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Horses use the transverse gallop in high-speed running. However, different animals use
different gaits, and the gait preference of horses remains largely unclear. Horses have fore-
aft asymmetry in their body structure and their center of mass (CoM) is anteriorly located far
from the center of the body. Since such a CoM offset affects the running dynamics, we
hypothesize that the CoM offset of horses is important in gait selection. In order to verify our
hypothesis and clarify the gait selection mechanisms by horses from a dynamic viewpoint,
we developed a simple model with CoM offset and investigated its effects on running.
Specifically, we numerically obtained periodic solutions and classified these solutions into
six types of gaits, including the transverse gallop, based on the footfall pattern. Our results
show that the transverse gallop is optimal when the CoM offset is located at the position
estimated in horses. Our findings provide useful insight into the gait selection mechanisms
in high-speed running of horses.
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1 INTRODUCTION

Horses use the transverse gallop in high-speed locomotion. This gait has one flight phase in one gait
cycle. Specifically, the hind legs first touch the ground, and then the fore legs touch the ground. After
that, a flight phase appears. This gait is different from the rotary gallop in cheetahs, which has two
flight phases, each of which appears after the touchdowns of the fore legs and those of the hind legs
(Bertram and Gutmann, 2008; Biancardi and Minetti, 2012). The gaits of quadrupeds when running
at their fastest speeds vary between species, and it remains unclear why horses use the transverse
gallop.

Horses have fore-aft asymmetry in their body structure. In particular, they have a long neck, and
their center of mass (CoM) is anteriorly located and far from the center of the body (Buchner et al.,
1997; Self Davies et al., 2019). Such a CoM offset affects the dynamics of the running motion. For
example, when the fore-aft CoM location of dogs was changed by carrying a weight during trotting,
which is characterized by the simultaneous touchdown of the diagonal fore and hind legs, the footfall
pattern changed (Lee et al., 2004). Specifically, the fore and hind legs came to touch the ground first
when the load was applied to the anterior and posterior sides, respectively. In other words, the CoM
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offset changed the gait. Therefore, we hypothesize that the CoM
offset of horses plays an important role in their gait selection.

Since animal locomotion is a complex phenomenon generated
through dynamical interactions between the body mechanical
system, the nervous system, and the environment, it is difficult to
fully understand the mechanisms for gait selection in animals
only from observation. Therefore, simple models, which extract
essential elements for the running dynamics, have been used to
clarify the mechanisms (Tanase et al., 2015; Gan et al., 2016; Chen
et al., 2019; Kamimura et al., 2021). Poulakakis et al. (2006) used a
simple quadrupedal model and showed the relationship between
the pitch angular velocity and the number of flight phases in one
gait cycle during bounding gait. In addition, Zou and Schmiedeler
(2006) used a model focusing on the vertical and pitch
movements and derived a stability condition depending on the
CoM offset. However, the model did not incorporate horizontal
movement, and the mechanism for the gait selection remains
unclear.

In the present study, we investigated the effects of the CoM
offset on quadrupedal running in order to verify our hypothesis
from a dynamic viewpoint. Specifically, we constructed a
bounding model with CoM offset and searched periodic
solutions by numerical simulations. We then classified the
obtained solutions into six types of gaits depending on the
footfall pattern and examined which gait is optimal based on
performance criteria. Our findings provide useful insight into the
mechanisms for high-speed running in horses.

