
A Tandem Robotic Arm Inverse
Kinematic Solution Based on an
Improved Particle Swarm Algorithm
Guojun Zhao1,2, Du Jiang1,3*, Xin Liu1,2*, Xiliang Tong1*, Ying Sun1,2*, Bo Tao1,4,
Jianyi Kong1,2,3, Juntong Yun2,4, Ying Liu2,4 and Zifan Fang5*

1Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and
Technology, Wuhan, China, 2Research Center for Biomimetic Robot and Intelligent Measurement and Control, Wuhan University
of Science and Technology, Wuhan, China, 3Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,
Wuhan University of Science and Technology, Wuhan, China, 4Precision Manufacturing Research Institute, Wuhan University of
Science and Technology, Wuhan, China, 5Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three
Gorges University, Yichang, China

The analysis of robot inverse kinematic solutions is the basis of robot control and path
planning, and is of great importance for research. Due to the limitations of the analytical and
geometric methods, intelligent algorithms are more advantageous because they can
obtain approximate solutions directly from the robot’s positive kinematic equations,
saving a large number of computational steps. Particle Swarm Algorithm (PSO), as one
of the intelligent algorithms, is widely used due to its simple principle and excellent
performance. In this paper, we propose an improved particle swarm algorithm for
robot inverse kinematics solving. Since the setting of weights affects the global and
local search ability of the algorithm, this paper proposes an adaptive weight adjustment
strategy for improving the search ability. Considering the running time of the algorithm, this
paper proposes a condition setting based on the limit joints, and introduces the position
coefficient k in the velocity factor. Meanwhile, an exponential product form modeling
method (POE) based on spinor theory is chosen. Compared with the traditional DH
modeling method, the spinor approach describes the motion of a rigid body as a whole
and avoids the singularities that arise when described by a local coordinate system. In
order to illustrate the advantages of the algorithm in terms of accuracy, time, convergence
and adaptability, three experiments were conducted with a general six-degree-of-freedom
industrial robotic arm, a PUMA560 robotic arm and a seven-degree-of-freedom robotic
arm as the research objects. In all three experiments, the parameters of the robot arm, the
range of joint angles, and the initial attitude and position of the end-effector of the robot arm
are given, and the attitude and position of the impact point of the end-effector are set to
verify whether the joint angles found by the algorithm can reach the specified positions. In
Experiments 2 and 3, the algorithm proposed in this paper is compared with the traditional
particle swarm algorithm (PSO) and quantum particle swarm algorithm (QPSO) in terms of
position and direction solving accuracy, operation time, and algorithm convergence. The
results show that compared with the other two algorithms, the algorithm proposed in this
paper can ensure higher position accuracy and orientation accuracy of the robotic arm
end-effector. the position error of the algorithm proposed in this paper is 0 and the

Edited by:
Tinggui Chen,

Zhejiang Gongshang University, China

Reviewed by:
Jianhua Zhang,

Tianjin University of Technology, China
Ting Wang,

Shandong University of Science and
Technology, China
Mihai Crenganis,

Lucian Blaga University of Sibiu,
Romania

*Correspondence:
Du Jiang

jiangdu@wust.edu.cn
Xin Liu

liuxin3058@wust.edu.cn
Ying Sun

sunying65@wust.edu.cn
Xiliang Tong

tongxiliang@wust.edu.cn
Zifan Fang

fzf@ctgu.edu.cn

Specialty section:
This article was submitted to

Bionics and Biomimetics,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 10 December 2021
Accepted: 24 February 2022

Published: 19 May 2022

Citation:
Zhao G, Jiang D, Liu X, Tong X, Sun Y,
Tao B, Kong J, Yun J, Liu Y and Fang Z
(2022) A Tandem Robotic Arm Inverse

Kinematic Solution Based on an
Improved Particle Swarm Algorithm.

Front. Bioeng. Biotechnol. 10:832829.
doi: 10.3389/fbioe.2022.832829

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328291

ORIGINAL RESEARCH
published: 19 May 2022

doi: 10.3389/fbioe.2022.832829

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.832829&domain=pdf&date_stamp=2022-05-19
https://www.frontiersin.org/articles/10.3389/fbioe.2022.832829/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.832829/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.832829/full
http://creativecommons.org/licenses/by/4.0/
mailto:jiangdu@wust.edu.cn
mailto:liuxin3058@wust.edu.cn
mailto:sunying65@wust.edu.cn
mailto:tongxiliang@wust.edu.cn
mailto:fzf@ctgu.edu.cn
https://doi.org/10.3389/fbioe.2022.832829
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.832829

maximum orientation error is 1.29 × 10–8. while the minimum position error of the other two
algorithms is −1.64 × 10–5 and the minimum orientation error is −4.03 × 10–6. In terms of
operation time, the proposed algorithm in this paper has shorter operation time compared
with the other two algorithms. In the last two experiments, the computing time of the
proposed algorithm is 0.31851 and 0.30004s respectively, while the shortest computing
time of the other two algorithms is 0.33359 and 0.30521s respectively. In terms of
algorithm convergence, the proposed algorithm can achieve faster and more stable
convergence than the other two algorithms. After changing the experimental subjects,
the proposed algorithm still maintains its advantages in terms of accuracy, time and
convergence, which indicates that the proposed algorithm is more applicable and has
certain potential in solving the multi-arm inverse kinematics solution. This paper provides a
new way of thinking for solving the multi-arm inverse kinematics solution problem.

Keywords: particle swarm algorithm, joint limiting, adaptive strategy, spinor theory, robot inverse kinematics
solution

1 INTRODUCTION

For the trajectory planning as well as control of the robotic arm,
its inverse kinematic solution is the key. The inverse kinematic
solution can directly affect the control accuracy and the success of
trajectory planning of the robot arm. However, the process of
solving the inverse kinematic solution for the robot arm is not
only tedious, but also impossible to solve. The emergence of
bionic intelligent algorithms provides new ideas for solving
inverse kinematics solutions. By transforming the tedious
inverse kinematics solution process into an optimization
problem with minimum value, it not only simplifies the
solution process, but also improves the solution efficiency. The
particle swarm algorithm is more advantageous in terms of
accuracy, speed and applicability at the level of robot inverse
kinematics solution due to its simple programming and easy
implementation. Therefore, this paper selects the particle swarm
algorithm and further improves it for solving the robot inverse
kinematics solution.

In this paper, an inverse kinematic solution method based on
an improved particle swarm algorithm is proposed for the inverse
kinematic solution of an arbitrary tandem robotic arm, with the
following innovative points.

1) A particle swarm algorithm is introduced to solve the inverse
kinematic solution of the tandem multi-degree-of-freedom
robotic arm, which transforms the inverse kinematic solution
process of the robotic arm into a multi-objective optimization
problem and gives a suitable fitness function based on the
inverse kinematic problem.

2) In this paper, an exponential product form modeling method
(POE) based on spinor theory is chosen. Compared with the
traditional DH modeling method, the spinor approach
describes the motion of a rigid body as a whole and avoids
the singularities that arise when described by a local
coordinate system.

3) This paper proposes a condition setting based on limit joints
and introduces a position factor k in the velocity factor. The

reasonable condition setting provides a reference standard for
the initialization of position and velocity, and reduces the
running time of the algorithm at the same time. Among them,
the operation time of the algorithm proposed in this paper is
0.31851 and 0.30004s in the second as well as the third
experiment, while the shortest operation time of the other
two algorithms is 0.33359 and 0.30521s, respectively.

4) An adaptive weight adjustment strategy is proposed to
improve the stable search capability of the algorithm.

5) Three experiments are designed to illustrate the solution
accuracy, operation time, and convergence of the
algorithm. The experimental objects include: general six-
degree-of-freedom robotic arm, PUMA560 robotic arm,
and 7-degree-of-freedom robotic arm. The experimental
method is: setting the position of the impact point and the
attitude of the end-effector of the robotic arm, by bringing the
relevant parameters of the robotic arm, the value range of the
joint angle, the initial attitude and position of the end-effector
of the robotic arm into the algorithm, finding the joint angle
that meets the conditions, and finally getting the actual
position and attitude of the end-effector of the robotic arm.
The comparison algorithms include: the algorithm proposed
in this paper, the traditional particle swarm algorithm (PSO),
and the quantum particle swarm algorithm (QPSO). The
comparison is done by comparing the error of the actual
position and attitude of the robotic arm end-effector with the
position and attitude of the given impact point, comparing the
computing time of a set of data, and comparing the
convergence of different algorithms according to the
change of the fitness function with the number of
iterations in a set of data. The results show that compared
with the other two algorithms, the algorithm proposed in this
paper can ensure higher position accuracy and orientation
accuracy of the robotic arm end-effector. the position error of
the algorithm proposed in this paper is 0 and the maximum
orientation error is 1.29 × 10–8. while the minimum position
error of the other two algorithms is −1.64 × 10–5 and the
minimum orientation error is −4.03 × 10–6. In terms of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328292

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

operation time, the proposed algorithm in this paper has
shorter operation time compared with the other two
algorithms. In the last two experiments, the computing
time of the proposed algorithm is 0.31851 and 0.30004s
respectively, while the shortest computing time of the other
two algorithms is 0.33359 and 0.30521s respectively. In terms
of algorithm convergence, the proposed algorithm can achieve
faster and more stable convergence than the other two
algorithms.

The rest of this paper is described as follows. Section 2
introduces the current domestic and foreign methods for the
inverse kinematics solution of robotic arms, the improvement
methods of particle swarm algorithms, and the advantages and
improvements of particle swarm algorithms for the inverse
kinematics solution of robotic arms. Section 3 takes a general
six-degree-of-freedom industrial robotic arm as the research
object and analyzes its positive kinematics based on the spin
volume theory, and also gives the specific calculation steps.
Section 4 introduces two particle swarm optimization
algorithms, explains the implementation steps of the general
particle swarm algorithm, and illustrates the improvements of
the algorithm compared with other improved particle swarm
algorithms. Section 5 sets the experimental conditions and gives
the specific form of the fitness function, the flowchart of the
algorithm, and the pseudo-code. Section 6 conducts three
experiments for different research objects, shows the
simulation results under different conditions, and compares
this algorithm with other algorithms in terms of solution
accuracy, operation time, and convergence. Finally, the
discussion and conclusion sections of this paper are presented.

2 RELATED WORK

The main types of robot inverse kinematics solutions are
analytical, numerical, geometric, and intelligent algorithms.
The analytical method is mainly used to solve the robotic arm
with a definite configuration, i.e., a robotic arm that satisfies the
“Pieper” criterion - three joint axes intersecting at one point
(Tong et al., 2021; Liu F. et al., 2021; Xiao et al., 2021; Chen et al.,
2021a). When the criterion is satisfied, the joint angles of the
robotic arm have a definite analytical solution form. The
advantage of the analytical method is that it is fast to solve,
and the disadvantage is that it has a more limited use. The
numerical method has a wider application compared to the
analytical method, but the solution speed is slow and there are
numerical stability problems. The numerical method is based on
the Jacobi matrix and approximates the optimal solution by
numerical iteration. The geometric method has a narrower
application than the analytical method. This method solves the
inverse kinematic solution of the robotic arm mainly by the
geometric configuration of the robotic arm. The robotic arm that
does not satisfy the “Pieper” criterion can often be solved by the
geometric method, and specific applications include the inverse
kinematic solution of the three subproblems of “Paden-Kahan”
based on the rotation theory (Wang et al., 2021;Weng et al., 2021;

Duan et al., 2021; Cheng et al., 2021). The advantage of the
geometric method is that it has a clear geometric meaning and
can solve some problems that cannot be solved by the analytical
method. Compared with the first two methods, the intelligent
algorithm does not involve the inverse kinematic solution part,
and solves the inverse kinematic solution mainly by deriving the
end position change matrix based on the positive kinematics of
the robot, and finally approximating the correct joint angle
gradually by randomly generating the joint angle values and
error functions to achieve the solution of the inverse
kinematic solution. Intelligent algorithms tend to avoid some
of the problems present in the process of solving conventional
inverse kinematics solutions, such as the existence of singularities
when the Jacobi determinant is zero, which cannot be solved
(Kucuk and Bingul, 2014; Liao et al., 2021; Jiang et al., 2021a; Liu
X. et al., 2021). Therefore it is of great research significance for the
study of intelligent algorithms. The existing intelligent algorithms
are artificial neural networks, adaptive neuro-fuzzy inference
systems, and genetic algorithms, particle swarm search
algorithms, etc. (EI-Sherbiny et al., 2018; Huang et al., 2021;
Tao et al., 2021; Hao et al., 2021a).

Particle swarm algorithm is widely used as an intelligent
algorithm compared to other algorithms because of its simple
programming and easy implementation, as well as its better final
solution. Many researchers have improved the particle swarm
algorithm. Netjinda et al. optimized the search diversity of PSO
algorithm by re-updating the position and velocity based on the
principle of bird flock frightening (Netjinda et al., 2015; Jiang
et al., 2021b; Ma et al., 2020; Sun et al., 2020a). Yang et al. improve
the convergence of the algorithm generate the initial population
by Halton sequence and adjust the inertia weights based on the
variation property of the nonlinear function (Yang et al., 2015;
Sun et al., 2020b; Luo et al., 2020; Sun et al., 2020c). Harrison et al.
further study on the inertia weight adjustment strategy of particle
swarm algorithm (Harrison et al., 2016; Li et al., 2020; Tan et al.,
2020; Huang et al., 2020). Chen et al. proposed a double cluster
and double layer structure, with the best particles as the top layer
and all particles as the bottom layer to improve the search ability
and efficiency of the algorithm (Chen et al., 2017; He et al., 2019;
Jiang et al., 2019a; Chen et al., 2021b). Tanweer et al. divided the
particle swarm into three groups, each with a different speed
configuration. The speed of each group is configured with a
different update strategy so that the algorithm achieves faster
convergence and higher accuracy (Tanweer et al., 2016; Huang
et al., 2019; Jiang et al., 2019b; Yu et al., 2019). Li et al. combine
the particle swarm optimization algorithm with the artificial bee
colony algorithm to improve the search capability and
convergence speed of the algorithm (Li et al., 2015a; Sun et al.,
2021; Tao et al., 2022a; Li et al., 2019b; Jiang et al., 2019c). Aydilek
combined particle swarm optimization algorithm with firefly
algorithm to improve the running time and convergence
accuracy of the algorithm (Aydilek, 2018; Liu et al., 2021c; Liu
et al., 2021d; Bai et al., 2022). Ngo et al. proposed a particle
movement strategy for overcoming the situation that traditional
particle swarm algorithms converge too early and fall into local
optimum (Ngo et al., 2016; Liu et al., 2022d; Yang et al., 2021;
Mao et al., 2017). Thangaraj et al. summarized the fusion

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328293

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

algorithm of particle swarm algorithm with various other
intelligent algorithms and conducted an experimental
comparison (Thangaraj et al., 2011; Yang et al., 2021; Hao
et al., 2021b; Tao et al., 2022b). Wei et al. proposed an
adaptive two-layer particle swarm algorithm based on learning
strategy by dividing the population into two parts (Lim and Mat
Isa, 2014; Liu et al., 2022a; Yun et al., 2022; Liu et al., 2022b).
Taherkhani et al. determines the inertia weight for each position
based on the distance of each particle’s performance from the
optimal position and ultimately improves the solution quality as
well as the convergence speed (Taherkhani and Safabakhsh, 2016;
Cheng et al., 2020; Wu et al., 2022; Yu et al., 2020).

