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This study aims to explore the feasibility of the novel temperature-sensitive hydrogel-based
dual sustained-release system (Van/SBA-15/CS-GP-SA) in the repair and treatment of
infectious jaw defects. Van/SBA-15 was prepared using the mesoporous silica (SBA-15)
as a carrier for vancomycin hydrochloride (Van), and Van/SBA-15 was characterized by
scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy
dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform
infrared (FTIR), Brunauer–Emmett–Teller (BET), and Barrett–Joyner–Halenda (BJH). The
characterization results confirm that Van is loaded in SBA-15 successfully. Van/SBA-15/
CS-GP-SA is constructed by encapsulating Van/SBA-15 in chitosan–sodium
glycerophosphate–sodium alginate hydrogel (CS-GP-SA). The microstructures,
sustained-release ability, biocompatibility, and antibacterial properties of Van/SBA-15/
CS-GP-SA were systematically studied. Van/SBA-15/CS-GP-SA is found to have
promising sustained-release ability, outstanding biocompatibility, and excellent
antibacterial properties. This study provides new ideas for the management of
infectious jaw defects.
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1 INTRODUCTION

The number of cases of jaw defects caused by accidents, trauma, cancer, congenital malformations,
and other related diseases is increasing, with infected bone defects caused by wound contamination
being a special type of bone defect (Darwich et al., 2021; Khorasani et al., 2021; Wang et al., 2021b).
Until now, repairing infected jaw defects has remained a challenge due to its high recurrence rate for
oral and maxillofacial surgeons (Zhang et al., 2019). To our knowledge, infection is due to the local
presence of pathogenic bacteria in the lesion, and once an infected jaw defect occurs, it may require
multiple surgical debridements and long-term systemic antibiotic therapy, which may lead to the
development of secondary injury, adverse antibiotic reactions, or lifelong functional impairment, and
increase the financial burden on the health-care system (Vestby et al., 2020; Wang et al., 2020).
Therefore, antimicrobial drug carriers, a topical strategy, have become an adjunct to the prevention
and treatment of infections in jaw defects (Alazzawi et al., 2021; Han et al., 2021). Topical
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administration at or near the site of infection diminishes the toxic
effects of antibacterial agents, reduces the required dose of
antibiotics, and enhances the bioavailability and safety of the
drug (Wychowański et al., 2021; Zheng et al., 2021).

At present, vancomycin hydrochloride (Van), a glycopeptide
antibiotic, has been widely used to treat infectious jaw defects
(Ahadi et al., 2019). However, due to the short half-life of Van,
patients need to be injected with it repeatedly, which may cause
adverse effects in the organism (Pecci et al., 2020). SBA-15, a type
of ordered mesoporous silica material with a two-dimensional
hexagonal pore structure, is a promising carrier for the controlled
release of therapeutic agents (Alkafajy and Albayati, 2020;
Esperanza Adrover et al., 2020; Seljak et al., 2020; Sun et al.,
2019). Large pore volume, size, and high surface area of SBA-15
contribute to an improved drug loading rate (Bavnhøj et al., 2019;
Alkafajy and Albayati, 2020). Its mesoporous structure helps
improve drug stability and prolong drug release time (Moritz
and Marek, 2012; Shen et al., 2020). Hydrogels are also widely
used as carriers in drug release because of their ability to modulate
the rate of drug release effectively (Zhao et al., 2020). Chitosan
(CS) has antibacterial properties, excellent cytoadhesive
properties, biocompatibility, and stability (Abinaya et al., 2019;
Li et al., 2020; Cui et al., 2021). The positive charge on CS can
inhibit the growth and reproduction of some bacteria and viruses,
which is beneficial to reduce the infection (Abid et al., 2019; Hao
et al., 2021; Yin et al., 2021). The three-dimensional network
structure of chitosan temperature-sensitive hydrogels can provide
a good microenvironment for cell proliferation, migration, and
differentiation and can guide the long entry of host cells (Zhao
et al., 2020; Kang et al., 2021; Sordi et al., 2021; Yang et al., 2021).
Sodium alginate (SA) is a natural polysaccharide that is a by-
product of iodine and mannitol extraction from the brown algae
kelp or sargassum, which has promising biocompatible and
biodegradable (Mujtaba and Alotaibi, 2020). Studies have
shown that CS forms a cross-linked structure with SA through
electrostatic interaction and hydrogen bonding, which
strengthens the linkage between the molecular chains of
sodium alginate, thus enhancing the mechanical properties
and release control ability of the hydrogel (Kiti and
Suwantong, 2020; Li et al., 2020; Kayan and Kayan, 2021).

To explore the feasibility of the dual sustained-release
hydrogel system in the repair and treatment of infectious jaw
defects, Van/SBA-15/CS-GP-SA was prepared and characterized.