2 METHODS

2.1 Model
We used a horse model composed of a rigid body and two
massless springs on the sagittal plane (Figure 1). The springs

represent the fore and hind legs (Legs F and H) and are connected
to the body by smoothly rotating joints. Here, M and J are the
mass and moment of inertia around the CoM of the body,
respectively. The distance between the leg joints is 2D. The
CoM is located at a distance of αD (−1 ≤ α ≤ 1) from the
center C between the leg joints, where α = 0 corresponds to C, and
α = 1 and −1 correspond to the joints of the fore and hind legs,
respectively. Moreover, x and z are the horizontal and vertical
positions of the CoM, respectively, and θ is the pitch angle relative
to the horizontal line. The spring constant and neutral length of
both the fore and hind legs are K and L0, respectively. When Leg i
(i = F, H) is in the air, its length remains L0 and its angle also
maintains the touchdown angle γtdi . The positive direction of
these angles is counterclockwise. When the tip of the leg reaches
the ground, it is constrained to the ground and behaves as a
frictionless pin joint. When the leg length returns to L0 after the
compression, the tip leaves the ground. Since the touchdown and
liftoff occur at the neutral length and our model has no dissipative
component, such as friction or a damper, our model is energy
conservative.

The equations of motion of the model are given by

M€x � ∑
i�F,H

−Fi sin γi (1a)

M€z � ∑
i�F,H

Fi cos γi −Mg (1b)

J€θ � FF 1 − α( )D cos γF − θ( ) − FH 1 + α( )D cos γH − θ( ), (1c)
where

Fi � 0 swing phase
K L0 − Li( ) stance phase

{ i � F,H (2)

and Li and γi (i = F, H) are the length and angle, respectively, of
Leg i relative to the vertical line. Moreover, γi is determined by the
joint and touchdown positions of Leg i. The touchdown condition
rtdi � 0 and liftoff condition rloi � 0 of Leg i are given by

rtdi � z + (εi − α)D sin θ − L0 cos γ
td
i � 0

rloi � L0 − Li � 0,
i � F,H (3)

where εF = 1 and εH = −1.
The physical parameters of the model were determined based

on the estimated values of Thoroughbreds (Equus ferus caballus).
In particular, we used M = 490 kg and J = 167 kgm2 based on
Swanstrom et al. (2005). We used D = 0.48 m from the distance
between the shoulder and hip joints and L0 = 1.33 m from the
average value of the distances between the shoulder joint and the
toe of the fore limb and between the hip joint and the toe of the
hind limb based on Grossi and Canals, (2010). We used K =
45.4 kN/m based on Farley et al. (1993).

2.2 Gait
The gait is generally determined based on the order of touchdown
and liftoff of the legs. We defined the following four phases: flight
(FL), fore leg stance (FS), hind leg stance (HS), and double stance
(DS). In FL, both legs are in the air. In FS, only the fore leg is in
contact with the ground. In HS, only the hind leg is in contact
with the ground. In DS, both legs are in contact with the ground.

FIGURE 1 | Horse model composed of a rigid body with center of mass
offset and two massless springs.
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We investigated motions (periodic solutions) starting from an
apex (i.e., _z � 0 in FL) and returning to the next apex after each
leg touches the ground once. The periodic solutions are obtained
by the transitions between these phases. The phase transitions of
the periodic solutions are classified into six sequences (Sequences
1 ... 6), as shown in Figure 2. In Sequence 1, the hind leg first
touches the ground (HS), and then the fore leg touches the
ground so that two legs are in contact with the ground (DS).
After that, the hind leg first leaves the ground (FS), and then the
fore leg leaves the ground to return to FL. This gait has one flight
phase and one double stance phase and corresponds to the
transverse gallop in horses (Hildebrand, 1977; Biancardi and
Minetti, 2012). Sequence 2 is obtained by swapping the
behaviors of the fore and hind legs in Sequence 1. In Sequence
3, the hind leg first touches the ground (HS), and then the fore leg
touches the ground, so that two legs are in contact with the
ground (DS). After that, the fore leg first leaves the ground (HS),
and then the hind leg leaves the ground to return to FL. This gait
also has one flight phase and one double stance phase. Sequence 4
is obtained by swapping the behaviors of the fore and hind legs in
Sequence 3. In Sequence 5, the hind leg touches the ground (HS)
and then leaves the ground to return to FL. After that, the fore leg
touches the ground (FS), and then leaves the ground to once again
return to FL. This gait has two flight phases but no double stance
phase. Sequence 6 is obtained by swapping the behaviors of the
fore and hind legs in Sequence 5. Sequences 5 and 6 are identical
when the time profile of one sequence is shifted by half a
gait cycle.

