
dysfunction

Zheng et al.
(2019)

Chondrogenic
progenitor cells

Ultracentrifugation 108 particles/ml
in vitro; 8 μl (1.0 × 1010

particles/ml) in
vivo-IA

Proliferation; Migration Stimulate chondrocyte migration
and proliferation via MiR-221-3p

Wang et al.
(2020)

Fibroblast-like
synoviocytes

ExoQuick-TC Kit Not reported Proliferation; Migration;
Matrix metabolism

Exosomal lncRNA H19 promotes
cell viability and migration, and
protects against ECM degradation
by regulating miR-106b-5p and
TIMP2 expression

Tan et al.
(2020)

Platelet-rich
plasma

Ultrafiltration 200 µg/100 µl in vitro;
4 µg/2 µl in vivo-IA

Migration; Proliferation;
Apoptosis;
Degeneration

Promote proliferation, migration,
and IL-1β-induced apoptosis and
degeneration

Zhang et al.
(2022b)

Platelet-rich
plasma;
Hyperacute serum

Ultracentrifugation 1.42 × 109 ± 2.12 × 106

particles in vitro
Inflammation Elicit chondroprotective gene

expression; Inhibit inflammation
by reducing IL-6 secretion

Otahal et al.
(2020)

IL-1β-treated
chondrocytes

Ultracentrifugation 10 µg in vitro Catabolic metabolism Stimulate catabolic events Liu et al.
(2020)

OA sclerotic
subchondral bone
osteoblast

Ultracentrifugation 10, 20, 50 µg/ml
in vitro

Matrix metabolism;
Cellular bioenergetics;
Chondrocyte activity

Trigger the catabolic gene
expression; Suppress the oxygen
consumption rate via miR-210-5p

Wu et al.
(2021)

M2 phenotype
macrophages

CM Not reported Formation;
Differentiation

Downregulate chondrogenic-
specific genes; Upregulate
differentiation-related genes via
LncRNA MM2P-induced,
exosome-mediated transfer of
Sox9

Bai et al.
(2020)

miR-126-3p-
overexpressing
synovial fibroblasts

Ultracentrifugation 2 × 109 particles/ml
in vitro; 40 μl (500 μg/
ml) in vivo-IA

Proliferation; Colony
formation;
Inflammation

Suppress chondrocyte
inflammation and apoptosis

Zhou et al.
(2021)

ATF4-modified
serum

Ultrafiltration 10 μg/ml in vitro;
200 μg in vivo-IA

Proliferation; Apoptosis;
Autophagy;
Inflammation

Promote Proliferation and
autophagy; Inhibit apoptosis;
Decrease MMP13 and
inflammatory cytokines

Cosenza et al.
(2017)

(Continued on following page)
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induced pluripotent stem cells (iPMSCs) or synovial membrane

derived MSCs (SMMSCs) accelerated proliferation and

migration of chondrocytes (Tang et al., 2021b). Notably, there

was a proliferation promotion of chondrocytes in the co-culture

studies of chondrocytes and MSCs (Zhu et al., 2017). Zhang

found CD163+ cells of the cartilage overlying synovium in

exosome-treated defect increased but CD86+ cells decreased,

indicating higher M2 macrophages infiltration with a decline

in M1 macrophages (Wu et al., 2011). Inflammatory cytokines,

such as IL-1β, displayed a concomitant decrease like

M1 macrophages. The senescence of chondrocytes appears

generally during the progression of TMJOA (Clérigues et al.,

2012; Zhang et al., 2018; Varela-Eirín et al., 2022). A wide range

of evidence has shown that exosomes fromADMSCs declined the

presence of phosphorylated histone H2AX, relieved DNA

damage, restored the mitochondrial membrane changes and

oxidative stress, and inhibited OA osteoblast senescence

(Duarte, 2015). Additionally, numerous studies have indicated

that there is a close relationship between autophagy and cartilage

biology and the pathology of TMJOA (Almonte-Becerril et al.,

2010; Lotz et al., 2011; Jeon and Im, 2017; Tofiño-Vian et al.,

2017). It was demonstrated that infrapatellar fat pad (IPFP)

TABLE 2 (Continued) Summary of Roles of Exosomes on Different Target cells in Osteoarthritis.