For robot inverse kinematics solution solving, particle swarm
algorithm is more advantageous in terms of accuracy, speed and
applicability. Ayyildiz et al. compared genetic algorithm, particle
swarm algorithm, quantum particle swarm algorithm and
gravitational search algorithm for solving robot inverse
kinematics solution and finally found that particle swarm
algorithm has higher accuracy compared to other algorithms
(Ayyildiz and Centinkaya, 2016). Dereli et al. proposed an
improved PSO algorithm which discarded the traditional
position and velocity update approach and chose to use a
quantum mechanics based position update approach for
solving the seven degree of freedom robotic arm inverse
kinematics solution (Dereli and Koker, 2020). Liu et al.
proposed an improved PSO algorithm for simultaneous
optimization of multiple populations to enhance the search
capability during population iteration (Liu F. et al., 2021;
Chen et al., 2022; Sun et al., 2020d). Deng et al. proposed an
adaptive particle swarm algorithm by improving the learning
factor, adopting an adaptive weighting strategy, and proposing a
special boundary handling method thereby optimizing the case
where the particles fall into local optima (Deng and Xie, 2021; Xu
et al., 2022; Sun et al., 2020a). Dereli et al. changed the fixed

weights to variable random weights, while applying the improved
PSO algorithm to the estimation of the end position of a seven-
degree-of-freedom redundant robotic arm, ultimately improving
its solution accuracy (Dereli and Koker, 2018). Pathak et al.
proposed a bi-directional particle swarm optimization algorithm
for solving the optimization problem of the inverse kinematic
solution of a robotic arm (Pathak et al., 2019; Li et al., 2015b). Liu
et al. proposed a new parallel learning particle swarm
optimization algorithm (PLPSO) that divides the original
population into two independently evolving subpopulations.
The algorithm was compared with other algorithms and tested
for the UR5 robotic arm, which finally showed the good
performance of the algorithm (Liu et al., 2022c; Yiyang et al.,
2021; Sun et al., 2018). Shastri et al., 2019 combined neural
network with particle swarm algorithm to solve the robotic arm
inverse kinematics solution from the operation time and
complexity level (Shastri et al., 2019; Li et al., 2019c; Liu et al.,
2022d; Li et al., 2019a).

3 MODEL AND KINEMATIC ANALYSIS

3.1 Robotic Arm Model
In this paper, a common six-degree-of-freedom robotic arm in
industry is selected as the research object, and its structural sketch
is shown in Figure 1. The robotic arm shown in Figure 1 is a six-
degree-of-freedom tandem robotic arm, and all six joints are
rotating joints. Its structure is characterized by the first three
joints not intersecting, the second and third joint axes are parallel
and anisotropic to the first joint axis, and the fourth, fifth and
sixth joints intersect at a point, satisfying Pieper’s criterion, so
there exists an inverse kinematic closure solution. Considering
that the process of establishing the coordinate system by DH
kinematic modeling method is too complicated, not only the

FIGURE 1 | Sketch of general industrial six-degree-of-freedom robotic arm structure.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328294

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

world coordinate system needs to be established, but also the
relative coordinate system between joints and joints, and the form
of the final solution obtained is often inconsistent for different
DH modeling methods. While based on the spinor theory only
needs to establish a world coordinate system, which not only
optimizes the modeling process, but also has good geometric
meaning. Therefore, in this paper, we choose to establish the joint
coordinate system based on the Lie group and spinor theory
(Wang et al., 2018; Liao et al., 2020; Sun and Zhao, 2022; Zhang
et al., 2022).

3.2 Kinematic Analysis
Compared with the traditional DH modeling method, the spinor
approach describes the motion of a rigid body as a whole,
avoiding the singularities that arise when described by a local
coordinate system. One of the positive kinematic modeling
processes based on the spinor theory is shown below.

The coordinates of a rigid body in space can be expressed as
the transformation of the pose of the rigid body with respect to
the base coordinate system as well as the transformation of the
position. The specific representation is shown in Eq. 1.

SE(3) � {[R t
0 1

]};R ∈ R3×3,

t ∈ R3, RTR � I, det(R) � 1,

⎫⎪⎬⎪⎭ (1)

where R is a 3-by-3 matrix representing the pose transformation
of the rigid body with respect to the base coordinate system. t is a
3-by-1 column vector representing the position transformation of
the rigid body with respect to the base coordinate system.
Chasles’ theorem proves that the rigid body motion of any
object from one position pattern to another can be realized
by a compound rotation around a certain line and a
movement along that line, and that the compound motion
is called spiral motion, whose infinitesimal quantity is the
element of the Lie algebra, i.e., the kinematic spin. the Lie
algebra of SE(3) is denoted as se(3), where the elements are
defined as follows:

ξ
∧
� [ω∧ v

0 0
] � [ωT; vT]T ∈ R6 (2)

where ω denotes the angular velocity of rotation of the rigid body
around the rotation axis. v denotes the corresponding
translational velocity of the rigid body. According to the
rotation theory, if the spiral motion of a rigid body is known,
the linkage position and attitude transformation matrix can be
expressed in the form of an exponential product (POE). The
specific form is shown in Eq. 3.

eξθ �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎣ eω∧θ (I − eω
∧
θ)(ω ×]) + θωωT]

0 1
⎤⎥⎦,ω ≠ 0

[I θ]
0 1

],ω � 0

(3)

The above equation represents the posture transformation
matrix corresponding to the joint angle when the rigid body is in
spiral motion. where eω

∧
θ , I denotes attitude change and

(I − eω
∧
θ)(ω ×]) + θωωT], θ] denotes position change. ω

denotes the angular velocity of rotation of the rigid body
around the rotation axis. v denotes the corresponding
translational velocity of the rigid body. θ indicates the joint
angle. The positive kinematic expression of the robot is
obtained by multiplying the initial positional matrix with
the transformation matrix corresponding to each joint angle,
provided that the initial position, pose and each joint angle of
the end-effector of the robot arm are known. Based on the
spinor theory, the transformation matrix corresponding to
each joint angle can be replaced by the form of exponential
product (POE). The specific positive kinematic expression is
shown in Eq. 4.

e � eξ1θ1eξ2θ2eξ3θ3eξ4θ4eξ5θ5eξ6θ6e0 (4)
Where e0 represents the initial position, attitude matrix of the
end-effector of the robot arm. eξ1θ1 represents the transformation
matrix corresponding to joint angle 1, eξ2θ2 represents the
transformation matrix corresponding to joint angle 2, eξ3θ3

represents the transformation matrix corresponding to joint
angle 3, eξ4θ4 represents the transformation matrix
corresponding to joint angle 4, eξ5θ5 represents the
transformation matrix corresponding to joint angle 5, and
eξ6θ6 represents the transformation matrix corresponding to
joint angle 6. e represents the final position, attitude matrix of
the end-effector of the robot arm. The specific calculation process
of the positive kinematics of the six-degree-of-freedom industrial
robotic arm (Figure 1) based on the rotational volume theory is as
follows.

Step 1: Determine the angular speed of rotation ωi of each
linkage (i = 1, 2, 3, 4, 5, 6).

ω1 � ⎡⎢⎢⎢⎢⎢⎣ 00
1

⎤⎥⎥⎥⎥⎥⎦,ω2 � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦,ω3 � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦,ω4 � ⎡⎢⎢⎢⎢⎢⎣ 01
0

⎤⎥⎥⎥⎥⎥⎦,ω5 � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦,ω6 � ⎡⎢⎢⎢⎢⎢⎣ 00
1

⎤⎥⎥⎥⎥⎥⎦
Step 2: Determine the position ri of each linkage (i = 1, 2, 3, 4,

5, 6).

r1 � ⎡⎢⎢⎢⎢⎢⎣ 00
0

⎤⎥⎥⎥⎥⎥⎦, r2 � ⎡⎢⎢⎢⎢⎢⎣ 0
a1
d1

⎤⎥⎥⎥⎥⎥⎦, r3 � ⎡⎢⎢⎢⎢⎢⎣ 0
a1

d1 + a2

⎤⎥⎥⎥⎥⎥⎦, r4 � r5 � r6

� ⎡⎢⎢⎢⎢⎢⎣ 0
a1 + d4

d1 + a2 + a3

⎤⎥⎥⎥⎥⎥⎦
Where a1, a2, a3, d1, d4 are the relevant parameters for a general
six-degree-of-freedom industrial robotic arm.

Step 3: Determine the intermediate parameters ωi
∧

of each
linkage (i = 1, 2, 3, 4, 5, 6).

ω1
∧ � ⎡⎢⎢⎢⎢⎢⎣ 0 −1 0

1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ω2
∧ � ⎡⎢⎢⎢⎢⎢⎣ 0 0 0

0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎦ ω3
∧ � ⎡⎢⎢⎢⎢⎢⎣ 0 0 0

0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
ω4
∧ � ⎡⎢⎢⎢⎢⎢⎣ 0 0 −1

0 0 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦ ω5
∧ � ⎡⎢⎢⎢⎢⎢⎣ 0 0 0

0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎦ ω6
∧ � ⎡⎢⎢⎢⎢⎢⎣ 0 −1 0

1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328295

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Step 4: Determine the translational speed vi of each linkage (i =
1, 2, 3, 4, 5, 6).

vi � −ωi × ri (i � 1, 2, 3, 4, 5, 6) (5)
Step 4: Determine the attitude change matrix Ri for each

linkage (i = 1, 2, 3, 4, 5, 6).

Ri � ⎡⎢⎢⎢⎢⎢⎣ 1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ + ωi
∧
p sin(θi) + ω2

i

∧
p(1 − cos(θi)) (i

� 1, 2, 3, 4, 5, 6) (6)
where θi represents the joint angle of the corresponding linkage i.

Step 6: Determine the position change matrix ti for each
linkage (i = 1, 2, 3, 4, 5, 6).

ti � ⎛⎜⎝⎡⎢⎢⎢⎢⎢⎣ 1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ − Ri
⎞⎟⎠p(ωi ×]i) + ωipω

T
i p]ipθi (i

� 1, 2, 3, 4, 5, 6) (7)
Step 7: Determine the position, attitude change matrix eξiθi of

each linkage (i = 1, 2, 3, 4, 5, 6).

eξiθi � [Ri ti
0 1

] (i � 1, 2, 3, 4, 5, 6) (8)

Step 8: Find the robotic arm end-effector end position, attitude
matrix e0 with the known robotic arm end-effector initial end
position and attitude matrix e.

e � eξ1θ1eξ2θ2eξ3θ3eξ4θ4eξ5θ5eξ6θ6e0 (9)
Among them, the positive kinematic solution idea for the

position coordinates of the robotic arm end-effector and Euler
angles of rotation along the x,y,z axes is as follows: first set the
initial position coordinates of the robotic arm end-effector and
Euler angles of rotation along the x,y,z axes to get the initial end
position pose matrix of the robotic arm end-effector. Then the
kinematic analysis of the robot arm is carried out to obtain the
position pose change matrix of the end-effector of the robot arm,
and finally the actual position pose matrix of the end-effector of
the robot arm is obtained bymultiplying the position pose change
matrix with the initial position pose matrix. According to the
actual position pose matrix, the actual position coordinates of the
end-effector of the robot arm and Euler angles of rotation along
the x,y,z axes can be obtained. The whole process realizes the
transformation of the robotic arm from one position pose to
another position pose. Among them, the initial position pose
matrix of the robotic arm end-effector in experiment 1, the
associated change matrix and Euler angles of rotation along
the x,y,z axes of the end-effector, and the position expressions
are shown below.

g �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0 0 0
0 1 0 a1 + ⅆ4 + a6
0 0 1 ⅆ1 + a2 + a3 − ⅆ6

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

eξ1θ1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ eξ2θ2 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0 0 0
0 c2 −s2 d1s2 − a1(c2 − 1)
0 s2 c2 −a1s2 − d1(c2 − 1)
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eξ3θ3 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0 0 0
0 c3 −s3 s3(a2 + d1) − a1(c3 − 1)
0 s3 c3 −a1s3 − (a2 + d1)(c3 − 1)
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ eξ4θ4 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c4 0 −s4 s4(a2 + a3 + d1)
0 1 0 0
s4 0 c4 −(c4 − 1)(a2 + a3 + d1)
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eξ5θ5 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0 0 0
0 c5 −s5 s5(a2 + a3 + d1) − (a1 + d4)(c5 − 1))
0 s5 c5 −(c5 − 1)(a2 + a3 + d1) − s5(a1 + d4)
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
eξ6θ6 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c6 −s6 0 s6(a1 + d4)
s6 c6 0 −(a1 + d4)(c6 − 1)
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

α � atan2(c6(c5(c2s3 + c3s2) + c4s5(c2c3 − s2s3))

− s4s6(c2c3 − s2s3), c4c5(c2c3 − s2s3) − s5(c2s3 + c3s2)) (12)

β � atan2⎛⎜⎜⎝−[s6(c5(c2s3 + c3s2) + c4s5(c2c3 − s2s3)) + c6s4(c2c3 − s2s3)]
, sqrt([c6(c5(c2s3+ c3s2) + c4s5(c2c3 − s2s3)) − s4s6(c2c3 − s2s3)]2

+[c4c5(c2c3 − s2s3) − s5(c2s3 + c3s2)]2)⎞⎟⎟⎠
(13)