2.3 Search of Solutions
In order to find periodic solutions, we defined the Poincaré
section at the apex of the CoM ( _z � 0). Since x monotonically
increases during locomotion and is not periodic, we used q �
[z θ _x _θ]⊤ as the state on the Poincaré section. We used the
touchdown angles as the parameter set u � [γtdH γtdF ]⊤. The
Poincaré map P is then defined as

qn+1 � P qn, un( ) (4)

where qn is the state at the nth intersection with the Poincaré
section, and un is the nth parameter set. A periodic solution
satisfies

qp � P qp, up( ) (5)
where qp is the fixed point on the Poincaré section. We
numerically searched fixed points for periodic solutions using
the Newton-Raphson method.

2.4 Performance Criteria
In order to evaluate the obtained solutions, we used the gait
stability as a performance criterion (Poulakakis et al., 2006;
Tanase et al., 2015; Kamimura et al., 2021). In order to
analyze the gait stability, we investigated the eigenvalues of the
linearized Poincaré map around the fixed points on the Poincaré
section. Since our model is energy conservative, the solution is
asymptotically stable, when all of the eigenvalues, except for one
eigenvalue of 1, are located inside the unit circle on the complex
plane. Otherwise, the solution is unstable.

Horses stabilize their gaze during running by preventing the
pitch movement of the body from disturbing the head (Dunbar
et al., 2008). Therefore, we also used the fluctuation of the pitch
movement of the body as another performance criterion, which is
obtained from the difference between the maximum and
minimum values of θ for one gait cycle.

3 RESULTS

3.1 Effect of Center of Mass Offset on Gait
Pattern
First, we set the total energy of our model as E = 20.3 kJ
(gravitational potential energy is 0 at the ground level) and the
forward speed at the apex as _xp � 7.5 m/s (horizontal kinetic
energy Tp � M( _xp)2/2 � 13.8 kJ) based on the measured data in
horses (Minetti et al., 1999). We then searched periodic solutions
in the range of −0.5 ≤ α ≤ 0.5 and −1.5≤ _θ

p
≤ 1.5. As a result, we

found a unique solution for each set of (α, _θp) in this range, the

FIGURE 2 | Six possible phase transitions (Sequences 1 . . . 6) from one apex to the next apex. FL, FS, HS, and DS stand for flight, fore leg stance, hind leg stance,
and double stance, respectively.
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gait of which is classified into Sequences 1 through 6, as shown
in Figure 3. The gait boundaries are symmetric with respect to α
= 0 and _θ

p � 0, and four boundaries of Sequences 1, 2, 3, and 4
meet at α = 0 and _θ

p � 0. When α = 0, the solutions have four
types of gait, labeled as Sequences 1, 2, 5, and 6. For the solutions
with _θ

p > 0, the hind leg first touches the ground. Specifically,
Sequence 1 appears when _θ

p
is small, and Sequence 5 appears

when _θ
p
is large. In contrast, for the solutions with _θ

p < 0, the
fore leg first touches the ground. Specifically, Sequence 2
appears when | _θp| is small, and Sequence 6 appears when | _θp|
is large. In addition to the four gaits, Sequences 3 and 4 appear
around _θ

p � 0 when α < 0 and when α > 0, respectively. As |α|
increases, the range of _θ

p
of Sequences 1 and 2 decreases and

that of Sequences 3, 4, 5, and 6 increases. Stable solutions exist
only in Sequences 1 and 2 at −0.46 < α < 0.48. Specifically, only
Sequence 1 is stable when the CoM is located posteriorly at
−0.46 < α < −0.25, and only Sequence 2 is stable when the CoM
is located anteriorly at 0.44 < α < 0.48.