Target cell
type

Sources of
exosomes

Separation and
extraction

Dose and
delivery

Biological effects Underlying
mechanisms

Reference

Macrophage Chondrocytes Ultrafiltration 200 μg/ml in vitro;
200 μg in vivo-IA

Immune reactivity Increase M2 macrophage
infiltration with a concomitant
decrease in M1 macrophages

Zheng et al.
(2019)

Osteoarthritic
chondrocytes

Ultrafiltration 200 μl, 108 particles/l
in vitro; 109 paritcals in
5 µl in vivo-IA

Inflammation;
Autophagy

Stimulate inflammasome
activation; Increase the
production of mature IL-1β via
miR-449a-5p/ATG4B-mediated
autophagy inhibition

Ni et al.
(2019)

Inflamed synovial
fluid

ExoQuick-TC Kit 7.5 × 109 particles/ml
in vitro

Inflammation; Matrix
metabolism; Immune
regulatory properties

Produce IL-1β and IL-16;
Stimulate the production of
CCL20, CCL15, and
CXCL1 chemokines; Release
MMP12 and MMP7

Domenis et al.
(2017)

Synovial
fibroblast

Apoptotic and
activated T cells
and monocytes

Differential
Centrifugation

5 × 103 microparticles,
5 × 104 microparticles,
5 × 105 microparticles
in vitro

Inflammation; Matrix
metalloproteinases

Increase the synthesis of
inflammatory mediators and
MMPs consistent with activation
of NF-κB

Distler et al.
(2005)

BMSCs ExoQuick-TC Kit 2 µg in vitro; 250 ng/
5 µl in vivo-IA

Proliferation; Apoptosis;
Inflammation

Weaken proliferation; Enhance
apoptosis of synovial fibroblasts
treated with IL-1β

Jin et al.
(2020)

TGF-β1-modified
MSCs

Extraction kit 100 μl (1 × 1011

particles/ml) in
vivo-IA

Polarization Promote M2 polarization via
carrying miR-135b targeting
MAPK6

Wang et al.
(2021)

Mesenchymal
stem cell

Chondrocytes Ultracentrifugation 10 µg in vitro Differentiation Promote chondrogenic
differentiation

Liu et al.
(2020)

BMSCs Ultrafiltration 200 μg/500 μl in
hydroge in vitro;
100 μg in vivo-IA

Migration; Proliferation;
Differentiation;
Recruitment

Promote proliferation, migration,
and chondrogenic differentiation;
Stimulate BMSC recruitment via
the chemokine pathways

Zhang et al.
(2017)

Platelet-rich
plasma

Ultrafiltration 200 µg/100 µl in vitro;
4 µg/2 µl in vivo-IA

Migration; Proliferation;
Differentiation

Promote proliferation, migration,
and chondrogenic differentiation

Zhang et al.
(2022a)

Tenocyte Ultracentrifugation 0.016, 0.08, 0.2, 0.4 μg
in vitro

Proliferation;
Differentiation

Induce the tenogenic
differentiation through TGF-β;
Promote proliferation

Xu et al.
(2019)

IL-1β-treated
chondrocytes

Ultracentrifugation 10 µg in vitro Differentiation Inhibit chondrogenic
differentiation

Liu et al.
(20117)

Endothelial cell IL-1β-stimulated
synovial fibroblasts

Ultracentrifugation;
ExoQuick-TC Kit

15 ml of conditioned
medium

Migration; Tube
formation activity

Promote migration and tube
formation activity

Kato et al

BMSCs, bone marrow mesenchymal stem cells; IA, intra articular; SMMSCs, synovial membrane mesenchymal stem cells; iPMSCs, induced pluripotent mesenchymal stem cells;

iPFPMSCs, infrapatellar fat pad mesenchymal stem cells; OA, osteoarthritis; CM, condition media.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Yuan et al. 10.3389/fbioe.2022.1074536

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1074536


MSCs-derived exosomes inhibited apoptosis and balanced the

anabolic and catabolic processes of chondrocytes to prevent

cartilage from damage by exosomal-miR100-5p-mediatied

inhibition of mTOR-autophagy pathway (Ribeiro et al., 2016).

The TMJ cavity is a highly complicated environment involving a

variety of different cells. Undoubtedly, exosomes secreted by

these cells play an important role in the regulation of

microenvironment homeostasis.