η � atan2⎛⎜⎝ s6(c5(c1c2c3 − c1s2s3) − s5(s1s4 + c4(c1c2s3 + c1c3s2)))
+ c6(c4s1 − s4(c1c2s3+ c1c3s2)), c6(c1c4 + s4(c2s1s3 + c3s1s2))
− s6(c5(c2c3s1 − s1s2s3)+ s5(c1s4 − c4(c2s1s3+ c3s1s2)))

⎞⎟⎠
(14)

Px � a2s1s2 − a1s1 + a3c2s1s3 + a3c3s1s2 + d4s1s2s3 − a6c1c4s6 − c2c3d4s1 + c1c5d6s4
− a6c1c6s4s5 − c2c3d6s1s5 + d6s1s2s3s5 − a6c2c3c5c6s1 − c2c4c5d6s1s3 − c3c4c5d6s1s2
+ a6c5c6s1s2s3 − a6c2s1s3s4s6 − a6c3s1s2s4s6 + a6c2c4c6s1s3s5 + a6c3c4c6s1s2s5

(15)
Py � a1c1 − a2c1s2 − a6c4s1s6 − c1d4s2s3 + c5d6s1s4 + c1c2c3d4 − a3c1c2s3 − a3c1c3s2
+c1c2c3d6s5 − a6c6s1s4s5 − c1d6s2s3s5 + a6c1c2c3c5c6 + c1c2c4c5d6s3 + c1c3c4c5d6s2
−a6c1c5c6s2s3 + a6c1c2s3s4s6 + a6c1c3s2s4s6 − a6c1c2c4c6s3s5 − a6c1c3c4c6s2s5

(16)
Pz � d1 + a2c2 + a3c2c3 + c2d4s3 + c3d4s2 − a3s2s3 + c2d6s3s5 + c3d6s2s5 − c2c3c4c5d6

+a6c2c5c6s3 + a6c3c5c6s2 − a6c2c3s4s6 + c4c5d6s2s3 + a6s2s3s4s6 + a6c2c3c4c6s5 − a6c4c6s2s3s5
(17)

where si � sin θi(i � 1 ~ 6), ci � cos θi(i � 1 ~ 6).
a1, a2, a3, a6, d1, d4, d6 denotes the parameters of a general six-
degree-of-freedom industrial robot arm. g represents the initial
position attitude matrix of the end-effector, eξ1θ1 ~ eξ6θ6

represents the variation matrix of the joint angles from 1 to 6,
α, β, η represents Euler angles of rotation along the x,y,z axes after
the end-effector moves from the initial position, and Px, Py, Pz

represents the new position of the end-effector after the end-
effector moves from the initial position. The initial position pose
matrix of the robotic arm end-effector in experiment 2, the
associated change matrix and the three Euler angles of the
end-effector, and the position expressions are shown below.

g �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0.9998 0.0175 0 a2 + a3
−0.0175 0.9998 0 d2

0 0 1 −d4

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

T1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ T2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c2 −s2 0 0

0 0 1 d2

−s2 −c2 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ T3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c3 −s3 0 a2
s3 c3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T4 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c4 −s4 0 a3
0 0 1 d4

−s4 −c4 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ T5 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c5 −s5 0 0

0 0 −1 0
−s5 −c5 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ T6 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c6 −s6 0 0

0 0 1 0
−s6 −c6 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328296

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

α � atan2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (4999s6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2)))/5000

−(7c6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2)))/400 + (7s4s6(c2s3 + c3s2))/400
+(4999c6s4(c2s3 + c3s2))/5000,
c4s5(c2s3 + c3s2) − c5(c2c3 − s2s3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

β � atan2

⎛⎜⎜⎜⎝
−⎡⎢⎢⎢⎢⎢⎣ (4999s4s6(c2s3 + c3s2))/5000 − (7s6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2)))/400

−(4999c6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2)))/5000
−(7c6s4(c2s3 + c3s2))/400 ⎤⎥⎥⎥⎥⎥⎦,

sqrt
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎡⎢⎢⎢⎢⎢⎣ (4999s6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2)))/5000

−(7c6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2)))/400
+(7s4s6(c2s3 + c3s2))/400 + (4999c6s4(c2s3 + c3s2))/5000 ⎤⎥⎥⎥⎥⎥⎦

2

+[c4s5(c2s3 + c3s2) − c5(c2c3 − s2s3)]2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎠
(21)

η � atan2

⎛⎜⎜⎜⎝

(7c6(c1c4 + s4(c2c3s1 − s1s2s3)))/400
−(7s6(s5(c2s1s3 + c3s1s2) + c5(c1s4 − c4(c2c3s1 − s1s2s3))))/400
−(4999c6(s5(c2s1s3 + c3s1s2) + c5(c1s4 − c4(c2c3s1 − s1s2s3))))/5000
−(4999s6(c1c4 + s4(c2c3s1 − s1s2s3)))/5000
, (4999s6(c4s1 − s4(c1c2c3 − c1s2s3)))/5000
−(7s6(s5(c1c2s3 + c1c3s2) − c5(s1s4 + c4(c1c2c3 − c1s2s3))))/400
−(7c6(c4s1 − s4(c1c2c3 − c1s2s3)))/400
−(4999c6(s5(c1c2s3 + c1c3s2) − c5(s1s4 + c4(c1c2c3 − c1s2s3))))/5000

⎞⎟⎟⎟⎠
(22)

Px � d2(s6(s5(c1c2s3 + c1c3s2) − c5(s1s4 + c4(c1c2c3 − c1s2s3))) + c6(c4s1 − s4(c1c2c3 − c1s2s3)))
−d2s1 + d4(c5(c1c2s3 + c1c3s2) + s5(s1s4 + c4(c1c2c3 − c1s2s3))) + a3(c1c2c3 − c1s2s3)
−d4(c1c2s3 + c1c3s2) − (a2 + a3)(c6(s5(c1c2s3 + c1c3s2) − c5(s1s4 + c4(c1c2c3 − c1s2s3)))

−s6(c4s1 − s4(c1c2c3 − c1s2s3))) + a2c1c2

(23)
Py � c1d2 − (a2 + a3)(c6(s5(c2s1s3 + c3s1s2) + c5(c1s4 − c4(c2c3s1 − s1s2s3))) + s6(c1c4 + s4(c2c3s1 − s1s2s3)))
+d2(s6(s5(c2s1s3 + c3s1s2) + c5(c1s4 − c4(c2c3s1 − s1s2s3))) − c6(c1c4 + s4(c2c3s1 − s1s2s3)))
+d4(c5(c2s1s3 + c3s1s2) − s5(c1s4 − c4(c2c3s1 − s1s2s3))) + a3(c2c3s1 − s1s2s3)
−d4(c2s1s3 + c3s1s2) + a2c2s1

(24)
Pz � d4(c5(c2c3 − s2s3) − c4s5(c2s3 + c3s2))− a3(c2s3 + c3s2)
− d4(c2c3 − s2s3) − (c6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2))− s4s6(c2s3 + c3s2))(a2 + a3) − a2s2
+ d2(s6(s5(c2c3 − s2s3)+ c4c5(c2s3 + c3s2))+ c6s4(c2s3 + c3s2))

(25)

where si � sin θi(i � 1 ~ 6), ci � cos θi(i � 1 ~ 6). a2, a3, d2, d4
denotes the parameters of PUMA560 robot arm. g represents
the initial position attitude matrix of the end-effector, T1 ~ T6

represents the variation matrix of the joint angles from 1 to 6,
α, β, η represents Euler angles of rotation along the x,y,z axes after
the end-effector moves from the initial position, and Px, Py, Pz

represents the new position of the end-effector after the end-
effector moves from the initial position. The initial position pose
matrix of the robotic arm end-effector in experiment 3, the
associated change matrix and the three Euler angles of the
end-effector, and the position expressions are shown below.

g �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0.9998 0 0.0175 a2 + a3 + a4 + a5 + a6 + a7

0 1 0 d7

−0.0175 0 0.9998 d1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

T1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c1 0 −s1 0
s1 0 c1 0
0 −1 0 d1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦T2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c2 0 s2 a2c2
s2 0 −c2 a2s2
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦T3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c3 0 −s3 a3c3
s3 0 c3 a3s3
0 −1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T4 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c4 0 s4 a4c4
s4 0 −c4 a4s4
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦T5 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c5 0 −s5 a5c5
s5 0 c5 a5s5
0 −1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦T6 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c6 −s6 0 a6c6
s6 c6 0 a6s6
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T7 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c7 −s7 0 a7c7
s7 c7 0 a7s7
0 0 1 d7

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

α � atan2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c7(s6(c5(c2s4 + c3c4s2) − s2s3s5) − c6(c2c4 − c3s2s4))
+s7(c6(c5(c2s4 + c3c4s2) − s2s3s5) + s6(c2c4 − c3s2s4))
, (7s7(s6(c5(c2s4 + c3c4s2) − s2s3s5) − c6(c2c4 − c3s2s4)))/400
−(7c7(c6(c5(c2s4 + c3c4s2) − s2s3s5) + s6(c2c4 − c3s2s4)))/400
+(4999s5(c2s4 + c3c4s2))/5000
+(4999c5s2s3)/5000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(28)

β � a tan 2

−[(4999s7(s6(c5(c2s4 + c3c4s2) − s2s3s5) − c6(c2c4 − c3s2s4)))/5000 − (4999c7(c6(c5(c2s4
+ c3c4s2) − s2s3s5) + s6(c2c4 − c3s2s4)))/5000 − (7s5(c2s4 + c3c4s2))/400 − (7c5s2s3)/400], sqrt([c7(s6
(c5(c2s4 + c3c4s2) − s2s3s5) − c6(c2c4 − c3s2s4)) + s7(c6(c5(c2s4 + c3c4s2) − s2s3s5) + s6(c2c4 − c3s2s4))]2
+[(7s7(s6(c5(c2s4 + c3c4s2) − s2s3s5) − c6(c2c4 − c3s2s4)))/400 − (7c7(c6(c5(c2s4 + c3c4s2) − s2s3s5)
+ s6(c2c4 − c3s2s4)))/400 + (4999s5(c2s4 + c3c4s2))/5000 + (4999c5s2s3)/5000]2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(29)

η � atan2

⎛⎜⎜⎜⎝

(7s5(c4(c1s3 + c2c3s1) − s1s2s4))/400
−(4999c7(s6(s4(c1s3 + c2c3s1) + c4s1s2) − c6(c5(c4(c1s3 + c2c3s1) − s1s2s4) + s5(c1c3 − c2s1s3))))/5000
−(7c5(c1c3 − c2s1s3))/400
−(4999s7(c6(s4(c1s3 + c2c3s1) + c4s1s2) + s6(c5(c4(c1s3 + c2c3s1) − s1s2s4) + s5(c1c3 − c2s1s3))))/5000
, (4999c7(s6(s4(s1s3 − c1c2c3) − c1c4s2) − c6(c5(c4(s1s3 − c1c2c3) + c1s2s4) + s5(s1s3 − c1c2c3))))/5000
−(7s5(c4(s1s3 − c1c2c3) + c1s2s4))/400
+(4999s7(c6(s4(s1s3 − c1c2c3) − c1c4s2) + s6(c5(c4(s1s3 − c1c2c3) + c1s2s4) + s5(s1s3 − c1c2c3))))/5000
+(7c5(s1s3 − c1c2c3))/400

⎞⎟⎟⎟⎠
(30)

Px � (c7(s6(s4(s1s3 − c1c2c3) − c1c4s2) − c6(c5(c4(s1s3 − c1c2c3) + c1s2s4) + s5(c3s1 + c1c2s3)))
+ s7(c6(s4(s1s3 − c1c2c3) − c1c4s2) + s6(c5(c4(s1s3 − c1c2c3) + c1s2s4) + s5(c3s1 + c1c2s3))))

(a2 + a3 + a4 + a5 + a6 + a7)
+ d7(c7(c6(s4(s1s3 − c1c2c3) − c1c4s2) + s6(c5(c4(s1s3 − c1c2c3)+ c1s2s4)+ s5(c3s1 + c1c2s3)))

− s7(s6(s4(s1s3 − c1c2c3) − c1c4s2) − c6(c5(c4(s1s3 − c1c2c3)+ c1s2s4) + s5(c3s1 + c1c2s3))))
+ d1(s5(c4(s1s3 − c1c2c3) + c1s2s4) − c5(c3s1 + c1c2s3))
+ d7(s5(c4(s1s3 − c1c2c3) + c1s2s4) − c5(c3s1 + c1c2s3)) − a5c5(c4(s1s3 − c1c2c3) + c1s2s4)
+ a7c7(s6(s4(s1s3 − c1c2c3) − c1c4s2) − c6(c5(c4(s1s3 − c1c2c3) + c1s2s4) + s5(c3s1 + c1c2s3)))
+ a6s6(s4(s1s3 − c1c2c3) − c1c4s2)
+ a7s7(c6(s4(s1s3 − c1c2c3) − c1c4s2) + s6(c5(c4(s1s3 − c1c2c3)+ c1s2s4) + s5(c3s1 + c1c2s3)))
− a6c6(c5(c4(s1s3 − c1c2c3) + c1s2s4) + s5(c3s1 + c1c2s3))
− a4c4(s1s3 − c1c2c3) − a5s5(c3s1 + c1c2s3) + a2c1c2 − a3s1s3 − a4c1s2s4 + a3c1c2c3

(31)
Py � a5c5(c4(c1s3 + c2c3s1) − s1s2s4)
−(c7(s6(s4(c1s3 + c2c3s1) + c4s1s2) − c6(c5(c4(c1s3 + c2c3s1)− s1s2s4) + s5(c1c3 − c2s1s3)))

+ s7(c6(s4(c1s3 + c2c3s1) + c4s1s2) + s6(c5(c4(c1s3 + c2c3s1) − s1s2s4) + s5(c1c3 − c2s1s3))))
(a2 + a3 + a4 + a5 + a6 + a7) − d1(s5(c4(c1s3 + c2c3s1) − s1s2s4) − c5(c1c3 − c2s1s3))
− d7(s5(c4(c1s3 + c2c3s1) − s1s2s4) − c5(c1c3 − c2s1s3))
− d7(c7(c6(s4(c1s3 + c2c3s1) + c4s1s2)+ s6(c5(c4(c1s3 + c2c3s1) − s1s2s4) + s5(c1c3 − c2s1s3)))