2 MATERIALS AND METHODS

2.1 Materials
Van and SA were purchased from Dalian Meilun Biotechnology
Co., Ltd. (Dalian, China). SBA-15 was provided by Nanjing
XFNANO Materials Tech Co., Ltd. CS (deacetylation degree
≥95%) and acetic acid (purity ≥99.8%) were obtained from
Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).

2.2 Preparation of Van/SBA-15
Hundred milligrams of SBA-15 was dissolved in 10 ml of double-
distilled water and then sonicated to obtain SBA-15 suspension.

Van powder (20 mg) was added to the SBA-15 suspension, and
the mixture was stirred for 8 h at room temperature. Further 2 h
of vacuum treatment was then carried out in a vacuum oven to
facilitate the encapsulation of the Van in SBA-15. Subsequently,
the mixture was centrifuged (8,000 rpm, 10 min) and washed
twice with double-distilled water. The resultant Van/SBA-15 was
stored at 4°C. Meanwhile, to confirm the drug encapsulation
efficiency, the supernatant and wash solution were collected and
analyzed at a wavelength of 280 ± 2 nm using an
ultraviolet–visible (UV) spectrophotometer (Aucybest, China).
The encapsulation efficiency of Van/SBA-15 was 36.8%.

2.3 Characterization of Van/SBA-15
SBA-15 and Van/SBA-15 were characterized by SEM (JSM-
7001F, Japan) and TEM (Jeol/JEM 2100, USA). For SEM
observation, samples were sputter-coated with gold to increase
electronic conductivity. And TEM images were taken with a JEOL
JEM 2100 electron microscope at an accelerating voltage of
200 kV. The elemental profiles were analyzed by EDS
(IXRF550i, USA).

The element compositions were detected by XPS (ESCALAB
250XI, USA). FTIR spectra of SBA-15 and Van/SBA-15 were
measured using the KBr pellet method on a Nicolet 6700
spectrometer (Thermo, USA) from 4,000 to 400 cm−1. The
BET and BJH analyses were employed to determine the pore
size distribution, pore diameter, and specific surface area, through
N2 adsorption–desorption isotherms (V-Sorb 2800P analyzer,
Gold APP, China).

2.4 Preparation and Characterization of
Van/SBA-15/CS-GP-SA
Sodium glycerophosphate (GP, 600 mg) was dissolved in 1 ml of
double-distilled water. After that, 40 mg of SA was added to the
solution. The resultant GP-SA solution was refrigerated at 4°C.
Chitosan (250 mg) was dissolved in 10 ml of 0.1 mol/L acetic acid
and then stirred for 2 h. GP-SA and a certain amount of Van/
SBA-15 were added to the pre-prepared chitosan solution and
then stirred for 30 min. The obtained sol was poured into a mold
soaked in a 37°C water bath to produce Van/SBA-15/CS-GP-SA
gel (Laurano et al., 2020). The morphology of CS-GP-SA, Van/
CS-GP-SA, and Van/SBA-15/CS-GP-SA were observed by SEM
and TEM.

2.5 Investigation of In Vitro Drug Release
In vitro drug release was analyzed by using the dialysis method
(Ma and Shi, 2019). Van standard solution was diluted to
different concentrations (200–1,000 μg/ml), and the absorbance
at 280 ± 2 nm of the solutions was measured. The standard curve
was constructed by plotting concentration against absorbance.
Each Van/SBA-15, Van/CS-GP-SA, and Van/SBA-15/CS-GP-SA
was weighed to 200 mg and then placed in a dialysis bag. The
dialysis bag was placed in a beaker containing a release medium
(10 ml of PBS, pH = 7.4), sealed, and then shaken at a constant
speed at 37°C. The release solution (3 ml) was collected at
different time points and stored until further tests, while equal
amounts of PBS were supplemented to the solution. UV
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absorbance at 280 ± 2 nm was monitored. The concentrations
were calculated based on the standard curves, and the cumulative
release of Van at different time points was calculated.

2.6 Analysis of In Vitro Cytocompatibility
The samples used in this experiment were divided into four
groups: control, CS-GP-SA, Van/CS-GP-SA, and Van/SBA-15/
CS-GP-SA. The hydrogels were sterilized under ultraviolet light
for 2 h immediately after manufacture and then immersed in a
cell culture medium at a surface area of 1 ml/cm2 of hydrogel for
24 h at 37°C to extract the compounds. The MT3C3-E1 cells were
seeded in 96-well plates at 5 × 103 cells/well. Five replicate
samples in each group were prepared. The plates were
incubated at 37°C in an incubator saturated with 5% CO2 for
24 h (Ji et al., 2021). After the cells adhered to the bottom of the
well, the supernatant was discarded. Then the extract (200 µl) was
added to the CS-GP-SA, Van/CS-GP-SA, and Van/SBA-15/CS-
GP-SA group, and the cell culture medium at the same volume
was added to the control group. After continuously incubated for
1, 3, and 5 d, the numbers of viable cells were counted using the
Cell Counting Kit-8 (CCK-8) (Sigma). CCK-8 solution (20 μl)
was added to each well, and the absorbance at 450 nm was
measured after 1 h. For the quantification of cell number, 4,6-
diamidino-2-phenylindole (DAPI) was used to stain the cell
nuclei (Pierozan and Karlsson, 2019).