Chondrocytes-derived exosomes

The chondrocyte is the only cell type of cartilage and is

critical in the maintenance of cartilage homeostasis. The effect of

primary chondrocytes-derived exosomes on TMJOA has been

confirmed (Ni et al., 2019; Wu et al., 2019; Zheng et al., 2019; Liu

S.-S. et al., 2022; Nikhil and Kumar, 2022). Liu noticed exosome-

like structures in abnormal calcified cartilage together with the

decrease of matrix Gla protein and the increase of tissue-

nonspecific alkaline phosphatase, CD63 and pyrophosphatase/

phosphodiesterase-1 in TMJOA (Ni et al., 2019). After

local injection of the exosome inhibitor, the process of

calcification was inhibited. They speculated it was a new way

in preventing and treating TMJOA to inhibit degenerative

chondrocyte-derived exosomes. Chondrocytes-derived

exosomes positively affected proliferation of chondrocytes and

exhibited significant wound closure promotion due to roles in

intercell communication. During the repair of cartilage injury,

bilayered cryoge and chondrocytes-derived exosomes had a

synergistic effect (Liu Q. et al., 2022). Furthermore, Zheng

investigated the proteomics of primary chondrocyte exosomes

and found the 2409 proteins of exosomes were involved in

mitochondrial damage or dysfunction and immune system

process. They attributed the protective effects of chondrocyte-

exosomes on osteoarthritis to mitochondrial dysfunction

elimination and M1-proinflammatory macrophages infiltration

decrease with a concomitant M2- anti-inflammatory

macrophage increase in cartilage (Nikhil and Kumar, 2022). It

could be inferred from Liu’ results that the exosomes released

by articular chondrocytes inhibited catabolism and increased

mRNA levels of ACAN and COL2A as a facilitator of cell

communication (Zheng et al., 2019). Chondrogenic

progenitor cells (CPCs) have MSC characteristics with strong

potential of cartilage differentiation and self-renewal ability (Liu

et al., 2020). EVs secreted by CPCs from MRL/MpJ

superhealer mice (MRL-EVs) had shown superior

therapeutic capability in attenuating OA compared with

control mice-EVs. MRL-EVs played a vital role in

stimulating the proliferation and migration of chondrocytes

(Koelling et al., 2009). After miRNA-seq analysis of exosomes,

AMPK signaling, regulation of autophagy, and insulin signaling

were observed to be associated with differentially

expressed miRNAs and miRNA 221-3p was highly enriched

in MRL-EVs.

FIGURE 3
Exosomes derived from different tissues and cells are applied for TMJOA treatment. Diversified exosomes are obtained and applied in OA
treatment to have a deeper understanding of the occurrence, development of OA, and to find more novel targets in molecular mechanisms of
TMJOA treatment.
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Synoviocytes-derived exosomes

Synovial inflammation is observed on magnetic resonance

imaging of OA affected joints (Wang et al., 2020). There is

increasing evidence that synovial inflammation is positively

correlated with TMJOA severity (Roemer et al., 2010), and

persistent low-grade synovial inflammation exacerbates

cartilage damage (Raghu et al., 2017). Kato analyzed effects of

synoviocytes-derived exosomes on chondrocytes and HUVECs

(Kato et al., 2014). Compared with resting synoviocytes-derived

exosomes, exosomes from IL-1β stimulated synoviocytes

significantly promoted matrix catabolism and inhibited

anabolism of chondrocytes. Migration and tube formation

activity of HUVECs were improved. These findings indicated

that SFCs exosomes represented a novel mechanism in the

pathogenesis of osteoarthritis, which implied exosomes might

be used as a therapeutic strategy for TMJOA. Dysregulated

angiogenesis deteriorates the cartilage degradation, bone

destruction and synovitis (Kato et al., 2014). Feng Yaping

reported HMGB1 increased VEGF and HIF-1α in synovial

fibroblasts of TMJOA and conditioned medium obtained from

High-mobility group protein 1-treated TMJOA SFCs promoted

the migration and tube formation of HUVECs (Chavakis et al.,

2007). In addition, it was observed that synoviocytes-derived

exosome-mediated cartilage repair was achieved by

improvement in cell activity and migration ability as well as

reduction of ECM degradation, of which synoviocytes-derived

exosomal-lncRNA H19 suppressed the miR-106b-5p/

TIMP2 axis (Feng et al., 2021). It was confirmed that the

expression of miRNA-126-3p was sharply reduced in synovial

fluid exosomes from OA patients. Exosomes derived from miR-

126-3p-overexpressing synovial fibroblasts enhanced

chondrocytes proliferation and suppressed chondrocytes

apoptosis. What’s more, the exosomes significantly

constrained the inflammation in chondrocytes by decreasing

the IL-1β, IL-6, and TNF-α (Tan et al., 2020).

Synovial tissue maintains the basic composition and

volume of synovial fluid. SFCs secrete synovial fluid, which

in turn provides a low friction environment and nourishes

surrounding tissues. Recently, many studies have focused on

analyzing and comparing the synovial fluid derived exosomes

differences between osteoarthritis patients and healthy people

to find new molecular targets and related mechanisms for the

treatment of osteoarthritis (Kolhe et al., 2017; Zhou et al.,

2021). It has been proposed that miRNA contents differ

between OA patients and healthy people. Moreover, there

is a high gender-specific differential expression of miRNA in

synovial fluid-derived exosomes in patients with OA (Zhou

et al., 2021). Chondrocytes treated with OA-derived EVs had

down-regulated expression of anabolic metabolism and

elevated expression of catabolic metabolism and

inflammatory molecules. Previous studies demonstrated

that synovial fluid-derived exosomes of OA patients

possessed the characterization of the proinflammatory

profile to M1 macrophages. The exosomes upregulated the

IL-1β expression and induced the release of chemokines and

promoted the production of MMP7 and MMP12 (Kolhe et al.,

2017).