− s7(s6(s4(c1s3 + c2c3s1)+ c4s1s2) − c6(c5(c4(c1s3 + c2c3s1) − s1s2s4)+ s5(c1c3 − c2s1s3))))
− a6s6(s4(c1s3 + c2c3s1) + c4s1s2)
− a7c7(s6(s4(c1s3 + c2c3s1)+ c4s1s2) − c6(c5(c4(c1s3 + c2c3s1) − s1s2s4)+ s5(c1c3 − c2s1s3)))
+ a6c6(c5(c4(c1s3 + c2c3s1) − s1s2s4)+ s5(c1c3 − c2s1s3))

+ a4c4(c1s3 + c2c3s1)− a7s7(c6(s4(c1s3 + c2c3s1) + c4s1s2)+ s6(c5(c4(c1s3

+ c2c3s1)− s1s2s4) + s5(c1c3 − c2s1s3))) + a5s5(c1c3 − c2s1s3)+ a2c2s1 + a3c1s3 − a4s1s2s4 + a3c2c3s1
(32)

Pz � d1 + d7(c7(s6(c5(c2s4 + c3c4s2)− s2s3s5) − c6(c2c4 − c3s2s4))
+ s7(c6(c5(c2s4 + c3c4s2)− s2s3s5)+ s6(c2c4 − c3s2s4)))

− a2s2 − (c7(c6(c5(c2s4 + c3c4s2) − s2s3s5)+ s6(c2c4 − c3s2s4)))
− s7(s6(c5(c2s4+ c3c4s2)− s2s3s5) − c6(c2c4 − c3s2s4))
(a2 + a3 + a4 + a5 + a6 + a7) + d1(s5(c2s4 + c3c4s2)+ c5s2s3)
+ d7(s5(c2s4 + c3c4s2)+ c5s2s3) − a6c6(c5(c2s4 + c3c4s2) − s2s3s5)
− a7c7(c6(c5(c2s4 + c3c4s2)− s2s3s5)+ s6(c2c4 − c3s2s4))
− a5c5(c2s4 + c3c4s2)+ a7s7(s6(c5(c2s4 + c3c4s2)− s2s3s5) − c6(c2c4 − c3s2s4))
− a6s6(c2c4 − c3s2s4) − a3c3s2 − a4c2s4 + a5s2s3s5 − a4c3c4s2

(33)

where si � sin θi(i � 1 ~ 6), ci � cos θi(i � 1 ~ 6).
a1 ~ a7, d1 ~ d7 denotes the parameters of Seven-degree-of-
freedom robot arm. g represents the initial position attitude
matrix of the end-effector, T1 ~ T7 represents the variation
matrix of the joint angles from 1 to 6, α, β, η represents Euler
angles of rotation along the x,y,z axes after the end-effector moves
from the initial position, and Px, Py, Pz represents the new
position of the end-effector after the end-effector moves from
the initial position.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328297

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

4 PARTICLE SWARM ALGORITHM AND
ENHANCEMENT

4.1 Two Particle Swarm Algorithms
To solve practical engineering applications, researchers have
invented metaheuristic algorithms based on the laws of nature.
Particle swarm optimization algorithm, as a kind of metaheuristic
algorithm, is an algorithm invented to simulate bird flock
predation. Based on the feature that the flock of birds close to
the predation target will drive the flock of birds at a distance to the
predation target and eventually drive the flock as a whole to the
predation target, the particles of the population in the particle
swarm algorithm will carry two variables, x and]. Meanwhile, the
solution will be approximated to the optimal solution by updating
x and] in real time. Where x denotes the position of the particle
in the search space and] denotes the step length and direction of
movement. For the classical particle swarm algorithm, the update
formula for] and x is shown below.

]t+1i � ω]ti + c1r1(Pbest − xt
i) + c2r2(Gbest − xt

i) (34)
xt+1
i � xt

i +]t+1i (35)
Where i represents the position of the particle in the population, t
represents the number of iterations, and ω represents the inertia
weight. c1 represents the cognitive learning factor, and c2
represents the social learning factor, both of which are
generally taken between 1 and 2. r1 and r2 are random
numbers between 0 and 1. Pbest represents the individual
optimal position, and Gbest represents the global optimal

position. The above is the update formula of position as
well as velocity of the classical particle swarm algorithm. In
addition to the above update formula, there is a quantum
mechanics-based position update method in the QPSO
algorithm, which discards the velocity update and chooses
the position update method, which is a novel attempt, and its
update formula is shown below.

gi � φpbesti + (1 − φ)gbestd (36)
xi(t + 1) � gi + β|mbestd − xi(t)|log(1

u
) u> 0.5 (37)

xi(t + 1) � gi − β|mbestd − xi(t)|log(1u) u> 0.5 (38)

mbestd � 1
M

∑M
i�1
pbesti (39)

where i represents the position of the particle in the
population, t represents the number of iterations, and M
represents the number of populations. φ, u is a random
number between 0 and 1, and β is a constant number
between 0 and 1. The pbest represents the best position of
the individual particle, gbest represents the optimal position
of the population, and mbest represents the average of the best
position of the individual particle. The basic steps of solving
the particle swarm algorithm are shown below.

Step 1: Initialization of the population particles.
Step 2: Calculate the fitness function.
Step 3: Update particle position and velocity.

FIGURE 2 | Schematic diagram of the fitness function.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328298

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Step 4: Update individual best position and group best position.

4.2 Improvement
For setting the weights when updating the velocity in the particle
swarm algorithm, this paper adopts the adaptive weights. The
most important feature of the adaptive weights is that the weights
change with the change of the fitness function value of the
particles. For different weights, the local search as well as the
global search capability of the algorithm will be very different.
Generally large values of inertia weights are more favorable for
global search, and small values of inertia weights are favorable for
local search. When the algorithm falls into the local optimum, it
tends to miss the optimal solution and then converge too early,
while when the global search ability of the algorithm is too strong,
the final accuracy of the algorithm is often not too high. In order
to balance the local search as well as the global search ability,
adaptive weights are the best choice. The basic idea is as follows:

Step 1: Calculate value of fitness function fitness, minimum
fitness function value fitnessmin and average fitness function
value fitnessfavg.

Step 2: If fitness is less than or equal to fitnessfavg, the weight
become:

ω � ωmin + (ωmax − ωmin)(fitness − fitnessmin)(fitnessfavg − fitnessmin) (40)

If the fitness is larger than fitness, the weight become: ω �
ωmax.

Step 3: Update fitness.
Particle swarm algorithms require random initialization of

positions and velocities, and there is no fixed standard for
initialization, which makes it difficult to guarantee the
accuracy and precision of the final solution, and the search
time is often too long, resulting in low efficiency of the
algorithm. Most researchers use particle swarm algorithms to
study the robot inverse kinematics solution without further
description of the initialization process of the population, but
only add boundary conditions to the algorithm to ensure the
executability of the algorithm. Based on the consideration of the
shortest algorithm operation time, this paper adopts the
conditional restriction based on the limit joints, and the
maximum as well as the minimum values of the position are
determined by the range of values of each joint angle. For the
maximum and minimum values of velocity, this paper introduces
the position coefficient k and adopts the form of multiplying

FIGURE 3 | Intialize process.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8328299

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

position and coefficient to determine the velocity factor, and the
specific conditions are set as follows.

Step 1: Determine maximum and minimum position xmax,
xmin according to the range of values of the joint angle.

Step 2: Determine maximum and minimum speed]max,]min

according to xmax, xmin, where:

]max � xmax · k;]min � xmax · (−k)
(Based on actual experience k takes the value of 0.5)
Step 3: Determine position x and speed].

x � rand(0, 1)(xmax − xmin) + xmin (41)
] � rand(0, 1)(]max −]min) +]min (42)

5 INVERSE KINEMATIC SOLUTION USING
IMPROVED PARTICLE SWARM
ALGORITHM
5.1 Fitness Function
The selection of the fitness function greatly affects the efficiency
of the particle swarm algorithm. For the robot arm inverse
kinematics solution problem, in order to better ensure the
accuracy of position and direction solution, the form of the
fitness function in this paper is the error value of the robot
arm end-effector position and direction angle. The error is
selected as the Euclidean distance between the target position,
direction angle and the actual position and direction angle. The
specific form of the fitness function is shown in Eq. 43. A
geometric illustration of the fitness function is shown in Figure 2.

f(i) �

%%∑3
i�1
(T’

i1 − Ti1)2 +∑3
i�1
(T’

i2 − Ti2)2 +∑3
i�1
(T’

i3 − Ti3)2 +∑3
i�1
(T’

i4 − Ti4)2√√
(43)

In Eq. 43, the first to third terms under the root sign represent
the directional angle error of the deflection of the robotic arm
end-effector along the positive direction of the x, y, and z axes,
respectively, and the fourth term under the root sign represents
the position error of the robotic arm end-effector. In Figure 2, the
geometric meaning of the adaptation function is further
illustrated. When the robotic arm end-effector cannot reach
the specified target position, the Euclidean distance between
the actual position and attitude of the robotic arm end-effector
and the ideal position and attitude is represented as the error, and
this error is reflected in the form of the fitness function. Eq. 43
and the matrix T in Figure 2 represent the actual end position
pose matrix of the robotic arm end-effector. t’ represents the ideal
end position pose matrix of the robotic arm end-effector. Where
the matrix forms of T and T′ are shown in Eqs. 44 and 45,
respectively.

T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (44)

T’ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ n

’
x s’x a’x p’

x

n’y s’y a’y p’
y

n’z s’z a’z p’
z

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (45)

In Eq. 44, the first three rows and the first three columns of the
matrix T form the rotation transformation matrix, which
represents the actual attitude transformation of the end-
effector of the robot arm, and the first three rows of the last
column of the matrix T form the column vector, which represents
the actual position of the end-effector of the robot arm with
respect to the base coordinate system. In Eq. 45, the first three
rows and the first three columns of the matrix T′ form the
rotation transformation matrix, which represents the target
attitude transformation of the end-effector of the robot arm,
and the first three rows of the last column of the matrix T′ form
the column vector, which represents the target position to be
reached by the end-effector of the robot arm.

5.2 Flowchart and Pseudocode
The flowchart and the pseudo-code of the improved PSO
algorithm proposed in this paper are shown in Figures 3, 4,
and Table 1, respectively. Where Fgure 3 represents the
parameter initialization process based on limit joints. Figure 4
shows the main iterative loop process for updating the position as
well as the velocity.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282910

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

FIGURE 4 | Main loop.

TABLE 1 | Values of relevant parameters of general industrial six-degree-of-freedom robotic arms and the range of values of each joint angle.

d1(m) a1(m) a2(m) a3(m) d4(m) a6(m) d6(m) Range
of θ1(°) (i = 1–6)

0.25 0.15 0.55 0.16 0.594 0.1 0.1 (-π, π]

TABLE 2 | Initial position of the end-effector of the robot arm and the orientation angle.

Initial Position of the End-Effector Initial Azimuth of the End-Effector

x0(m) y0(m) z0(m) α0(rad) β0(rad) η0(rad)
0 a1+d4+a6 d1+a2+a3-d6 0 0 0

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282911

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

6 EXPERIMENTS AND RESULTS

There are three experiments in this paper. The first experiment is
an inverse kinematic solution for a general six-degree-of-freedom
industrial robotic arm using an improved particle swarm algorithm
based on the spinor modeling method. The second experiment
compares different improved particle swarm algorithms in terms of
algorithm accuracy, convergence and operation time based on
existing references for PUMA560 robotic arm. The third
experiment replaces the object of study with a seven-degree-of-
freedom robotic arm and repeats the steps of experiment 2. The
criterion for comparing the algorithms in experiment 2 and
experiment 3 was to set the same number of iterations, with the
same initial parameters. The criteria for evaluating the algorithm’s
capability include the comparison of solution accuracy, solution
time, and generalizability. The experiments were all coded in
MATLAB R2021b with the processor model: Intel (R) Core
(TM) i9-12900KF CPU @ 3.19GHz.

6.1 Results Obtained for General Industrial
Six-degree-of-freedom Robotic Arm
The general industrial six-degree-of-freedom robotic arm is
studied above, and its positive kinematic model is established
based on the rotating body theory. In Experiment 1, the relevant
parameter values and the ranges of each joint angle of the general
industrial six-degree-of-freedom robotic arm are given in
Table 1. And the initial position of the end-effector of the
robotic arm and the Euler angles of rotation along x, y, z axes
are set, as shown in Table 2. Also, the actual impact points of the
four sets of robotic arm end-effectors are set, and the positions of

the end-effectors at the points and the Euler angles of rotation
along the x, y, z axes are given in Table 3. The robotic arm end-
effector moves from the initial position to the impact point in the
process of the robotic arm realizes the change from one position
attitude to another position attitude.

Tables 1–3 show the conditions. a1, a2, a3, a6, d1, d4, d6 in
Table 1 indicates the parameters of a general six-degree-of-
freedom industrial robotic arm, and θi indicates the joint
angle i (i = 1–6). In Table 2, x0, y0, z0 denotes the initial
position of the robotic arm end-effector, α0, β0, η0 denotes the
initial Euler angles of the robotic arm end-effector rotated along
the x, y, and z axes, respectively. In Table 3, 0XE, 0YE, 0ZE

denotes the new position of the robotic arm end-effector after
moving from the initial position, and 0αE, 0βE,

0ηE denotes the
Euler angles of the robotic arm end-effector rotating along the x,
y, z axes after moving from the initial position, respectively. The
initial position of the end-effector of the robot arm and the Euler
angles of rotation along the x,y,z axes set in Table 2 are known,
and the position of the end-effector of the robot arm after moving
and the Euler angles of rotation along the x, y, z axes can be
obtained by combining the positive kinematic Eq. 9. According to
Table 3, the specific position of the end-effector of the robot arm
after moving and the Euler angles of rotation along x, y, z axes can
be obtained. The error expression, i.e., the fitness function, is
obtained by converting the two previous parts into a matrix and
making a difference. By solving the minimum value of the fitness
function, the algorithm finally obtains the joint angle corresponding
to the smallest error and the specific position of the robot arm end-
effector after moving and the Euler angle of rotation along the x, y, z
axes. The algorithm canfind out the six joint angles corresponding to
the end-effector impact point out after the robot arm moves, as

TABLE 3 | Position and orientation angle of the end-effector corresponding to the given impact point.