2.7 Analysis of In Vitro Antibacterial Activity
The hydrogel was sterilized under ultraviolet light for 2 h before
use (Op't Veld et al., 2020). Then 200 μl suspension of Escherichia
coli (E. coli) and Staphylococcus aureus (S. aureus) were spread
evenly on a Luria–Bertani (LB) agar plate and then incubated
37°C for 1 h. CS-GP-SA, Van/CS-GP-SA, and Van/SBA-15/CS-
GP-SA with a diameter of 1 cm were placed on the LB agar plate
containing the bacteria and then incubated at 37°C for another

24 h in a bacterial incubator; Van/CS-GP-SA and Van/SBA-15/
CS-GP-SA contain an equal amount of vancomycin. After that,
the diameters of the inhibition zones were measured. The data
were the average of the three replicate samples.

2.8 Statistical Analysis
Statistical analysis was conducted using SPSS version 26.0. One-
way ANOVA and Tukey’s multiple comparison method were
used to determine the significant differences between groups. The
differences with p < 0.05 were considered statistically significant.

3 RESULTS AND DISCUSSION

3.1 Characteristics of Van/SBA-15
The SEM image showed that SBA-15 microscopically
consisted of many short cylindrical rod-shaped particles
with relatively uniform sizes, which is the typical
morphological feature of SBA-15 molecular sieves. The
surface morphologic image of Van/SBA-15 clearly showed
that Van was adsorbed on the surface of SBA-15, which is an
indication that the surface of SBA-15 has the capacity to
adsorb drugs (Figures 1A,D). The TEM image showed that
SBA-15 had a two-dimensional hexagonal structure. The
pores of Van/SBA-15 became blurred, suggesting that Van
was successfully loaded into SBA-15 (Figures 1B,E). The EDS
spectrum showed that SBA-15 contained O and Si, and Van/
SBA-15 contained not only O and Si but also N and Cl
(Figures 1C,F). Van/SBA-15 contained two elements, N
and Cl, which are not present in SBA-15, and these two
elements are formally Van’s elements. These EDS results
further verify the TEM result.

Equally, the XPS results showed that Van/SBA-15 powder
exhibited the N1s peak at 400.3 eV and Cl2p peak at 201.6 eV,

FIGURE 1 | SEM images of SBA-15 (A) and Van/SBA-15 (D), TEM images of SBA-15 (B) and Van/SBA-15 (E), EDS analysis of SBA-15 (C), and Van/SBA-15 (F).
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while N1s and Cl2p peak did not appear in SBA-15 powder
(Figure 2). The XPS results prove from the side that Van is
successfully loaded in SBA-15.

The FTIR spectrum of Van showed peaks at 3,440 cm−1 and
1,635 cm−1, which corresponded to the -OH stretching and the
C=O vibration, respectively. These peaks are the characteristic
peaks of Van. Furthermore, characteristic peaks corresponding to
the stretching and bending of Si-O-Si in SBA-15 appeared at
1,090 cm−1 and 795 cm−1 (Kayan, 2016). The FTIR spectrum of
Van/SBA-15 showed all the characteristic peaks of Van and SBA-
15, confirming that Van was successfully encapsulated in SBA-15
(Figure 3).

The N2 adsorption–desorption isotherms before and after
drug loading conformed to the type IV adsorption curve,
which is the typical adsorption isotherms of mesoporous
materials. The N2 adsorption after drug loading was
significantly lower than that before drug loading, and both
exhibited adsorption isotherm type IV and contained
hysteresis loop (Figure 4). From the data given in Table 1,
the loading of drug into the mesoporous pores of the material
had no effect on the skeletal structure of SBA-15 but caused the
reduction of pore size, pore volume, and specific surface area.
This indicates that Van successfully entered into the pore
channels of SBA-15 but not completely filled the pore channels.