Next, we investigate the time profiles of the periodic solutions
in order to clarify the characteristition with α. First, Figure 4A
shows the tixme profile of z, θ, and _x of the solution for α = 0 and
_θ
p � 0, at which the four boundaries of Sequences 1, 2, 3, and 4
meet (Figure 3). In this case, the fore and hind legs touch and
leave the ground simultaneously. The trajectories of z and _x are
symmetric with respect to 50% of the gait cycle, and θ is always
zero. Next, Figure 4B shows the time profiles of typical solutions
of each gait for α = 0, ±0.2, and ±0.4, where _θ

p� 0.5,−0.5, 0, 0, 1.5,
and −1.5 rad/s are used for Sequences 1, 2, 3, 4, 5, and 6,
respectively. As a common feature of all gaits, when α = 0, the
timings of touchdown and liftoff are shifted depending on _θ

p
and

are no longer simultaneous between the fore and hind legs.
However, the trajectories of z and _x remain symmetric with
respect to 50% of the gait cycle, regardless of _θ

p
. Although θp

remains 0, specific waveforms appear in θ depending on _θ
p
. The

trajectory of θ is symmetric with respect to the intersection of θ = 0
and 50% of the gait cycle. As α increases, the stance phase duration

increases and decreases for the fore and hind legs, respectively, and
the trajectories and phases become asymmetric.

Sequences 1 and 2 have solutions for all α = 0, ±0.2, and ±0.4,
the trajectories and phases of which are symmetric with respect to
50% of the gait cycle. As α increases, the onset and end of the DS
phase are advanced in Sequence 1 and delayed in Sequence 2,
whereas those of the FL phase remains almost unchanged. Here, z
has a one-peak shape and remains almost unchanged. Although
the waveform of θ remains almost unchanged, the mean value
decreases. The timing at which _x takes the minimum value is
delayed in Sequence 1 and advanced in Sequence 2. However, the
minimum value decreases as |α| increases.

Sequence 3 has solutions only for α = −0.2 and −0.4, and
Sequence 4 has solutions only for α = 0.2 and 0.4. These
trajectories are identical for the same |α|. In addition, these
phases are also identical when the timings of touchdown and
liftoff are swapped between the fore and hind legs. Unlike
Sequences 1 and 2, the trajectories and the timings of
touchdown and liftoff are symmetric with respect to 50% of
the gait cycle regardless of α. Here, z has a one-peak shape and
remains almost unchanged as α increases. The waveform of θ
remains almost unchanged, whereas the mean value decreases.
The minimum value of _x decreases as |α| increases.

Sequences 5 and 6 have solutions for all α = 0, ±0.2, and ±0.4,
the trajectories and phases of which are symmetric with respect to
50% of the gait cycle. When α = 0, z has a two-peak shape. As |α|
increases, one of the two peaks decreases and the two-peak shape
changes into a one-peak shape. As α increases, the FS and HS
phases are advanced in Sequence 5 and delayed in Sequence 6.
Whereas the mean value of θ remain almost unchanged, the peak
timings change in accordance with changes in the FS and HS
phases. Since Sequences 5 and 6 have two FL phases, _x has two
minimum values in the FS and HS phases. Regardless of α, our
model is accelerated in the HS phase and decelerated in the FS
phase in Sequence 5, and vice versa in Sequence 6. As α increases,
the minimum value of _x in the HS phase increases and that in the
FS phase decreases in both Sequences 5 and 6.

3.2 Effect of Speed on Gait Performance
Although the previous section investigated the effects of the CoM
offset α on the gait pattern using the average speed, horses have a
wide range of speed for galloping (Hoyt and Taylor, 1981; Minetti
et al., 1999). In this section, we investigate the effects of speed on
the gait characteristics using the estimated value of α in horses (α
= 0.2) (Self Davies et al., 2019) compared with those using α = 0.