N° Position Error of the End-Effector Euler Angles Error of the End-Effector

0xE(m) 0yE(m) 0xE(m) 0αE(rad) 0βE(rad) 0ηE(rad)

1 0.1,154,947 0.2,725,154 0.256,376 −2.817,121 0.6,356,652 0.9,973,017
2 −0.0009,583,057 0.2,715,589 0.1,660,651 −2.886,616 0.3,067,386 1.770,458
3 −0.1,268,636 0.3,495,127 0.1,782,351 −2.708,327 0.02,164,443 2.482,109
4 −0.1,676,911 0.4,555,857 0.2,694,087 −2.387,233 −0.07,313,938 3.231,621

TABLE 4 | Joint angles according to the algorithm.

N° θ1(°) θ2(°) θ3(°) θ4(°) θ5(°) θ6(°)

1 −177.936,340 169.779,771 −58.752,296 91.309,992 125.711,066 32.945,428
2 27.198,690 −43.645,232 −88.014167 35.338,117 −56.159,879 −43.633,188
3 40.364,361 136.560,021 −124.683,465 154.842,073 16.853,445 84.766,356
4 26.260,466 175.113,664 −123.948,475 −95.208,397 107.305,427 −71.495,679

TABLE 5 | Position and directional angle errors of the end-effector.

N° Position Error of the End-Effector Euler Angles Error of the End-Effector

0xE(m) 0yE(m) 0xE(m) 0αE(rad) 0βE(rad) 0ηE(rad)

1 0 0 0 −9.98 × 10–10 4.07 × 10–9 −1.22 × 10–9

2 0 0 0 −1.57 × 10–10 1.28 × 10–9 −1.16 × 10–10

3 0 0 0 6.55 × 10–10 4.10 × 10–10 1.15 × 10–9

4 0 0 0 −2.83 × 10–9 −2.27 × 10–9 6.65 × 10–11

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282912

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

shown in Table 4. By comparing the actual position of the end-
effector and the Euler angles of rotation along the x, y, z axes with the
position of the given point and the Euler angles of rotation along the
x,y,z axes, it can be shown to some extent that the algorithm can
guarantee the position accuracy and direction accuracy. The errors
of the position at the impact point and the Euler angles rotated along
the x, y, z axes are shown in Table 5.

Tables 4 and 5 are the results. In Table 4, θ1 ~ θ6 indicates the
joint angle 1~joint angles 6 that satisfy the condition when the
end-effector reaches the impact point after the robot arm moves.
In Table 5, 0XE, 0YE, 0ZE indicates the new position of the robot
arm end-effector after moving from the initial position.
0αE, 0βE,

0ηE indicates the Euler angles of rotation along the x,
y, z axes after the robot arm end-effector moves from the initial
position, respectively. The four sets of joint angles in Table 4
correspond to the positions and directions of the four sets of
impact points in Table 3. Since there are often multiple sets of
joint angles satisfying the conditions when the state of the end-
effector of the robotic arm is certain, as shown in (a), (b), and (c)

in Figure 5 (where the states of the end-effector of the robotic
arm in (a), (b), and (c) are the same). Therefore, among the
multiple sets of joint angles solved, a set of joint angles satisfying
the range of joint angle values was selected as the final solution. By
observing the position error of the robotic arm end-effector and
the Euler angular error along the x,y,z axis rotation in the four sets
of data in Table 5, we can find that the position error is always
kept as 0, and the Euler angular error along the x,y,z axis rotation
is between 10–11 and 10–9. Based on the error accuracy, we can
initially judge that the algorithm can guarantee the position
accuracy and orientation accuracy of the solution.

To evaluate the algorithm more comprehensively, images of
the fitness function values and the number of iterations for the
first set of joint angles were selected and are shown in Figures
6A,B, respectively. Figure 6A represents the fitness function
values of the first set of joint angles with the number of
iterations from 0 to 500. from Figure 6A, it can be seen that
the fitness function reaches convergence when the number of
iterations reaches about 100. Figure 6B represents the variation

FIGURE 5 | Schematic diagram of different joint angles of the robotic arm end-effector in the same state.

FIGURE 6 | Plot of the variation of the fitness function with the number of iterations.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282913

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

TABLE 6 | Initial condition setting of PUMA560 robot arm.

Initial Conditions Joint i αi−1(°) ai−1(m) di(m) θi(°) Range of
θi(°)

DH parameter 1 0 0 0 θ1(°) −160–160
2 −pi/2 0 0.1491 θ2(°) −110–110
3 0 0.4318 0 θ3(°) −135–135
4 −pi/2 0.0203 0.4331 θ4(°) −266–266
5 pi/2 0 0 θ5(°) −100–100
6 -pi/2 0 0 θ6(°) −266–266

Initial position and Euler angles Initial position of the end-effector Initial Euler angles of the end-effector
x0(m) y0(m) z0(m) α0(rad) β0(rad) η0(rad)
0.452 0.149 −0.433 0 0 -0.0175

Given the position and the Euler angle N° Position of end impact point Euler angles of end impact point
0xE(m) 0yE(m) 0xE(m) 0yE(m) 0xE(m) 0yE(m)

1 0.1,527,529 0.3,001,222 0.2,861,892 −2.706,829 0.7,287,091 0.6,550,095
2 0.04,577,256 0.2,597,535 0.1,975,715 −2.895,429 0.4,328,479 1.501,387
3 −0.08,576,319 0.31616 0.154,809 −2.797,244 0.1,117,431 2.215,782
4 -0.1,647,316 0.4,121,032 0.2,377,258 −2.513,781 −0.06,674,747 2.950,499

Algorithm parameter Parameters This paper PSO APSO QPSO
c1 1.4 1.4 1.2 -
c2 1.4 1.4 1.2 -

ωmax 0.9 0.9 0.9 -
ωmin 0.7 - 0.7 -

β0 and β1 - - - 0.5 and 1

TABLE 7 | The six joint angles corresponding to the impact points obtained by different algorithms.

Algorithm N° θ1(°) θ2(°) θ3(°) θ4(°) θ5(°) θ6(°)

This paper 1 139.147,212 −78.742,965 2.298,743 223.577,471 −47.319,473 −89.781,627
2 −153.871,884 −72.479,104 44.314,641 −102.235,380 −13.594,398 229.782,832
3 −133.020650 −37.399,877 59.160,356 176.205,721 42.374,612 −74.592,745
4 −64.557,618 −59.510,032 75.432,529 −148.731,249 49.034576 −81.522,956

PSO 1 139.145,321 −78.729,959 2.302,142 −136.418,272 −47.307,830 −89.791,711
2 −153.873,831 −72.478,187 44.301,555 −102.268,096 −13.599,806 229.818,471
3 −133.017595 -37.394,194 59.156,632 −183.792,886 42.377,145 −74.591,502
4 −73.090507 −69.438,932 78.661,376 27.906,941 −44.210,988 91.724,240

QPSO 1 9.607,712 −20.610,209 69.598,100 −235.293,713 12.944,303 212.995,170
2 −118.0051 −40.9856 49.9457 −2.6864 −39.7447 −204.2855
3 113.9081 73.6642 34.8149 167.6001 90.6805 161.9327
4 124.0405 45.9792 77.2999 146.3037 98.7763 134.9092

TABLE 8 | The errors in position and Euler angles of impact points by different algorithms.

Algorithm N° Position Error of the End-Effector Euler Angles Error of the End-Effector

0xE(m) 0yE(m) 0zE(m) 0αE(rad) 0βE(rad) 0ηE(rad)

This paper 1 0 0 0 −1.70 × 10–9 −1.76 × 10–9 2.03 × 10–9

2 0 0 0 2.07 × 10–9 −6.62 × 10–9 5.09 × 10–11

3 0 0 0 2.19 × 10–10 1.29 × 10–8 4.57 × 10–10

4 0 0 0 −2.35 × 10–9 8.56 × 10–9 1.58 × 10–9

PSO 1 −3.4 × 10–4 2.83 × 10–5 −1.46 × 10–4 2.24 × 10–5 −1.01 × 10–4 −1.90 × 10–4

2 −7.40 × 10–4 −1.64 × 10–5 1.53 × 10–4 −2.49 × 10–5 2.89 × 10–4 7.41 × 10–6

3 −5.78 × 10–5 −2.05 × 10–5 −2.01 × 10–4 −4.03 × 10–6 1.45 × 10–5 4.50 × 10–6

4 0.065 -0.019 0.097 −8.09 × 10–4 0.013 −0.0019
QPSO 1 4.66 −1.00 −4.02 −1.00 −1.00 −1.02

2 17.72 −1.02 −5.41 −1.00 −0.99 −1.02
3 −11.46 −0.93 −6.45 −1.00 −1.24 −1.00
4 −6.80 −0.82 −4.35 −1.00 2.13 −0.98

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282914

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

of the fitness function values for the first set of joint angles with
the number of iterations from 0 to 50. It can be seen from
Figure 6B that the fitness function value fluctuates up and down
when the number of iterations is small, indicating that the
algorithm has a strong search capability, while the fitness
function value gradually converges while fluctuating, indicating
that the fitness function value gradually approaches the global
optimal solution. The combination of Figure 6A and Figure 6B
shows that the algorithm has a certain search ability while
converging.

6.2 Results Obtained for PUMA560
Robotic Arm
In order to better highlight the advantages of the present
algorithm in terms of fast convergence and short time
consumption while maintaining accuracy, the second
experiment is conducted with the PUMA560 robotic arm as
the research object and the paper (Deng and Xie, 2021; Yu
et al., 2019) as the reference, by setting the same initial
conditions for comparison experiments. The DH
parameters of the PUMA560 robotic arm refer to the paper
(Deng and Xie, 2021; Tian et al., 2020), and the specific
parameter values are shown in Table 6. Experiment 2 was
the same as experiment 1, and the initial position of the
robotic arm end-effector as well as the Euler angles of
rotation along the x, y, z axes were set, as shown in
Table 6. The actual impact points of four robotic arm end-
effectors were also set, and the positions of the end-effectors at
this point as well as the Euler angles of rotation along the x, y, z
axes were given, as shown in Table 6. The algorithms
compared in Experiment 2 contain the algorithm proposed
in this paper, the PSO algorithm and the QPSO algorithm. The

relevant parameter settings of the different algorithms are
shown in Table 6.

In Table 6, x0, y0, z0 denotes the initial position of the robotic
arm end-effector, α0, β0, η0 denotes the initial Euler angles of the
robotic arm end-effector rotated along the x, y, and z axes,
respectively. 0XE, 0YE, 0ZE denotes the new position of the
robotic arm end-effector after moving from the initial
position, and 0αE, 0βE,

0ηE denotes the Euler angles of the
robotic arm end-effector rotating along the x, y, z axes after
moving from the initial position, respectively. Table 7 show the
six joint angles corresponding to the impact point obtained by the
algorithm proposed in this paper, the PSO algorithm and the
QPSO algorithm, respectively. The errors of different algorithms
regarding the position and Euler angles of rotation along the x, y,
z axes of the impact point are shown in Table 8. Considering that
the differences in the initial conditions of different algorithms
affect the fairness of the results, the number of iterations is set to
500, and the number of particle swarms is 150.

Tables 7 and 8 represent the results. In Table 7, θ1 ~ θ6
indicates the joint angle 1~joint angle 6 that satisfy the condition
when the end-effector reaches the impact point after the robot
arm moves. In Table 8, 0XE, 0YE, 0ZE indicates the new position
of the robot arm end-effector after moving from the initial
position. 0αE, 0βE,

0ηE indicates the Euler angles of rotation
along the x, y, z axes after the robot arm end-effector moves
from the initial position, respectively. By comparing the error in
Table 8, it can be found that the position error of the algorithm
proposed in this paper is 0, and the orientation error is between
5.09 × 10–11 and 1.29 × 10–8. The position error of the
conventional PSO algorithm is between -0.019 and 0.097, and
the orientation error is between -0.019 and 0.013. The position
error of the QPSO algorithm is between -11.46 and 17.72, and
the orientation error is between -1.24 and 2.13. The

FIGURE 7 | Comparison of the results of various algorithms for the puma560 robot arm.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282915

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

comparison shows that the proposed algorithm can guarantee
higher position and orientation accuracy compared with the
traditional PSO algorithm and QPSO algorithm. The joint
angles obtained in Table 7 are all within the range of values, so
it can be determined that there is a set of joint angles that allow
the end-effector to reach the impact point, i.e., the error
comparison of each algorithm is meaningful. To further
illustrate the advantages of the algorithms in terms of
convergence and operation speed, the first set of data in
Table 6 was selected in Experiment 2 to compare the
variation of the fitness function with the number of
iterations and the operation time in each algorithm, and
the results are shown in Figures 7A,B, respectively.

Figure 7A summarizes the variation of the fitness function with
the number of iterations in various algorithms. It can be seen that the
algorithm proposed in this paper converges steadily when the
number of iterations reaches about 50. In contrast, the PSO
algorithm fluctuates more and does not converge significantly,
and the algorithm fluctuates more when it is close to convergence
and the number of iterations reaches about 175, indicating that the
algorithm is prone to fall into the local optimum and thus misses the

optimal solution, resulting in poor solution accuracy. Compared with
the first two algorithms, the QPSO algorithm is unable to maintain
convergence. Through comparison, it can be found that the algorithm
proposed in this paper converges faster and at the same time ensures
stable convergence. Figure 7B shows the time required for various
algorithms to run the first set of data inTable 8. The histogram shows
that the algorithm proposed in this paper has the shortest operation
time of 0.31851s, while the PSO algorithm andQPSO algorithm have
an operation time of 0.33359 and 0.3407s, respectively. By comparing
several factors such as end-effector position accuracy, direction
accuracy, convergence of the algorithm and operation time, the
algorithm proposed in this paper has a good performance.

6.3 Results Obtained for the
Seven-Degree-of-Freedom Robotic Arm
In order to reflect the wide applicability of the present algorithm,
the third experiment is conducted with a seven-degree-of-
freedom robotic arm as the object of study, and the paper
(Dereli S, Koker R 2019) is used as a reference for comparison
experiments by setting the same initial conditions. Where the DH

TABLE 9 | Initial condition setting of Seven degrees of freedom robot arm.

Initial Conditions Joint i αi−1(°) ai−1(m) di(m) θi(°) Range of
θi(°)

DH parameter 1 −pi/2 0 0.5 θ1(°) −180–180
2 pi/2 0.2 0 θ2(°) -90–30
3 −pi/2 0.25 0 θ3(°) −90–120
4 pi/2 0.3 0 θ4(°) −90–90
5 −pi/2 0.2 0 θ5(°) −90–90
6 0 0.2 0 θ6(°) −90–90
7 0 0.1 0.05 θ7(°) −30–90

Initial position and Euler angles Initial position of the end-effector Initial Euler angles of the end-effector
x0(m) y0(m) z0(m) α0(rad) 0βE(rad) η0(rad)
1.250 0.050 0.500 0 0.0175 0

Given the position and the Euler angle Position of end impact point Euler angles of end impact point
0xE(m) 0yE(m) 0zE(m) 0αE(rad) 0βE(rad) 0ηE(rad)
−0.5839 −0.7154 −0.5027 0.5977 0.7025 −1.69

TABLE 10 | Joint angles according to different algorithms.

