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Upper gastrointestinal cancer (UGIC) is an aggressive carcinoma with increasing incidence
and poor outcomes worldwide. Here, we collected 39,057 cells, and they were annotated
into nine cell types. By clustering cancer stem cells (CSCs), we discovered the ubiquitous
existence of sub-cluster CSCs in all UGICs, which is named upper gastrointestinal cancer
stem cells (UGCSCs). The identification of UGCSC function is coincident with the
carcinogen of UGICs. We compared the UGCSC expression profile with 215,291
single cells from six other cancers and discovered that UGCSCs are specific tumor
stem cells in UGIC. Exploration of the expression network indicated that inflammatory
genes (CXCL8, CXCL3, PIGR, and RNASET) and Wnt pathway genes (GAST, REGTA,
TFF3, and ZG16B) are upregulated in tumor stem cells of UGICs. These results suggest a
new mechanism for carcinogenesis in UGIC: mucosa damage and repair caused by poor
eating habits lead to chronic inflammation, and the persistent chronic inflammation triggers
the Wnt pathway; ultimately, this process induces UGICs. These findings establish the core
signal pathway that connects poor eating habits and UGIC. Our system provides deeper
insights into UGIC carcinogens and a platform to promote gastrointestinal cancer
diagnosis and therapy.

Keywords: upper gastrointestinal cancers, cancer stem cell, single-cell sequence data, pan-cancer analysis,
oncogene

INTRODUCTION

Upper gastrointestinal cancer (UGIC), including head and neck squamous cell carcinoma (HNSCC),
esophageal cancer (EC), and gastric cancer (GC), is one of the malignant tumors that seriously
threaten the human health (Yamada et al., 2011). Its occurrence is mainly associated with unhealthy
eating habits and lifestyle and their consequences, including low intake of fruits and vegetables
(Akhtar, 2013), smoking (Gandini et al., 2008), drinking (Goldstein et al., 2010; Zhang et al., 2012;
Gonzélez et al,, 2013), and high body mass index (BMI). The global incidence of UGIC has
significantly increased in recent years (Bray et al., 2018). Patients with UGIC account for a large
proportion of all patients with malignant tumors (Sung et al., 2021). UGIC has a poorer prognosis
and lower overall survival rate than other cancers (Sung et al., 2021). GC is the fifth most prevalent
cancer and the third leading death cause of patients with cancers on a global scale (Yin et al., 2020).
The 5-year survival rate of patients with EC is not more than 20% worldwide (Zhang, 2013). Because
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of the increasing incidence, the high relapse and metastasis rate,
and the low overall survival rate, studies on the molecular
mechanism of UGICs or gastrointestinal pan-cancer are
imperative.

In recent years, the growing number of patients has prompted
many studies on gastrointestinal tumors (Chakravarthy et al,
2018; Yang et al,, 2020; Cui et al., 2021). At present, researchers
have discovered many biomarkers for the diagnosis and
treatment of gastrointestinal cancer, including human
epidermal growth factor receptor2 (HER2) (Li Z. et al., 2020),
mismatch repair deficiency/microsatellite instability (AMMR/
MSI-H) (Dhakras et al., 2020), and programmed death-ligand
1 (PD- L1) (Dai et al., 2021). In addition, there are many new
biomarkers under investigation, including neurotrophic-
tropomyosin receptor kinase (NTRK) (Westphalen et al,
2019), claudin-18 (CLDNI18) (Zhang et al, 2020), Rho
GTPase-activating protein 26 (ARHGAP26) (Dhakras et al,
2020), fibroblast growth factor receptor (FGFR) (Babina and
Turner, 2017), lymphocyte-activation gene 3 (LAG3) (Saleh
et al, 2019), and T-cell immunoglobulin and mucin-domain
containing-3 (TIM3) (Wang et al., 2017). However, only few
clinical trials on UGIC patients have shown positive curative
effects; the underlying mechanisms remain elusive so far. Nearly
50% of patients in good conditions will still suffer from local
recurrence or systematic metastasis after aggressive treatment
(Dhakras et al., 2020; Sung et al., 2021). It seems that most of the
works aim at general tumor cells rather than cancer stem cells
(CSCs) in UGIC. It is because CSCs are difficult to isolate due to
the limitation of early experimental conditions and heterogeneity
of CSCs (Clarke et al., 2006; Sreepadmanabh and Toley, 2018).
Considering that the digestive tract organs share a common
external environment and perform similar functions in a
system, diet-induced mucosal lesions may have similar effects
on cancer of the mouth, esophagus, and stomach (Haas et al,
2012). Therefore, it is necessary to take oral cancer, esophageal
cancer, and gastric cancer as a whole, that is, UGIC, for
integration research.