The total energy E of our model is explained by the horizontal
translational kinetic energy Tp � M( _xp)2/2, gravitational
potential energy Up = Mgzp, and rotational kinetic energy Rp �
J( _θp)2/2 at the apex (E = Tp + Up + Rp). We searched for periodic
solutions by changing Tp andUp + Rp from the previous results of
α = 0.2 and 0. Figures 5A,B compare the region for Tp and Up +
Rp where periodic solutions are found and that where stable
periodic solutions are found for α = 0.2 and 0, respectively. In
both figures, although solutions, including unstable solutions, are
widely distributed for Tp and Up + Rp (no solution is found below
5.9 kJ of Up + Rp), stable solutions exist only in a limited range for
Up + Rp. In other words, when the forward speed increases, only

FIGURE 3 |Gait classification of obtained periodic solutions for α and _θ*.
Gray regions indicate stable solutions.
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the horizontal translational kinetic energy increases, whereas the
other energies are almost unchanged in the stable solutions.

Next, we searched for periodic solutions by using Up + Rp =
6.6 kJ, which corresponds to the value obtained from E = 20.3 kJ
and Tp = 13.8 kJ used in Figure 3, and by changing _xp in
5–10 m/s of the speed range (Tp = 6.1–24.5 kJ) of the horse
galloping (Hoyt and Taylor, 1981; Minetti et al., 1999). Figures
6A,B show the fluctuation of the pitch movement of the body

for _xp of the obtained stable solutions for α = 0.2 and 0,
respectively. In both figures, only Sequences 1 and 2 have
stable solutions in the same way as Figure 3. When α = 0.2,
the stable solutions of Sequence 1 exist in a wider range of _xp

and have smaller pitch fluctuations than those of Sequence 2. In
contrast, when α = 0, the range of _xp of the stable solutions is
almost identical and the pitch fluctuations also are not much
different between Sequences 1 and 2.

FIGURE 4 | Characteristics of time profiles of z, θ, and _x and phases of periodic solutions depending on α and gait. (A) Solution for α = 0 and _θ* � 0. (B) Typical
solutions of each gait for α = 0, ±0.2, and ±0.4, where _θ* � 0.5,−0.5, 0,0, 1.5, and −1.5 rad/s are used for Sequences 1, 2, 3, 4, 5, and 6, respectively (see
Supplementary Video S1).
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4 DISCUSSION

4.1 Effect of Center of Mass Offset on Gait
The proposed model has six types of gaits, labeled Sequences 1
through 6 (Figure 2). In Sequences 1, 2, 5, and 6, when a leg first
touches the ground, this leg leaves the ground earlier than the
other leg. As a result of the search of periodic solutions, we found
only these four sequences when the CoM is located at the center
(α = 0), as shown in Figure 3. In Sequences 3 and 4, when a leg
first touches the ground, this leg leaves the ground later than the
other leg (Figure 2). Sequences 3 and 4 appeared only when the
CoM is located posteriorly (α < 0) and anteriorly (α > 0),
respectively (Figure 3). In other words, the introduction of the
CoM offset α to the model allowed Sequences 3 and 4 to appear.

Whereas the trajectories and phases of the periodic solutions
were symmetric for α = 0, the solutions became asymmetric as |α|
increased (Figure 4). However, the asymmetric tendency
depended on the gait. Specifically, as |α| increased, the
trajectories and phases showed higher asymmetry in order of
Sequences 3 and 4, Sequences 1 and 2, Sequences 5 and 6

(Figure 4). These reasons can be explained from the viewpoint
of the dynamics of the body rotation. Specifically, the body
rotation is created by the moment of force by the ground
reaction forces from the fore and hind legs. Therefore, the
periodic solutions require the moment of impulse generated
for one gait cycle to be balanced between the fore and hind
legs. When α > 0, the distances from the CoM to the joints of the
fore and hind legs are short and long, respectively. Therefore, the
moment of impulse is balanced by increasing the magnitude of
the ground reaction force and stance phase duration of the fore
leg and by decreasing those of the hind leg, and vice versa when α
< 0. In the DS phase, the net moment applied to the body is
reduced by the positive moment from the fore leg and negative
moment from the hind leg, which decreases the asymmetry of the
body rotation. Since the DS phase duration decreased in order of
Sequences 3 and 4, Sequences 1 and 2, Sequences 5 and 6, the
asymmetry of the trajectories and phases increased in this order.