Algorithm θ1(°) θ2(°) θ3(°) θ4(°) θ5(°) θ6(°) θ7(°)

This article 41.2034 5.3333 48.9559 49.5050 48.3672 43.5106 42.0882
PSO 64.2282 4.7456 23.8832 48.4828 51.2608 62.2661 23.7729
QPSO 69.7373 2.6296 32.7903 57.5889 42.0689 15.3571 63.6031

TABLE 11 | Position and orientation errors according to different algorithms.

Algorithm Position Error of End-Effector Euler Error of the End-Effector

0xE(m) 0yE(m) 0zE(m) 0αE(rad) 0βE(rad) 0ηE(rad)

This article 0 0 0 0 0 0
PSO 7.53 × 10–4 0.0010 −0.0025 −0.0010 5.69 × 10–4 −2.96 × 10–4

QPSO −1.77 −2.42 −1.42 2.78 −0.58 −1.62

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282916

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

parameters of the seven-degree-of-freedom robotic arm are set as
shown in the paper (Dereli and Koker, 2020; Li et al., 2019a; Li
et al., 2019b; Li et al., 2019c). The specific DH parameter table is
shown in Table 9. Experiment 3 set up a set of initial positions of
the robotic arm end-effectors as well as the Euler angles of
rotation along the x, y, z axes, as shown in Table 9. The
actual impact point of a set of robotic arm end-effectors was
also set, and the position of the end-effectors at this point as well
as the Euler angles of rotation along the x, y, z axes were given, as
shown in Table 9. The algorithms compared in Experiment 3
contain the algorithm proposed in this paper, the PSO algorithm,
and the QPSO algorithm.

In Table 9, x0, y0, z0 denotes the initial position of the robotic
arm end-effector, α0, β0, η0 denotes the initial Euler angles of the
robotic arm end-effector rotated along the x, y, and z axes,
respectively. 0XE, 0YE, 0ZE denotes the new position of the
robotic arm end-effector after moving from the initial
position, and 0αE, 0βE,

0ηE denotes the Euler angles of the
robotic arm end-effector rotating along the x, y, z axes after
moving from the initial position, respectively. The six joint angles
corresponding to the impact points obtained by different
algorithms are shown in Table 10. The errors of different
algorithms regarding the position and Euler angles of rotation
along the x, y, z axes of the impact points are shown in Table 11.
Considering that the differences in the initial conditions of
different algorithms affect the fairness of the results, the
number of iterations is set to 500, and the number of particle
swarms is 150.

Tables 10 and 11 represent the results. In Table 10, θ1 ~ θ7
indicates the joint angle 1~joint angles 7 that satisfy the condition
when the end-effector reaches the impact point after the robot
arm moves. 0XE, 0YE, 0ZE indicates the new position of the robot
arm end-effector after moving from the initial position.

0αE, 0βE,
0ηE indicates the Euler angles of rotation along the x,

y, z axes after the robot arm end-effector moves from the initial
position, respectively. Through the error in Table 11, it can be
found that the position error of the algorithm proposed in this
paper is 0 and the orientation error is 0. The position error of the
conventional PSO algorithm is between -0.0025 and 0.0010, and
the orientation error is between -0.0010 and 5.69 × 10–4. The
position error of the QPSO algorithm is between -2.42 and -1.42,
and the orientation error is between -1.62 and 2.78. The
comparison shows that when the object is a seven-degree-of-
freedom robot arm, the proposed algorithm can still guarantee
higher position and orientation accuracy compared with the
traditional PSO algorithm and QPSO algorithm. The joint
angles obtained in Table 10 are all within the range of values,
so it can be determined that the joint angles enable the end-
effector to reach the impact point, i.e., the comparison of the
errors of each algorithm is meaningful. To further illustrate the
advantages of the algorithms in terms of convergence and
operation speed, the data in Table 9 were selected for
Experiment 3 to compare the variation of the fitness function
with the number of iterations and the operation time in each
algorithm, and the results are shown in Figures 8A,B,
respectively.

Figure 8A summarizes the variation of the fitness function
with the number of iterations in various algorithms. It can be seen
that the algorithm proposed in this paper converges faster than
the other two algorithms, converging at less than 100 iterations.
The fact that the value of the fitness function does not fluctuate
after convergence indicates that the convergence is more stable.
In contrast, the PSO algorithm converges slowly, reaching about
350 iterations before convergence, and there are still small
fluctuations when convergence is near. Compared with the
first two algorithms, the QPSO algorithm is unable to

FIGURE 8 | Comparison of the results of various algorithms for seven-degree-of-freedom robotic arms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282917

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

maintain convergence. The comparison shows that the proposed
algorithm can still maintain fast convergence and stable
convergence compared to the other two algorithms when the
object of study is a seven-degree-of-freedom robot arm.
Figure 8B shows the running time of various algorithms. The
histogram shows that the algorithm proposed in this paper has
the shortest operation time of 0.30004s, while the operation time
of PSO and QPSO algorithms are 0.347 and 0.30521s respectively.
By replacing the experimental object and comparing several
factors such as end-effector position accuracy, direction
accuracy, convergence of the algorithm and operation time,
the algorithm proposed in this paper can still maintain good
performance, which can show that the algorithm proposed in this
paper has great potential in solving the inverse kinematics
problem of multi-degree-of-freedom robotic arm.

6.4 DISCUSSIONS

Robot inverse kinematics solutions are of great importance because
they are the basis for the subsequent study of robot path planning and
control. The existing robot inverse kinematics solutions, such as
analytical and geometricmethods, can be applied to a limited number
of scenarios, and they aremainly used for robotic arms that satisfy the
“Pieper” criterion and have analytical solutions. The intelligent
algorithm represented by particle swarm algorithm is becoming a
more promising and exploitable means of solving robot inverse
kinematics with high accuracy, short time and wide range of
application. In this paper, the traditional particle swarm algorithm
is used as the basis, and its inertia weights as well as the initial
population are mainly optimized. Based on the characteristics that
large inertia weights are suitable for global search and small weights
are suitable for local search, an adaptive weighting strategy is
proposed in this paper. Adjusting the inertia weights according to
the change of the fitness function can effectively reduce the
probability of the function value falling into the local optimum.
According to Figures 7A, 8A, it can be seen that when the fitness
function is close to convergence, the traditional PSO algorithm still
has a large undulation phenomenon, i.e., the situation that the value
of the fitness function falls into a local minimum, while by
introducing the adaptive weight strategy, the undulation
phenomenon at convergence is effectively reduced, as shown in

the blue curve of Figure 7A. In this paper, we propose a
condition setting based on the limit joints. Firstly, the maximum
andminimum values of each joint angle are determined according to
the range of joint angles, then the position factor k is introduced
(through several experiments, k = 0.5 is finally taken), and finally the
velocity factor is determined by the position factor k as well as the
maximum joint angle. Due to the introduction of the position
coefficient k in the velocity factor, a reasonable reference standard
is provided for the initialization of position and velocity. At the same
time, the speed of the algorithm is improved by introducing the
condition setting of the limit joints before the iteration instead of
continuously performing the boundary detection during the iteration.
Finally, an exponential product form modeling method (POE) based
on spinor theory is chosen. Compared with the traditional DH
modeling method, the spinor approach describes the motion of a
rigid body as a whole and avoids the singularities that arise when
described by a local coordinate system. The above three experiments
confirm the advantages of the algorithm proposed in this paper in
terms of solution accuracy, operation speed, convergence of the
algorithm and applicability. Experiment 1 takes a general six-
degree-of-freedom industrial robotic arm as the research object,
and sets up four sets of robotic arm end-effector impact point
positions and Euler angles of rotation along the x, y, z axes to
verify the algorithm. Table 5 shows that the final end-effector
position error solved by the algorithm is 0 and the orientation
error is 10–11–10–9, which can initially show that the algorithm
can guarantee the position accuracy and orientation accuracy of the
end-effector. Meanwhile, the variation of the fitness function with the
number of iterations in Figures 6A,B of Experiment 1 can
preliminarily show that the algorithm has convergence.
Experiment 2 takes the PUMA560 robotic arm as the research
object and compares the algorithm proposed in this paper with a
variety of algorithms by replacing the data taking the same
verification method as Experiment 1. The error in Table 8 show
that the position error of the proposed algorithm is 0 and the
maximum orientation error is 1.29 × 10–8, while the lowest
position error of other algorithms is -1.64 × 10–5 and the lowest
orientation error is 4.5 × 10–6. The data in Figure 7B show that the
running time of the proposed algorithm is 0.31851s, while the
shortest running time of other algorithms is 0.33359s. The curve
in Figure 7A shows that the proposed algorithm converges faster and
more stably than the other algorithms. Through various comparisons,

TABLE12 | Comparison with some studies in the literature.

Research Robotic Arm Technique Used Comparative Technique

(Mustafa A and Kerim C 2016) 4DOF QPSO GA
6.51e-06 3.96e-04 Position Error(m)
1.96 17.53 Solution Time(s)

Liu et al. (2021a) 6DOF PLPSO DE
2.5918e−15 1.0798e−07 Position Error(m)
4.4982 8.3929 Solution Time(s)

Dereli and Koker. (2018) 7DOF Random IW-PSO Global-Local Best IW-PSO
6.20e−03 3.64e−03 Position Error(m)
1.6 1.2 Solution Time (s)

(Serkan D, Rasit K, et al., 2019) 7DOF QPSO PSO
2.775e−17 6.719e−03 Position Error(m)
0.2319 0.4498 Solution Time(s)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282918

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

it can be found that the proposed algorithm has higher accuracy of
position and direction solving, faster operation speed, and faster and
more stable convergence than other algorithms. Experiment 3 takes a
seven-degree-of-freedommanipulator as the research object and sets
up one group of robot arm end-effector impact point positions as well
as Euler angles of rotation along the x, y, z axes to verify the algorithm.
The error in Table 11 shows that the position error of the proposed
algorithm is 0 and the orientation error is 0, while the lowest position
error of the other algorithms is 7.53 × 10–4 and the lowest orientation
error is -2.69 × 10–4. The data in Figure 8B shows that the running
time of the proposed algorithm is 0.30004s, while the shortest
running time of the other algorithms is 0.30521s. The curve in
Figure 8A shows that the proposed algorithm converges faster and
more stably than the other algorithms. Through various comparisons,
it can be found that the proposed algorithm can maintain its own
advantages for different research objects and has wide applicability.
This paper also summarizes the improved PSO algorithm applied to
the inverse kinematics solution of robotic arm, and compares
different algorithms in terms of both position error and solution
time, as shown in Table 12.

7 CONCLUSION

In this paper, the algorithm is verified and compared in terms of
solution accuracy, operation time and convergence through three
experiments. Experiment 1 takes a general six-degree-of-freedom
industrial robotic arm as the research object, and sets up four
groups of robotic arm end-effector impact point positions as well
as postures. By bringing the relevant parameters of the robotic
arm, the range of joint angle values, the initial postures and
positions of the robotic arm end-effectors into the algorithm, the
joint angles that meet the conditions are obtained, and finally the
actual robotic arm end-effector positions and postures are
obtained. The convergence of the algorithm is also initially
illustrated by the variation of a selected set of fitness functions
with the number of iterations. The final position error brought
into the algorithm is 0, and the orientation error interval is
10–9~10–11, which preliminarily illustrates that the algorithm can
guarantee a certain accuracy of position and orientation solution.
Experiment 2 compares the algorithm proposed in this paper
with the traditional particle swarm algorithm (PSO) and
quantum particle swarm algorithm (QPSO) in terms of
solution accuracy, operation time and convergence, using the
PUMA560 robotic arm as the research object. In which the
experimental approach is consistent with Experiment 1, the
position error of the algorithm proposed in this paper is 0, the
maximum direction error is 1.29 × 10–8, and the operation time of
a set of data is 0.31851s. The minimum position error of the other
two algorithms is -1.64 × 10–5, the minimum direction error is
-4.03 × 10–6, and the operation time of a set of data is 0.33359s. At
the same time, by comparing the changes of the fitness function
with the number of iterations in a set of data, it can be found that
the algorithm proposed in this paper converges faster and more
stably than other algorithms. Finally, through various
comparisons, it can be found that the algorithm proposed in
this paper can guarantee high accuracy of position and direction

solving, faster solving speed, and more stable and faster
convergence. Experiment 3 takes a seven-degree-of-freedom
robotic arm as the object of study, sets up a group of
robotic arm end-effector impact point positions and
postures and repeats the operation steps of experiment 2, in
which the position error of the proposed algorithm is 0, the
orientation error is 0, and the operation time is 0.30004s. The
minimum position error of the other two algorithms is 7.53 ×
10–4, the minimum orientation error is −2.96 × 10–4, and the
minimum operation time is 0.30521s. At the same time, by
comparing the changes of the fitness function with the number
of iterations, we can find that the algorithm proposed in this
paper still maintains the advantages of stable and fast
convergence. By replacing different experimental objects
and comparing with various algorithms, it can be found
that the algorithm proposed in this paper can maintain its
advantages in solution accuracy, operation time and
convergence while having strong applicability, which
indicates that the algorithm has greater potential in solving
the inverse kinematics of multi-degree-of-freedom robotic
arm. In the future, we will start from improving the
stability of the particle swarm algorithm, and strive to find
the ideal solution with less number of trials. In addition, the
study of robot arm motion control will also be carried out in
the follow-up work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

GZ and DJ provided research ideas and plans; XL, XT and YS
wrote programs and conducted experiments. BT analyzed and
explained the simulation results; JK improved the algorithm. JY
co-authored the manuscript, and were responsible for collecting
data; YL and ZF revised the manuscript for the corresponding
author and approved the final submission.