Subchondral osteocytes-derived
exosomes

Subchondral bone supports the surface cartilage and bears

the mechanical load. The crosstalk between the cartilage and

subchondral bone is proceeding in an orderly manner,

conducted in an exosome-dependent pattern (Domenis et al.,

2017). Once the balance of the interaction is disrupted, cartilage

breaks down and subchondral bone remodels abnormally,

exacerbating the progression of OA (Wu et al., 2022). TMJ

is one of the most flexible joints in the body and the

subchondral bone of TMJ has an outstanding ability to

withstand multidirectional forces. Sun discovered a new

mode of osteoclast-osteoblast communication. MiR-214-

enriched exosomes secreted by osteoclasts were specifically

transferred into osteoblasts via ephrinA2/EphA2 axis and

suppressed osteoblast function (Sanchez et al., 2005).

Moreover, there was an obvious promotion of bone

formation after osteoclast-targeted miR-214-3p inhibition

(Sun et al., 2016).One In coculture, researchers found that

chondrocytes endocytosed the osteoblast derived exosomes

in osteoarthritis sclerotic subchondral bone and upregulated

catabolic genes and downregulated chondrocyte-specific genes.

Wu demonstrated miR-210-5p suppressed the oxygen

consumption of chondrocytes and altered cellular

bioenergetics, which could be a potential target for

therapeutic intervention in OA (Li et al., 2016). It is

suggested that targeting the exosomal-miRNAs-transfer of

osteoclasts to chondrocytes is an entirely new treatment

strategy. In early-stage osteoarthritis, an upregulation of

exosomal-osteoclast-derived microRNAs drove the

progression of the disease. However, blockage of osteoclast-

originated exosomes retarded osteoarthritis progression,

mechanistically, via increasing the resistance of chondrocyte

to matrix degeneration, endothelial cell angiogenesis and axon

sensory innervation (Xu et al., 2021). To explore the potential

osteogenesis of the exosomes from osteoblasts, Ge isolated EVs

from MC3T3 and presented osteogenesis-related proteins and

pathways through the protein profile. Eukaryotic initiation

factor 2 pathways played an important role in osteogenesis

and represented a potential therapeutic avenue to tackle OA

(Liu et al., 2020). Mineralizing osteoblasts-derived exosomes

significantly promoted osteogenesis and influenced miRNA

profiles in bone marrow stromal cells, which activated the

WNT pathway by increasing β-catenin and dampening

Axin1 (Ge et al., 2015).
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Adipose tissue-derived exosomes

Adipose tissue-derived exosomes are applicated in the

treatment of various diseases (Xu et al., 2019; Zhou Q.-F.

et al., 2020; Wei et al., 2020). Intra-articular adipose tissue

functions to cushion the shock and acts as one of major

sources of cytokines, active mediators as well as regenerative

cells in repair. At present, research of adipose-derived exosomes

for the treatment of OA mainly focused on adipose tissue-MSCs-

derived exosomes (Koh et al., 2012; Ribeiro et al., 2016; Scheja

et al., 2019). Sembronio et al. (2021) compared standard OA

treatment with hyaluronic acid injections with the new TMJOA

therapy of microfragmented adipose tissue injection using the

Lipogems technology by a randomized clinical trial. Notably,

pain reduction and mouth opening significantly improved in

both groups. And the statistical analysis showed that the

microfragmented adipose tissue injection group had a

statistically significant advantage in the success rate of

procedure compared with the hyaluronic acid injections

group. Considering the number and secretion capacity of

adipocytes, we speculate that their role in osteoarthritis is also

critical because they may work as a graft in synovial, secretes

exosomes and locally serve as a source of MSCs for a long time.

However, a lot of investigations into adipocytes-derived

exosomes are still needed to shed light on molecular

mechanisms underlying pathogenesis.

Other cell and tissue-derived exosomes

As early as in 2005, microparticles derived from T cells and

monocytes were clearly reported to induce the synthesis of matrix

metalloproteinases and inflammatory mediators in fibroblasts in

a dose-dependent manner (Cui et al., 2016). These results

provided evidence for vesicles derived immune cells

promoting the destructive activity of SFs. It was reported that

Sox9-containing-exosomes of monocytes stimulated with IL-4 or

IL-13 upregulated COL2A and ACAN, promoted the

differentiation of primary chondrocytes (Distler et al., 2005).