3.2 Characteristics of Van/SBA-15/
CS-GP-SA
The SEM image showed that samples in all the 3 groups had
distinct porous structures. The pore walls of CS-GP-SA were
smooth. When Van was added, the pore walls of the prepared
Van/CS-GP-SA became rough, and the surface showed a
protruding granularity. With the addition of Van/SBA-15, the
pore walls of the prepared Van/SBA-15/CS-GP-SA were rougher,
and the surface presented a more pronounced granularity.
Similarly, we found that the addition of Van and Van/SBA-15
affected the pore size of the scaffolds. The pore size of the
manufactured Van/SBA-15/CS-GP-SA was larger than the
other two groups (Figure 5). This indicates that the addition
of Van/SBA-15 to CS-GP-SA has a significant influence on the
surface structure (Jaidev and Chatterjee, 2019; Ouyang et al.,
2019; Metwally et al., 2020; Wychowański et al., 2021).

3.3 In Vitro Drug Release
The controlled release curves of Van/SBA-15, Van/CS-GP-SA,
and Van/SBA-15/CS-GP-SA showed that Van initiated burst
release within the first 4 d and then sustained release

FIGURE 2 | XPS images of SBA-15 and Van/SBA-15 (A), XPS image of the N1s peak of Van/SBA-15 (B), and XPS image of the Cl2p peak of Van/SBA-15 (C).

FIGURE 3 | FTIR spectra of Van, SBA-15, and Van/SBA-15.

FIGURE 4 | N2 adsorption–desorption isotherms of SBA-15 and Van/
SBA-15.
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thereafter. However, the slower release was observed in Van/
CS-GP-SA and Van/SBA-15/CS-GP-SA. The cumulative
release of Van from Van/SBA-15, Van/CS-GP-SA, and Van/
SBA-15/CS-GP-SA on day 15 was (94.6 ± 1.37)%, (83.7 ±
2.10)%, and (73 ± 1.76)%, respectively, and that on day 30 was
(99.1 ± 0.13)%, (93 ± 0.47)%, and (84 ± 0.64)%, respectively
(Figure 6). These results suggest that the sustained-release of
Van/SBA-15/CS-GP-SA was much better than those in other
samples, which is probably due to the drug combined with
nanoparticles by hydrogen bonding, ionic interaction, and
physical absorption (Wang et al., 2021a).

3.4 In Vitro Cytocompatibility
The CCK-8 data of all the four groups observed on 1, 3, and 5 d
were not significantly different (p > 0.05). In addition, the cell
proliferation indicated by the optical density (OD) values in all
four groups increased with time (p < 0.05) (Figure 7A). The result
was again confirmed with the nuclear staining method using
DAPI for 1, 3, and 5 d. Figure 7B shows that all groups achieved a
gradual increase in cell numbers with increasing incubation time,
and there was no significant difference between the groups. The
results indicate that the prepared composite hydrogels have good
cytocompatibility and allow cell spreading and proliferation. The

TABLE 1 | Pore parameters of SBA-15 and Van/SBA-15.

Sample BJH adsorption average
pore diameter

BJH adsorption cumulative
volume of pores

BET surface area

SBA-15 10.6 m 1.1 cm3/g 465.4 m2/g
Van/SBA-15 10.2 nm 0.9 cm3/g 445.6 m2/g

FIGURE 5 | SEM images of CS-GP-SA (A, D), Van/CS-GP-SA (B, E), and Van/SBA-15/CS-GP-SA (C, F).

FIGURE 6 | Ultraviolet absorption of Van solution (A), the standard curve of Van solution (B), the cumulative release profiles of Van from Van/SBA-15, Van/CS-GP-
SA, and Van/SBA-15/CS-GP-SA (C).
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above results confirm that Van/SBA-15/CS-GP-SA has high
cytocompatibility.

3.5 In Vitro Antibacterial Effect
The bacteriostatic circle was more obvious in Van/SBA-15/CS-
GP-SA and Van/CS-GP-SA than that in CS-GP-SA (p < 0.05).
A less pronounced antimicrobial cyclic appeared around CS-
GP-SA, and this may be caused by the antibacterial activity of
CS (Zhu et al., 2021) (Figures 8B,C). These results indicate
that Van/SBA-15/CS-GP-SA has excellent antibacterial
properties.

However, as can be seen in the bar chart, Van/CS-GP-SA was
slightly better than Van/SBA-15/CS-GP-SA, and this may be due
to the slow release of SBA-15 (Figure 8A). The aformentioned
finding further confirms that Van/SBA-15/CS-GP-SA has a
sustained-release ability.

4 CONCLUSION

In this study, a novel temperature-sensitive hydrogel-based dual
sustained-release system (Van/SBA-15/CS-GP-SA) was
successfully prepared by Van-loaded SBA-15 and
chitosan–glycerophosphate–alginate–sodium hydrogel, which
have promising sustained-release ability, excellent
biocompatibility, and antibacterial property. This study

provides ideas for exploring new strategies for the
management of infectious jaw defects.
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and Van/SBA-15/CS-GP-SA (c).
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