FUNDING

This work was supported by grants of the National Natural
Science Foundation of China (Grant Nos.52,075,530,
51,575,407, 51,505,349, 51,975,324, 61,733,011, 41,906,177); the
Grants of Hubei Provincial Department of Education
(D20191105); the Grants of National Defense PreResearch
Foundation of Wuhan University of Science and Technology
(GF201705) and Open Fund of the Key Laboratory for
Metallurgical Equipment and Control of Ministry of Education
in Wuhan University of Science and Technology (2018B07,
2019B13) and Open Fund of Hubei Key Laboratory of
Hydroelectric Machinery Design & Maintenance in Three
Gorges University(2020KJX02, 2021KJX13).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282919

Zhao et al. Inverse Kinematic Solution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

REFERENCES

Aydilek, İ. B. (2018). A Hybrid Firefly and Particle SwarmOptimization Algorithm
for Computationally Expensive Numerical Problems. Appl. Soft Comput. 66,
232–249. doi:10.1016/j.asoc.2018.02.025

Ayyıldız, M., and Çetinkaya, K. (2016). Comparison of Four Different Heuristic
Optimization Algorithms for the Inverse Kinematics Solution of a Real 4-DOF
Serial Robot Manipulator. Neural Comput. Applic 27 (4), 825–836. doi:10.1007/
s00521-015-1898-8

Bai, D., Sun, Y., Tao, B., Tong, X., Xu, M., Jiang, G., et al. (2022). Improved Single
Shot Multibox Detector Target Detection Method Based on Deep Feature
Fusion. Concurrency Comput. 34 (4), e6614. doi:10.1002/CPE.6614

Chen, T., Peng, L., Yang, J., Cong, G., and Li, G. (2021a). Evolutionary Game of
Multi-Subjects in Live Streaming and Governance Strategies Based on Social
Preference Theory during the COVID-19 Pandemic.Mathematics 9 (21), 2743.
doi:10.3390/math9212743

Chen, T., Qiu, Y., Wang, B., and Yang, J. (2022). Analysis of Effects on the Dual
Circulation Promotion Policy for Cross-Border E-Commerce B2B export Trade
Based on System Dynamics during COVID-19. systems 10 (1), 13. doi:10.3390/
systems10010013

Chen, T., Yin, X., Yang, J., Cong, G., and Li, G. (2021b). Modeling Multi-Dimensional
Public Opinion Process Based onComplex NetworkDynamicsModel in the Context
of Derived Topics. Axioms 10 (4), 270. doi:10.3390/axioms10040270

Chen, Y., Li, L., Peng, H., Xiao, J., Yang, Y., and Shi, Y. (2017). Particle Swarm
Optimizer with Two Differential Mutation. Appl. Soft Comput. 61, 314–330.
doi:10.1016/j.asoc.2017.07.020

Cheng, Y., Li, G., Li, J., Sun, Y., Jiang, G., Zeng, F., et al. (2020). Visualization of Activated
Muscle Area Based on sEMG. Ifs 38 (3), 2623–2634. doi:10.3233/JIFS-179549

Cheng, Y., Li, G., Liu, Y., Liu, Y., Yu, M., and Jiang, D. U. (2021). Gesture
Recognition Based on Surface Electromyography-Feature Image. Concurrency
Comput. Pract. Experience 33 (6), e6051. doi:10.1002/cpe.6051

Deng, H., and Xie, C. (2021). An Improved Particle Swarm Optimization Algorithm for
Inverse Kinematics Solution ofMulti-DOF Serial RoboticManipulators. Soft Comput.
25, 13695–13708. doi:10.1007/s00500-021-06007-6

Dereli, S., and Köker, R. (2018). IW-PSO Approach to the Inverse Kinematics Problem
Solution of a 7-Dof Serial Robot Manipulator. Int. J. Nat. Eng. Sci. 36 (1), 75–85.

Dereli, S., and Köker, R. (2020). A Meta-Heuristic Proposal for Inverse Kinematics
Solution of 7-DOF Serial Robotic Manipulator: Quantum Behaved Particle Swarm
Algorithm. Artif. Intell. Rev. 53 (2), 949–964. doi:10.1007/s10462-019-09683-x

Duan, H., Sun, Y., Cheng, W., Jiang, D., Yun, J., Liu, Y., et al. (2021). Gesture
Recognition Based on Multi-modal Feature Weight. Concurrency Comput.
Pract. Experience 33 (5), e5991. doi:10.1002/cpe.5991

El-Sherbiny, A., Elhosseini, M. A., and Haikal, A. Y. (2018). A Comparative Study
of Soft Computing Methods to Solve Inverse Kinematics Problem. Ain Shams
Eng. J. 9, 2535–2548. doi:10.1016/j.asej.2017.08.001

Hao, Z., Wang, Z., Bai, D., Tao, B., Tong, X., and Chen, B. (2021b). Intelligent
Detection of Steel Defects Based on Improved Split Attention Networks. Front.
Bioeng. Biotechnol. 9. doi:10.3389/fbioe.2021.810876

Hao, Z., Wang, Z., Bai, D., and Zhou, S. (2021a). Towards the Steel Plate Defect
Detection: Multidimensional Feature Information Extraction and Fusion.
Concurrency Computat Pract. Exper 33 (21), e6384. doi:10.1002/CPE.6384

Harrison, K. R., Engelbrecht, A. P., and Ombuki-Berman, B. M. (2016). Inertia
Weight Control Strategies for Particle Swarm Optimization. Swarm Intell. 10
(4), 267–305. doi:10.1007/s11721-016-0128-z

He, Y., Li, G., Liao, Y., Sun, Y., Kong, J., Jiang, G., et al. (2019). Gesture Recognition
Based on an Improved Local Sparse Representation Classification Algorithm.
Cluster Comput. 22 (Suppl. 5), 10935–10946. doi:10.1007/s10586-017-1237-1

Huang, L., Fu, Q., He, M., Jiang, D., and Hao, Z. (2021). Detection Algorithm of
Safety Helmet Wearing Based on Deep Learning. Concurrency Computat Pract.
Exper 33 (13), e6234. doi:10.1002/cpe.6234

Huang, L., Fu,Q., Li,G., Luo, B., Chen,D., andYu,H. (2019). Improvement ofMaximum
Variance Weight Partitioning Particle Filter in Urban Computing and Intelligence.
IEEE Access 7, 106527–106535. doi:10.1109/ACCESS.2019.2932144

Huang, L., He, M., Tan, C., Jiang, D., Li, G., and Yu, H. (2020). Jointly Network
Image Processing: Multi-task Image Semantic Segmentation of Indoor Scene
Based on CNN. IET image process 14 (15), 3689–3697. doi:10.1049/iet-ipr.2020.
0088

Jiang, D., Li, G., Sun, Y., Hu, J., Yun, J., and Liu, Y. (2021a). Manipulator Grabbing
Position Detection with Information Fusion of Color Image and Depth Image
Using Deep Learning. J. Ambient Intell. Hum. Comput 12 (12), 10809–10822.
doi:10.1007/s12652-020-02843-w

Jiang, D., Li, G., Sun, Y., Kong, J., Tao, B., and Chen, D. (2019b). Grip Strength Forecast
andRehabilitativeGuidance Based onAdaptiveNeural Fuzzy Inference SystemUsing
sEMG. Pers Ubiquit Comput. doi:10.1007/s00779-019-01268-3

Jiang, D., Li, G., Sun, Y., Kong, J., and Tao, B. (2019a). Gesture Recognition Based
on Skeletonization Algorithm and CNN with ASL Database. Multimed Tools
Appl. 78 (21), 29953–29970. doi:10.1007/s11042-018-6748-0

Jiang, D., Li, G., Tan, C., Huang, L., Sun, Y., and Kong, J. (2021b). Semantic
Segmentation for Multiscale Target Based on Object Recognition Using the
Improved Faster-RCNNModel. Future Generation Computer Syst. 123, 94–104.
doi:10.1016/j.future.2021.04.019

Jiang, D., Zheng, Z., Li, G., Sun, Y., Kong, J., Jiang, G., et al. (2019c). Gesture
Recognition Based on Binocular Vision. Cluster Comput. 22 (Suppl. 6),
13261–13271. doi:10.1007/s10586-018-1844-5

Kucuk, S., and Bingul, Z. (2014). Inverse Kinematics Solutions for Industrial Robot
Manipulators with Offset Wrists. Appl. Math. Model. 38 (7-8), 1983–1999.
doi:10.1016/j.apm.2013.10.014

Li, C., Li, G., Jiang, G., Chen, D., and Liu, H. (2020). Surface EMG Data
Aggregation Processing for Intelligent Prosthetic Action Recognition. Neural
Comput. Applic 32 (22), 16795–16806. doi:10.1007/s00521-018-3909-z

Li, G., Jiang, D., Zhou, Y., Jiang, G., Kong, J., and Manogaran, G. (2019a). Human
Lesion Detection Method Based on Image Information and Brain Signal. IEEE
Access 7, 11533–11542. doi:10.1109/ACCESS.2019.2891749

Li, G., Li, J., Ju, Z., Sun, Y., and Kong, J. (2019b). A Novel Feature ExtractionMethod for
Machine Learning Based on Surface Electromyography from Healthy Brain. Neural
Comput. Applic 31 (12), 9013–9022. doi:10.1007/s00521-019-04147-3

Li, G., Zhang, L., Sun, Y., and Kong, J. (2019c). Towards the SemgHand: Internet of
Things Sensors and Haptic Feedback Application. Multimed Tools Appl. 78
(21), 29765–29782. doi:10.1007/s11042-018-6293-x

Li, Z., Li, G., Jiang, G., Fang, Y., Ju, Z., and Liu, H. (2015b). Computation of
Grasping and Manipulation for Multi-Fingered Robotic Hands. J Comput.
Theor. Nanosci 12 (3), 6192–6197. doi:10.1166/jctn.2015.4655

Li, Z., Wang, W., Yan, Y., and Li, Z. (2015a). PS-ABC: A Hybrid Algorithm Based on
Particle Swarm and Artificial Bee colony for High-Dimensional Optimization
Problems. Expert Syst. Appl. 42 (22), 8881–8895. doi:10.1016/j.eswa.2015.07.043

Liao, S., Li, G., Wu, H., Jiang, D., Liu, Y., Yun, J., et al. (2021). Occlusion Gesture
Recognition Based on Improved SSD. Concurrency Comput. Pract. Experience
33 (6), e6063. doi:10.1002/cpe.6063

Liao, S., Li, G., Li, J., Jiang, D., Jiang, G., Sun, Y., et al. (2020). Multi-object
Intergroup Gesture Recognition Combined with Fusion Feature and KNN
Algorithm. Ifs 38 (3), 2725–2735. doi:10.3233/JIFS-179558

Lim, W. H., and Mat Isa, N. A. (2014). An Adaptive Two-Layer Particle Swarm
Optimization with Elitist Learning Strategy. Inf. Sci. 273, 49–72. doi:10.1016/j.
ins.2014.03.031

Liu, F., Huang, H., Li, B., and Xi, F. (2021a). A Parallel Learning Particle Swarm
Optimizer for Inverse Kinematics of Robotic Manipulator. Int. J. Intell. Syst. 36,
6101–6132. doi:10.1002/int.22543

Liu, X., Jiang, D., Tao, B., Jiang, G., Sun, Y., Kong, J., et al. (2021b). Genetic
Algorithm-Based Trajectory Optimization for Digital Twin Robots. Front.
Bioeng. Biotechnol. 9. doi:10.3389/fbioe.2021.793782

Liu, Y., Xiao, F., Tong, X., Tao, B., Xu, M., Jiang, G., et al. (2022c). Manipulator
Trajectory Planning Based on Work Subspace Division. Concurrency Comput.
Pract. Experience 34 (5), e6710. doi:10.1002/cpe.6710

Liu, Y., Jiang, D., Duan, H., Sun, Y., Li, G., Tao, B., et al. (2021c). Dynamic Gesture
Recognition Algorithm Based on 3D Convolutional Neural Network. Comput.
Intelligence Neurosci. 2021, 1–12. doi:10.1155/2021/4828102

Liu, Y., Jiang, D., Tao, B., Qi, J., Jiang, G., Yun, J., et al. (2022a). Grasping Posture of
Humanoid Manipulator Based on Target Shape Analysis and Force Closure.
Alexandria Eng. J. 61 (5), 3959–3969. doi:10.1016/j.aej.2021.09.017

Liu, Y., Jiang, D., Yun, J., Sun, Y., Li, C., Jiang, G., et al. (2021d). Self-tuning Control
of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm. Front.
Bioeng. Biotechnol. 9. doi:10.3389/fbioe.2021.817723

Liu, Y., Li, C., Jiang, D., Chen, B., Sun, N., Cao, Y., et al. (2022b). Wrist Angle Prediction
under Different Loads Based on GA-ELM Neural Network and Surface
Electromyography. Concurrency Comput. 34 (3), e6574. doi:10.1002/CPE.6574

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282920

Zhao et al. Inverse Kinematic Solution

https://doi.org/10.1016/j.asoc.2018.02.025
https://doi.org/10.1007/s00521-015-1898-8
https://doi.org/10.1007/s00521-015-1898-8
https://doi.org/10.1002/CPE.6614
https://doi.org/10.3390/math9212743
https://doi.org/10.3390/systems10010013
https://doi.org/10.3390/systems10010013
https://doi.org/10.3390/axioms10040270
https://doi.org/10.1016/j.asoc.2017.07.020
https://doi.org/10.3233/JIFS-179549
https://doi.org/10.1002/cpe.6051
https://doi.org/10.1007/s00500-021-06007-6
https://doi.org/10.1007/s10462-019-09683-x
https://doi.org/10.1002/cpe.5991
https://doi.org/10.1016/j.asej.2017.08.001
https://doi.org/10.3389/fbioe.2021.810876
https://doi.org/10.1002/CPE.6384
https://doi.org/10.1007/s11721-016-0128-z
https://doi.org/10.1007/s10586-017-1237-1
https://doi.org/10.1002/cpe.6234
https://doi.org/10.1109/ACCESS.2019.2932144
https://doi.org/10.1049/iet-ipr.2020.0088
https://doi.org/10.1049/iet-ipr.2020.0088
https://doi.org/10.1007/s12652-020-02843-w
https://doi.org/10.1007/s00779-019-01268-3
https://doi.org/10.1007/s11042-018-6748-0
https://doi.org/10.1016/j.future.2021.04.019
https://doi.org/10.1007/s10586-018-1844-5
https://doi.org/10.1016/j.apm.2013.10.014
https://doi.org/10.1007/s00521-018-3909-z
https://doi.org/10.1109/ACCESS.2019.2891749
https://doi.org/10.1007/s00521-019-04147-3
https://doi.org/10.1007/s11042-018-6293-x
https://doi.org/10.1166/jctn.2015.4655
https://doi.org/10.1016/j.eswa.2015.07.043
https://doi.org/10.1002/cpe.6063
https://doi.org/10.3233/JIFS-179558
https://doi.org/10.1016/j.ins.2014.03.031
https://doi.org/10.1016/j.ins.2014.03.031
https://doi.org/10.1002/int.22543
https://doi.org/10.3389/fbioe.2021.793782
https://doi.org/10.1002/cpe.6710
https://doi.org/10.1155/2021/4828102
https://doi.org/10.1016/j.aej.2021.09.017
https://doi.org/10.3389/fbioe.2021.817723
https://doi.org/10.1002/CPE.6574
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Liu, Y., Xu, M., Jiang, G., Tong, X., Yun, J., Liu, Y., et al. (2022d). Target
Localization in Local Dense Mapping Using RGBD SLAM and Object
Detection. Concurrency Comput. 34 (4), e6655. doi:10.1002/CPE.6655