Abnormality of the tendon was related to OA progression, which

indicated that tendon repair might be another treatment for

injury.40 In recent years, some studies have evaluated the role of

tendon-derived exosomes in osteoarthritis. In the transwell

system, paracrine factors released by tenocytes induced MSCs

to the tenogenic differentiation in a TGF-β dependent manner

and the inhibition of TGF-β pathway eliminated the effect (Bai

et al., 2020).

Noticeably, since the 1970s, many studies have explored the

mechanism of platelet rich plasma (PRP) in tissue repair

(Toghraie et al., 2011). It contains a variety of cytokines and

active substances, promoting tissue regeneration and healing

(Xuan et al., 2020). So far, exosomes have been reported to

exist in PRP and participate in related physiological and

pathological processes (Dohan et al., 2008). Actually, PRP-

derived exosomes have been applied to OA treatment via

intra articular injection for years in preclinical studies. Zhang

incorporated PRP-exosomes into thermosensitive hydrogel (Gel)

and assessed its biological activity and the therapeutic effect on

OA in vivo (Saumell-Esnaola et al., 2022). It promoted BMSCs

proliferation, migration, and chondrogenic differentiation, and

inhibited chondrocytes apoptosis and hypertrophy to delay the

progression of osteoarthritis. Meanwhile, PRP-derived exosomes

inhibited the TNF-α release from chondrocytes and presented a

potential in alleviating OA via WNT/β-catenin pathway (Zhang

Y. et al., 2022). Alexander found that citrate-anticoagulated

platelet-rich plasma-derived exosomes displayed a higher

expression of SOX9 protein and a better inhibition effect on

proinflammatory cytokine release compared to hyperacute

serum-derived exosomes (Liu et al., 2019). Besides, amniotic

fluid (AF) is easily to obtain for application in tissue repair and

regeneration. Researchers elucidated (Raghu et al., 2017)

commonly expressed exosomal-miRNA of AF-derived

exosomes, revealed RNA target genes were associated with

senescence, fibrosis, and OA pathways, and suggested it as a

therapeutic potential strategy for the treatment of osteoarthritis

(Otahal et al., 2020).

To date, exosomes derived from different cells and tissues

have exhibited effects on the occurrence, development,

prevention, and treatment of TMJOA in vitro and in vivo. On

the one hand, exosomes play a decisive role in controlling

cartilage matrix homeostasis by promoting chondrocyte

proliferation and migration and inhibiting chondrocyte

apoptosis, thus reversing the deterioration of TMJOA, and

alleviating the symptoms of TMJOA. On the other hand, the

exosome is trigger in promotion of MSCs migration via various

chemotactic pathways and can stimulate chondrogenic

differentiation, and repairs cartilage defects. Besides, it cannot

be ignored that they also have the great potential in regulating

bone homeostasis to better support cartilage. A large number of

studies have shown that changes of exosomes in the state of

inflammation, which suggests that exosome-based disease

treatment strategies will be effective. In the exosome based

TMJOA therapy, they reduce the production of inflammatory

factors and inhibit the differentiation of proinflammatory

M1 macrophages and increase the ratio of M2 macrophages.

However, it is just the beginning and further research is urgently

needed to explore a more in-depth mechanism and perfect

treatment strategy in TMJOA.

Optimization in exosome-based
bioengineering strategies of TMJOA
therapy

Owing to the uniqueness and complexity of the TMJ, it is a

great challenge to achieve complete restoration of its anatomical,
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structural, and functional integrity. The optimization of

exosome-based strategy is a necessary step for TMJOA

treatment. Bioengineering is constantly developing and

provides an optimized solution in regenerative medicine

(Table 3). Helgeland made a systematic review to answer the

question of whether scaffold based TMJ tissue regeneration have

better outcomes in TMJOA treatment. The overall preclinical

evidence indicated that biomaterial scaffolds combined with

biological components enhanced the potential for cartilage

regeneration in TMJOA (Bellio et al., 2020). Additionally, the

optimization of bioengineering technology in exosome based

TMJOA therapeutic strategy has aroused the hot interests of

researchers. There might be several disadvantages with direct

administration of exosome-containing suspension in cartilage

regeneration, especially, the difficulty of local exosome retention.

Liu developed a photoinduced hydrogel exosome scaffold for a

better retention of cargo exosome (Helgeland et al., 2018). In the

system, they demonstrated that it retained stem cell-derived

exosomes and showed an excellent biocompatibility and

cartilage-integration by positively regulating both

chondrocytes and BMSCs in vitro and promoting cartilage

matrix and cell deposition at cartilage injury site. Using a

crosslinked network of chondroitin sulfate, alginate-dopamine,

and regenerated silk fibroin, an injectable hydrogel with

encapsulated exosomes was exploited in superficial cartilage

regeneration. Exosomes released by the hydrogels recruited

BMSCs into defects via the chemokine pathway (Liu X. et al.,

2017). These findings revealed the hydrogel coated with

exosomes as a promising approach for accelerating cartilage

regeneration in situ and neo-cartilage extracellular matrix

remodeling. Chen designed a 3D printed cartilage extracellular

matrix-gelatin methacrylate-exosome delivery scaffold (ECM/

GelMA/Ex scaffold) with radial channels and superior cell

recruitment capacity. The scaffold not only enhanced cartilage

regeneration but also facilitated recovery of subchondral bone.