This can also explain why Sequences 3 and 4 appear in α < 0
and α > 0, respectively. Specifically, in Sequences 3 and 4, when a
leg first touches the ground, this leg leaves the ground later than
the other leg (Figure 2). Based on the solution for α = 0 and
_θ
p � 0, where both legs touch and leave the ground
simultaneously (Figure 4A). Since the stance phase duration

FIGURE 5 | Regions in which periodic solutions are found for horizontal
translational kinetic energy T* and the sum of gravitational potential energy and
rotational kinetic energy U* + R*. (A) α = 0.2 and (B) α = 0. The light and dark
gray regions indicate that the solutions are unstable and stable,
respectively. The dotted lines indicate the contour of total energy E.

FIGURE 6 | Fluctuation of pitchmovement of stable solutions for _x*. (A) α
= 0.2 and (B) α = 0.
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of the hind leg became longer than that of the fore leg for α < 0,
Sequence 3 appeared, and vice versa for α > 0 and Sequence 4
(Figure 4B).

4.2 Gait Selection by Horses
Sequence 1 has one flight phase, after which the hind leg first
touches the ground (Figure 2), and thus corresponds to the
transverse gallop used by horses and gnus (Muybridge, 1957;
Pennycuick, 1975; Hildebrand, 1977; Hildebrand, 1989).
Sequence 2 has one flight phase, after which the fore leg first
touches the ground (Figure 2), and thus corresponds to the
transverse gallop used by deer and antelopes (Bigalike, 1972;
FitzGibbon and Fanshawe, 1988; Hildebrand, 1989). Sequences 3
and 4 also have one flight phase (Figure 2). When touchdown
and liftoff occur almost simultaneously between the fore and hind
legs and the pitch fluctuation is small, as obtained in Figure 4B,
these gaits correspond to the pronk used by springboks and
Thomson’s gazelles (Bigalike, 1972; FitzGibbon and Fanshawe,
1988; Hildebrand, 1989). In contrast, Sequences 5 and 6 have two
flight phases and thus correspond to the rotary gallop used by
cheetahs and greyhounds (Muybridge, 1957; Hildebrand, 1977;
Hildebrand, 1989; Bertram and Gutmann, 2008; Biancardi and
Minetti, 2012; Hudson et al., 2012).

When we used the physical parameters estimated in horses,
including the CoM offset α = 0.2, only Sequences 1 and 2 had
stable solutions (Figures 3, 6). Sequence 1 had a wider speed
range (5.5–10 m/s) than Sequence 2 (5.8–10 m/s) (Figure 6) and
the speed range of Sequence 1 was closer to that of a galloping
horse (5–10 m/s) (Hoyt and Taylor, 1981; Minetti et al., 1999).
Furthermore, Sequence 1 had smaller pitch fluctuations (2.2–7.2
deg) than Sequence 2 (3.2–7.9 deg) (Figure 6A), and the amount
of the fluctuations of Sequence 1 was closer to that of a galloping
horse (2–8 deg) (Dunbar et al., 2008). However, when we used α =
0 instead of α = 0.2 estimated in horses, although Sequences 1 and
2 also had stable solutions, the speed range and pitch fluctuation
were not much different between Sequence 1 and 2 (Figure 6B).
Our results suggest that Sequence 1, which corresponds to the
transverse gallop actually used by horses, is a suitable gait for
horses from a dynamical viewpoint.