Luo, B., Sun, Y., Li, G., Chen, D., and Ju, Z. (2020). Decomposition Algorithm for
Depth Image of Human Health Posture Based on Brain Health.Neural Comput.
Applic 32 (10), 6327–6342. doi:10.1007/s00521-019-04141-9

Ma, R., Zhang, L., Li, G., Jiang, D., Xu, S., and Chen, D. (2020). Grasping Force
Prediction Based on sEMG Signals. Alexandria Eng. J. 59 (3), 1135–1147.
doi:10.1016/j.aej.2020.01.007

Mao, B., Xie, Z., Wang, Y., Handroos, H., Wu, H., and Shi, S. (2017). A Hybrid
Differential Evolution and Particle Swarm Optimization Algorithm for
Numerical Kinematics Solution of Remote Maintenance Manipulators.
Fusion Eng. Des. 124, 587–590. doi:10.1016/j.fusengdes.2017.03.042

Netjinda, N., Achalakul, T., and Sirinaovakul, B. (2015). Particle Swarm
Optimization Inspired by Starling Flock Behavior. Appl. Soft Comput. 35,
411422–422. doi:10.1016/j.asoc.2015.06.052

Ngo, T. T., Sadollah, A., and Kim, J. H. (2016). A Cooperative Particle SwarmOptimizer
with Stochastic Movements for Computationally Expensive Numerical Optimization
Problems. J. Comput. Sci. 13, 68–82. doi:10.1016/j.jocs.2016.01.004

Pathak, M., Junco, J., and Ram, R. V. (2019). Inverse Kinematics of mobile
Manipulator Using Bidirectional Particle Swarm Optimization by
Manipulator Decoupling. Mechanism Machine Theor. 131, 385–405.

Shastri, S., Parvez, Y., and Chauhan, N. R. (2019). Inverse Kinematics for a 3-R Robot
Using Artificial Neural Network and Modified Particle Swarm Optimization. J. Inst.
Eng. India Ser. C 101 (4), 355–363. doi:10.1007/s40032-019-00539-5

Sun, Y., and Zhao, Z. (2022). Low-illumination Image Enhancement Algorithm
Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization.
Front. Bioeng. Biotechnol. doi:10.3389/fbioe.2022.843020

Sun, Y., Hu, J., Li, G., Jiang, G., Xiong, H., Tao, B., et al. (2020a). Gear Reducer
Optimal Design Based on Computer Multimedia Simulation. J. Supercomput 76
(6), 4132–4148. doi:10.1007/s11227-018-2255-3

Sun, Y., Li, C., Li, G., Jiang, G., Jiang, D., Liu, H., et al. (2018). Gesture Recognition
Based on Kinect and sEMG Signal Fusion.Mobile Netw. Appl. 23 (4), 797–805.
doi:10.1007/s11036-018-1008-0

Sun, Y., Tian, J., Jiang, D., Tao, B., Liu, Y., Yun, J., et al. (2020b). Numerical
Simulation of thermal Insulation and Longevity Performance in New
Lightweight Ladle. Concurrency Computat Pract. Exper 32 (22), e5830.
doi:10.1002/CPE.5830

Sun, Y., Weng, Y., Luo, B., Li, G., Tao, B., Jiang, D., et al. (2020c). Gesture
Recognition Algorithm Based on Multi-scale Feature Fusion in RGB-D Images.
IET image process 14 (15), 3662–3668. doi:10.1049/iet-ipr.2020.0148

Sun, Y., Xu, C., Li, G., Xu, W., Kong, J., Jiang, D., et al. (2020d). Intelligent Human
Computer Interaction Based on Non Redundant EMG Signal. Alexandria Eng.
J. 59 (3), 1149–1157. doi:10.1016/j.aej.2020.01.015

Sun, Y., Yang, Z., Tao, B., Jiang, G., Hao, Z., and Chen, B. (2021). Multiscale
Generative Adversarial Network for Real-world Super-resolution. Concurrency
Computat Pract. Exper 33 (21), e6430. doi:10.1002/CPE.6430

Taherkhani, M., and Safabakhsh, R. (2016). A Novel Stability-Based Adaptive
Inertia Weight for Particle Swarm Optimization. Appl. Soft Comput. 38,
281–295. doi:10.1016/j.asoc.2015.10.004

Tan, C., Sun, Y., Li, G., Jiang, G., Chen, D., and Liu, H. (2020). Research on Gesture
Recognition of Smart Data Fusion Features in the IoT. Neural Comput. Applic
32 (22), 16917–16929. doi:10.1007/s00521-019-04023-0

Tanweer, M. R., Suresh, S., and Sundararajan, N. (2016). Dynamic Mentoring and Self-
Regulation Based Particle SwarmOptimization Algorithm for Solving Complex Real-
World Optimization Problems. Inf. Sci. 326, 1–24. doi:10.1016/j.ins.2015.07.035

Tao, B., Huang, L., Zhao, H., Li, G., and Tong, X. (2021). A Time Sequence Images
Matching Method Based on the Siamese Network. Sensors 21 (17), 5900. doi:10.
3390/s21175900

Tao, B., Liu, Y., Huang, L., Chen, G., and Chen, B. (2022a). 3D Reconstruction
Based on Photoelastic Fringes. Concurrency Computat Pract. Exper 34 (1),
e6481. doi:10.1002/CPE.6481

Tao, B., Wang, Y., He, F., Chen, B., and Chen, B. (2022b). Photoelastic Stress Field
Recovery Using Deep Convolutional Neural Network. Front. Bioeng.
Biotechnol. doi:10.3389/fbioe.2022.818112

Thangaraj, R., Pant, M., Abraham, A., and Bouvry, P. (2011). Particle Swarm
Optimization: Hybridization Perspectives and Experimental Illustrations. Appl.
Mathematics Comput. 217 (12), 5208–5226. doi:10.1016/j.amc.2010.12.053

Tian, J., Cheng, W., Sun, Y., Li, G., Jiang, D., Jiang, G., et al. (2020). Gesture
Recognition Based on Multilevel Multimodal Feature Fusion. Ifs 38 (3),
2539–2550. doi:10.3233/JIFS-179541

Tong, Y., Liu, J., Liu, Y., and Yuan, Y. (2021). Analytical Inverse Kinematic
Computation for 7-DOF Redundant Sliding Manipulators. Mechanism
Machine Theor. 155 (1), 104006. doi:10.1016/j.mechmachtheory.2020.104006

Wang, H., Lu, X., Sheng, C., Zhang, Z., Cui, W., and Li, Y. (2018). General Frame
for Arbitrary 3R Subproblems Based on the POE Model. Robotics Autonomous
Syst. 105, 138–145. doi:10.1016/j.robot.2018.04.002

Wang, Y., Ding, X., Tang, Z., Hu, C., Wei, Q., and Xu, K. (2021). ANovel Analytical
Inverse Kinematics Method for SSRMS-type Space Manipulators Based on the
POE Formula and the Paden-Kahan Subproblem. Int. J. Aerospace Eng. 2021,
20211–20213. doi:10.1155/2021/6690696

Weng, Y., Sun, Y., Jiang, D., Tao, B., Liu, Y., Yun, J., et al. (2021). Enhancement of
Real-Time Grasp Detection by Cascaded Deep Convolutional Neural Networks.
Concurrency Comput. Pract. Experience 33 (5), e5976. doi:10.1002/cpe.5976

Wu, X., Jiang, D., Yun, J., Liu, X., Sun, Y., Tao, B., et al. (2022). Attitude
Stabilization Control of Autonomous Underwater Vehicle Based on
Decoupling Algorithm and PSO-ADRC. Front. Bioeng. Biotechnol. doi:10.
3389/fbioe.2022.843020

Xiao, F., Li, G., Jiang, D., Xie, Y., Yun, J., Liu, Y., et al. (2021). An Effective and
Unified Method to Derive the Inverse Kinematics Formulas of General Six-
DOF Manipulator with Simple Geometry. Mechanism Machine Theor. 159,
104265. doi:10.1016/j.mechmachtheory.2021.104265

Xu, M., Zhang, Y., Wang, S., and Jiang, G. (2022). Genetic-Based Optimization of
3D Burch-Schneider Cage with Functionally Graded Lattice Material. Front.
Bioeng. Biotechnol. 10. doi:10.3389/fbioe.2022.819005

Yang, C., Gao, W., Liu, N., and Song, C. (2015). Low-discrepancy Sequence
Initialized Particle Swarm Optimization Algorithm with High-Order
Nonlinear Time-Varying Inertia Weight. Appl. Soft Comput. 29, 386–394.
doi:10.1016/j.asoc.2015.01.004

Yang, Z., Jiang, D., Sun, Y., Tao, B., Tong, X., Jiang, G., et al. (2021). Dynamic
Gesture Recognition Using Surface EMG Signals Based on Multi-Stream
Residual Network. Front. Bioeng. Biotechnol. 9. doi:10.3389/fbioe.2021.779353

Yiyang, L., Xi, J., Hongfei, B., Zhining, W., and Liangliang, S. (2021). A General Robot
Inverse Kinematics Solution Method Based on Improved PSO Algorithm. IEEE
Access 9 (99), 32341–32350. doi:10.1109/ACCESS.2021.3059714

Yu, M., Li, G., Jiang, D., Jiang, G., Tao, B., and Chen, D. (2019). Hand Medical
Monitoring System Based onMachine Learning and Optimal EMG Feature Set.
Pers Ubiquit Comput. doi:10.1007/s00779-019-01285-2

Yu, M., Li, G., Jiang, D., Jiang, G., Zeng, F., Zhao, H., et al. (2020). Application of
PSO-RBF Neural Network in Gesture Recognition of Continuous Surface EMG
Signals. Ifs 38 (3), 2469–2480. doi:10.3233/JIFS-179535

Yun, J., Sun, Y., Li, C., Jiang, D., Tao, B., Li, G., et al. (2022). Self-adjusting
Force/bit Blending Control Based on Quantitative Factor-Scale Factor
Fuzzy-PID Bit Control. Alexandria Eng. J. 61 (6), 4389–4397. doi:10.1016/
j.aej.2021.09.067

Zhang, X., Xiao, F., Tong, X., Sun, Y., Liu, Y., Yun, J., et al. (2022). Time Optimal
Trajectory Planning Based on Improved Sparrow Search Algorithm. Front.
Bioeng. Biotechnol. doi:10.3389/fbioe.2022.852408

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhao, Jiang, Liu, Tong, Sun, Tao, Kong, Yun, Liu and Fang. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 83282921

Zhao et al. Inverse Kinematic Solution

https://doi.org/10.1002/CPE.6655
https://doi.org/10.1007/s00521-019-04141-9
https://doi.org/10.1016/j.aej.2020.01.007
https://doi.org/10.1016/j.fusengdes.2017.03.042
https://doi.org/10.1016/j.asoc.2015.06.052
https://doi.org/10.1016/j.jocs.2016.01.004
https://doi.org/10.1007/s40032-019-00539-5
https://doi.org/10.3389/fbioe.2022.843020
https://doi.org/10.1007/s11227-018-2255-3
https://doi.org/10.1007/s11036-018-1008-0
https://doi.org/10.1002/CPE.5830
https://doi.org/10.1049/iet-ipr.2020.0148
https://doi.org/10.1016/j.aej.2020.01.015
https://doi.org/10.1002/CPE.6430
https://doi.org/10.1016/j.asoc.2015.10.004
https://doi.org/10.1007/s00521-019-04023-0
https://doi.org/10.1016/j.ins.2015.07.035
https://doi.org/10.3390/s21175900
https://doi.org/10.3390/s21175900
https://doi.org/10.1002/CPE.6481
https://doi.org/10.3389/fbioe.2022.818112
https://doi.org/10.1016/j.amc.2010.12.053
https://doi.org/10.3233/JIFS-179541
https://doi.org/10.1016/j.mechmachtheory.2020.104006
https://doi.org/10.1016/j.robot.2018.04.002
https://doi.org/10.1155/2021/6690696
https://doi.org/10.1002/cpe.5976
https://doi.org/10.3389/fbioe.2022.843020
https://doi.org/10.3389/fbioe.2022.843020
https://doi.org/10.1016/j.mechmachtheory.2021.104265
https://doi.org/10.3389/fbioe.2022.819005
https://doi.org/10.1016/j.asoc.2015.01.004
https://doi.org/10.3389/fbioe.2021.779353
https://doi.org/10.1109/ACCESS.2021.3059714
https://doi.org/10.1007/s00779-019-01285-2
https://doi.org/10.3233/JIFS-179535
https://doi.org/10.1016/j.aej.2021.09.067
https://doi.org/10.1016/j.aej.2021.09.067
https://doi.org/10.3389/fbioe.2022.852408
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm
	1 Introduction
	2 Related Work
	3 Model and Kinematic Analysis
	3.1 Robotic Arm Model
	3.2 Kinematic Analysis

	4 Particle Swarm Algorithm and Enhancement
	4.1 Two Particle Swarm Algorithms
	4.2 Improvement

	5 Inverse Kinematic Solution Using Improved Particle Swarm Algorithm
	5.1 Fitness Function
	5.2 Flowchart and Pseudocode

	6 Experiments and Results
	6.1 Results Obtained for General Industrial Six-degree-of-freedom Robotic Arm
	6.2 Results Obtained for PUMA560 Robotic Arm
	6.3 Results Obtained for the Seven-Degree-of-Freedom Robotic Arm

	6.4 Discussions
	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