Furthermore, they also found that MSCs exosomes enhanced

mitochondrial biogenesis and rescued the mitochondrial

dysfunction in degenerated cartilage (Zhang et al., 2021). The

controlled exosome release platform with histological biological

scaffolds solves the problems of insufficient local exosome

concentration and short half-life of exosomes after injection to

a large extent, optimizing the exosome based TMJOA treatment

strategy.

The dense matrix biological barrier of cartilage makes

chondrocyte-targeted drug delivery difficult. Exosomes enter

the cell mainly via endocytosis, direct membrane fusion, or

pinocytosis, 66 and the released contents could exert

biological effects. It indicates exosomes have a great potential

as a vehicle for drug delivery. Hence, it is an innovation and

optimization in TMJOA treatment to modify surface structures

for improving the efficiency of exosomes entering cells and to

modulate encapsulated contents for strengthening therapeutic

effects by genetic engineering technology or direct

physicochemical loading. A study demonstrated that exosomes

gainedMSC targeting capability after fusing exosomal membrane

protein Lamp 2b with MSC-binding peptide E7 (Chen et al.,

2019). SFMSCs with E7-exosomes entered the middle zone of the

cartilage more easily. Additionally, BMSCs-derived exosomes

TABLE 3 Bioengineering materials combined with exosomes for repair and regeneration of cartilage.

Biological
material

Composition Source of
exosomes

Retention and
release
efficiency
of exosomes

Delivery Mechanism Reference

3D printed scaffold
with radially oriented
channels

Gelatin methacrylate;
Decellularized
cartilage ECM

BMSCs Retention: >56% for
14 days

Implantation in site
of defect

Increase chondrocyte migration;
Simulation of M2 macrophage
polarization; Enhancement of
cartilage and subchondral bone
regeneration

Chen et al.
(2019)

Acellular cartilage
ECM with vertically
oriented structure

Porcine articular
cartilage

Wharton’s jelly
derived MSCs

Not reported Implantation in site
of defect; Articular
injection of exosomes

Promote BMSC and chondrocyte
proliferation, BMSC migration
and macrophage polarization
toward the M2 phenotype

Jiang et al.
(2021)

Photoinduced imine
crosslinking hydrogel
glue

O-nitrobenzyl alcohol
moieties modified
hyaluronic acids, Gelatin

Induced
pluripotent
stem cell line

Retention: >90% for
14 days; Release: 1 ×
1010 particles/ml/day

Full-thickness defect
with an in situ
formed EHG tissue
patch

Promote the migration and
proliferation of chondrocytes and
hBMSCs; Penetrate into the
subchondral bone and formed a
seamless interface-cartilage
integration ability

Liu et al.
(2017a)

Mussel-inspired
hydrogel

Alginate-dopamine;
Chondroitin sulfate;
Regenerated silk fibroin

BMSCs Release: 87.51% ±
3.71% for 14 days

Injection in site of
defect

Promote the recruitment,
proliferation and differentiation of
BMSCs

Zhang et al.
(2021)
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loading with KGN (a small molecule that can induce MSCs