4.3 Vertical and Pitch Movements
Although stable periodic solutions existed for a large range of the
horizontal translational kinetic energy Tp, these solutions existed
for a limited range of the sum of the gravitational and rotational
kinetic energies Up + Rp (Figure 5). This means that the stability
of bounding mainly depends on the vertical and pitchmovements
of the body. Thus far, simple models focusing on the vertical and
pitching movements have been used to investigate the gait
stability (Berkemeier, 1998; Zou and Schmiedeler, 2006; De
and Koditschek, 2018; Kamimura et al., 2021). In particular,
Berkemeier (1998) investigated the stability of bounding (which
corresponds to Sequences 5 and 6) using a symmetrical model,
which is identical to our model with α = 0, and derived the
stability condition as μ < 1, where μ = J/(MD2). Zou and
Schmiedeler (2006) improved his model by introducing the
CoM offset α, as in the present study, and derived the stability
condition for α > 0 as μ < 1 − α2. For the physical parameter

μ = 1.48 estimated in horses (Swanstrom et al., 2005), our results
showed that all solutions of Sequences 5 and 6 were unstable,
regardless of α (Figure 3), which is consistent with their results.

While dogs have a larger CoM offset (α = 0.28) (Ben-Amotz
et al., 2020) than horses (α = 0.2) (Self Davies et al., 2019), they use
both transverse and rotary gallop depending on the speed
(Biancardi and Minetti, 2012). Polet (2021) showed that the
pitch moment of inertia plays an important role for the gait
determination using a simple model. In addition to the CoM
offset, we would like to investigate the contribution of the pitch
moment of inertia to the gait selection in the future.

4.4 Limitations and Future Research
Ground reaction forces of animals during fast running show
sinusoidal patterns (Alexander et al., 1986; Full and Tu, 1991;
Farley et al., 1993). Blickhan (1989) and McMahon and Cheng
(1990) introduced a simple spring-mass model to achieve these
patterns for the ground reaction forces. This representation of the
leg by a linear spring successfully described and predicted animal
locomotion (Blickhan and Full, 1993; Farley et al., 1993; Deng
et al., 2012; Tanase et al., 2015; Gan et al., 2016). For example,
Gan et al. (2016) reproduced three different gaits (walk, trot, and
tölt) of horses by using a quadrupedal spring-mass model and
suggested that different quadrupedal gaits are interpreted as
different elastic oscillations. Moreover, passively stable running
allows the controller and sensing to be simple, even when there
are disturbances (Poulakakis et al., 2006). Therefore, such a
simple passive model is useful to investigate the gait selection
mechanisms by animals (Tanase et al., 2015; Kamimura et al.,
2021). However, actual animals lose kinetic energy by collisions of
their legs with the ground and by dissipation via friction and
compensate for this loss by their muscles. Energy efficiency is an
important factor for animal gait (Ruina et al., 2005; Chatzakos
and Papadopoulos, 2009; Cao and Poulakakis, 2015; Polet and
Bertram, 2019; Polet, 2021). We would like to introduce the
elements for energy dissipation and generation in order to obtain
a deeper understanding of the running mechanism in animals in
the future.

In addition to the CoM offset and pitch moment of inertia,
different characteristics between the fore and hind legs could
also influence the running dynamics. For example, the muscle
mass of the hind legs is greater than that of the fore legs in
horses, and it has been suggested that the main role of the fore
legs is to support the body weight, whereas that of the hind legs
is to generate driving forces (Payne et al., 2005; Crook et al.,
2008). Therefore, future investigations of the effects of different
characteristics of the legs would be useful for a better
understanding of the relationship between the body structure
and running in animals.

In the present study, we used the physical parameters
estimated in horses to discuss the gait selection by horses.
Physical parameters, such as body weight, moment of inertia,
and leg length, vary between species. Different parameters could
influence the gait preference. We would like to investigate gait
selection by animals other than horses in order to clarify the
mechanisms for difference gaits between species in future
studies.
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