differentiation to chondrocytes) by electroporation efficiently

increased COL2 and ACAN and induced higher cartilage

differentiation of SFMSCs. In vivo, it showed best cartilage

repair. ATF4-overexpressing exosomes were developed by

introducing the mRNA of ATF4 into exosomes via

electroporation. It showed these exosomes alleviated

inflammation and cartilage degeneration in osteoarthritis mice

by promoting chondrocytes autophagy and inhibiting apoptosis

(Xu et al., 2021). To achieve a more predictable and desirable

clinical response, specific therapeutic miRNA enrichment could

be performed through the overexpressing genetic technique. It

was suggested that miR-140-5p-overexpressing hSDMSCs

derived exosomes enhanced the proliferation and migration

abilities of chondrocytes (Wang Z. et al., 2021). They

observed the exosomes highly expressed miR-140-5p blocked

this side-effect in ECM via targeting RalA to enhance SOX9 and

ACAN. Exosomes derived from miR-92a-3p-overexpressing

MSCs targeted WNT5A to elevate chondrogenesis in MSCs

and suppress cartilage degradation in primary chondrocytes

(Tao et al., 2017). Besides, hBMSC-derived overexpressing

miR-26a-5p exosomes relieved OA and were served as a

repressor to retard damage of SFs via PTGS2 downregulation

in vitro (Mao et al., 2018). Generally, utilizing a specific

exosomal-miRNA mainly involves these proposed

mechanisms, the overexpression of miRNA in cells, the

isolation of exosomes containing miRNA, then delivery to

chondrocytes in inflammatory microenvironment or TMJOA

animal models, and finally targeting a pathogenic gene via

miRNA. Some studies have shown that the effect of hypoxia-

preconditioned exosomes on cartilage repair are superior to that

of normoxia-preconditioned exosomes, manifesting in the

promotion of chondrocyte proliferation and migration and the

inhibition of chondrocyte apoptosis (Jin et al., 2020). TGF-β1-
stimulated BMSCs-derived exosomes highly expressed miR-135b

and polarized synovial macrophages (SMs) into M2 type to

alleviate cartilage destruction. M2 polarization of SMs was

significantly reversed by increase of MAPK6 (Zhang B. et al.,

2022). Pretreating exosomes with physical or chemical

stimulation optimizes exosome-based therapeutic strategies.

Future opportunities and challenges
of exosome-based therapeutic
strategy in TMJOA

Although exosomes were originally regarded as useless

metabolic byproducts, it is well recognized that exosomes, as

various carrier of signaling mediators, play a vital role in

mediating cell-to-cell communication and in activating

immunomodulatory activity. Certainly, numerous studies have

shown exosomes are sufficient to treat degenerative diseases,

including systemic OA and TMJOA. A correct view of the

prospects and existing problems of exosome-based therapeutic

strategy is the basis for further research.

Emerging as a trending research area, exosome-based

therapeutic strategy in TMJOA has gained much interest

because of its unique regulatory ability in TMJ inflammation

as well as the low immunogenicity (Wang Y. et al., 2021). Some

studies have reported that MSCs show a certain degree of

immunogenicity in mediating disease treatment (Qi et al.,

2016; Gregory et al., 2005). Compared with MSCs, exosomes

have been reported not to express class II human leukocyte

antigens and have lower immunogenicity when applicated in vivo

(Krampera et al., 2006; Stagg et al., 2006; Sun et al., 2009; Geiger

et al., 2015; Qi et al., 2016; Yaghoubi et al., 2019; Kang et al.,

2020). TMJ is a complex system, and the immune privilege of

exosomes maximally ensures it not to be cleared by immune cells

when playing the therapeutic role in TMJOA. In addition, at

present, few studies have reported the tumorigenic effect of

exosomes in vivo, which might occur in the MSC-based

therapy (Wislet-Gendebien et al., 2012; Funes et al., 2014; Li

et al., 2022). Because cartilage is a dense biological barrier

staggered by collagenous fiber, the transport property of

exosomes is advantageous in TMJOA treatment. Being nano-

sized and biocompatible, exosomes can be served as nanocarriers,

easily reaching to the cartilage to fuse with chondrocytes.

Certainly, the side effects associated with cell-based therapy,

such as vascular embolism and pulmonary embolism (De

Boeck et al., 2013; Jung et al., 2013), are also rare when

exosomes are injected systematically. Furthermore, the less

strict storage condition also gives exosomes greater

possibilities for therapeutic application. Low temperature cold

storage or repeated freezing and thawing does not influence

exosome sizes and bioactivities, which shows higher clinical

application value compared with cell-based therapies. It takes

more time to resuscitate frozen cells to normal functional state,

and the activity of resuscitated cells cannot be predicted (Mäkelä

et al., 2015). Most importantly, many studies have shown that

cell-cell interactions are mainly dependent on exosomes. MSCs-

derived exosomes share the same or even more powerful

biological effects than MSCs (Zhou X. et al., 2020), such as

metabolic regulation of cartilage matrix, inhibition of

inflammatory factors, relief of TMJOA pain, and homing of

cells to the cartilage defect. Moreover, exosomes modified by

genetic engineering have higher organotropism and cartilage-

targeting capability. It has involved the comparison of exosomal

differences in organs or systems between healthy and sick

populations. High-throughput sequencing has confirmed that

exosomes in the joint system differ between normal state and

TMJOA, which indicates exosomes can be used as biomarkers for

the early diagnosis of TMJOA. MiRNA is one of the important

cargoes of exosomes. Through literature review, we noticed some

exosome-derived miRNAs related with TMJOA treatment.

RNAhybrid and miRanda databases were used to predict the

target genes of the miRNAs, and Gene ontology (GO) and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was performed for the identified target genes

(Figure 4). It showed 22 biological processes enriched in the

GO analysis, including endocytosis, actin cytoskeleton

organization, protein polymerization, and other processes.

And it displayed 20 signaling pathways obtained by the

KEGG analysis, including osteoclast differentiation,

inflammatory mediator regulation of TRP channels, apoptosis,

and other pathways. The information of enrichment analysis

suggested the mechanism and related targets of exosomes in the

treatment of TMJOA, which will help us further study the

pathogenesis of TMJOA and find out more effective TMJOA

therapeutic strategy in the future.

Despite the excellent therapeutic effects of exosomes, there

are many issues that need to be addressed. Unlike TMJOA

cell-therapy, although results from preclinical studies have

demonstrated the chondroprotection role of exosomes,

explorations into the exosomes efficacy in treatment are

still in the start-up stage. Currently, the research on

TMJOA treatment mainly focused on small animals. There

is almost no large animal studies or human clinical trials to

evaluate exosome-based therapeutic strategy in TMJOA.

Insufficient evidence from preclinical research and clinical

trials significantly hindered the elucidation of mechanisms

and the clinical translation applications. Therefore, future

studies are recommended to bridge this knowledge gap and

validate the safety and efficacy of exosomes therapy.

Meanwhile, the difficulties encountered in the acquisition

and the preparation of exosomes are inescapable. Various

methods of exosomes separation in vitro have been developed,

such as ultracentrifugation-based technique, size-based

technique, and immuno-affinity action-based technique

(Lőrincz et al., 2014). However, the most standardized and

optimal operational procedure has not yet been established.

The comparability between different studies is poor due to the

differences of yield and purity of exosomes. Extracting

homotypic exosomes with consistent contents is crucial in

precisive therapy and in reduction of adverse effects caused by

unintended unknown by-products (Ding et al., 2021). It is

urgent to develop an optimal isolation procedure, which

maximizes yield and purity of exosomes and minimizes

changes of contents and sizes during extraction. In

addition, due to the quick turnover of synovial fluid in

TMJ cavity, more studies are needed to determine the

effective dose and frequency of exosomes injection. Like

cell-based therapy, exosome-based therapeutic strategy is

also limited by rapid clearance in vivo and short effective

period in direct injection. Therefore, it is particularly critical

to optimize the therapeutic strategy of exosomes in TMJOA

via tissue engineering approaches. Notably, the cartilage of

TMJ is fibrocartilage, which is different from the hyaline

cartilage of the most joints of the body. It is made up of

various proportions of both cartilaginous tissue and fibrous

and has a more complex tissue structure and tensile and

compressive strength. Although there are many studies on

the treatment of OA, it is still questionable whether these

treatment measures are also effective for TMJOA. We should

explore the effectiveness of these treatments on TMJOA in a

more scientific and rigorous manner. ‘A one size fits all’

therapeutic scaffold may not achieve the best treatment

effects in TMJOA (Embree et al., 2016; Jiang et al., 2021;

Jiang et al., 2021; Fan et al., 2022). According to the

FIGURE 4
Enrichment analysis of exosome-derived miRNAs clearly related to TMJOA. (A) GO analysis, 30 enriched iterms are shown. (B) KEGG analysis,
20 pathways are shown.
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characteristics of different fibrocartilage tissue types, layered

scaffolds loaded with exosomes exhibit outstanding

advantages in the formation of layered tissue structure in

cartilage regeneration to simulate the normal fibrocartilage to

the maximum extent. Though faced with challenges, exosome-

based therapeutic strategy is promising in TMJOA and worthy

of further investigations in vivo and in vitro.

Conclusion

In this review, we summarized the roles of MSCs and

exosomes in TMJOA, manifesting in the regulation of

cartilage matrix metabolism, the balance of subchondral

bone homeostasis, the relief of inflammation, and the effects

of immune regulation. Currently, MSC-based therapy is facing

many challenges, while exosome-based therapeutic strategy can

be a promising novel alternative because of its advantages in

cell-to-cell communication in TMJ system. Exosomes, as mini

vesicles, deliver nucleic acids and proteins to target tissues or

cells and exert therapeutic efficacy in TMJOA. The

pathogenesis of TMJOA is complicated and multifactorial.

The optimization of the existing exosome-based strategies,

such as the combination of tissue engineering scaffolds or

genetic modification, more effectively reduce the side effects

involved in exosomes treatment and improve cartilage repair

and regeneration. However, the translation from experimental

research to clinical application of exosomes has been hindered

due to insufficient evidence of preclinical and clinical trials.

Further research is needed to identify effective constituents of

TMJO-target exosomes and explore underlying mechanisms, to

investigate therapeutic targets, to evaluate the safety of

exosomes application, and finally to establish a consensus in

the therapeutic potency of exosome-based therapeutic strategy.
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