Some laboratories have conducted pan-cancer research on
UGICs. Tran et al’s pan-cancer study on somatic mutations
found that leukocyte antigen-restricted T-cell receptors targeted
the KRAS (G12D) hotspot driver mutation found in many
human gastrointestinal cancers (Tran et al, 2015). Another
study observed that IL-6 is the main communication medium
for tumor cells and cancer-related fibroblasts in a murine model
(Johnson et al., 2018). IL-6 deletion inhibits the occurrence of
gastrointestinal tumors through STAT3 and MEK1/2 signals
(Karakasheva et al, 2018). Dana-Farber Cancer Institute
discovered the new immune checkpoint biomarker TET1 and
PD-1 ligands (CD274 and PDCD1LG2) (Thienpont et al., 2016;
Bu et al.,, 2021; Rahman et al.,, 2021). But fewer studies focus on
CSCs. The problems of poor prognosis and a high recurrence rate
still require more intensive studies in UGIC.

In this work, to verify the pathogenesis and therapeutic targets
of UGIC, we performed the pan-cancer analysis on UGIC. Our
results identified the unique CSCs in UGIG, which are named
upper gastrointestinal common cancer stem cells (UGCSCs). The
core regulation network of UGCSCs suggested that
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inflammation-related genes, namely, CXCL8, PIGR, and
CXCL3, and Wnt pathway-related genes, namely, GAST,
REGIA, TFF3, and ZGI6B, are activated. Further analysis
indicated that mucosal damage and inflammation caused by
poor dietary habits trigger the Wnt pathway and eventually
induce UGIC. In addition, GAST and TFF3 activate
phosphatidylinositol ~3-kinase (PI3k)/Ras to enhance the
metastasis and invasion of UGIC. Taken together, these results
pave the way for the better diagnosis and treatment of UGIC.

METHODS

Data Collection and Processing

The data were collected from the published literature (Table 1).
For different sequencing methods of single-cell data, specific
analysis procedures were applied. For Drop-seq single-cell
data, Cell Ranger software (Freytag et al., 2018) (3.0.1) was
adopted to calculate the cell expression counts. For Smart-seq2
single-cell sequencing data, we operated cell expression matrixes
provided in the original article. The expression matrix file was
then imported into R 3.6.2 for subsequent analysis.

Data Normalization and Batch Effect

Correction

First, we used Seurat (Stuart et al., 2019) (3.1.4) to filter the quality
of cells and delete all cells with more than 6000 expressed genes or
less than 201 genes. A total of 39,057 UGIC cells and 215,291
other cancer cells were obtained. Next, standardized integration
processing was performed on the cell level, sample level, and
study level.

Cell Level Standardization

The logarithmic percentage of gene expression in cells was
adopted as the standardized integration of data between
different cells in the sample (Butler et al, 2018). The value of
the expression of gene x in a cell was divided by the value of the
expression of all genes in this cell and multiplied by the scale
amplification factor, which is set to 10000 in this experiment.
Then, the logarithm of this value is the normalized value of the
expression of gene x in the cell. This process can reduce the
deviation of gene expression values caused by different
sequencing depths and sequencing methods. The formula (1)
is described as follows:

' X
X, = loglo zix*IOOOO N (1)
ieU~"1

. . U
where x; represents the expression value of gene i. x; represents
the expression value of gene i after normalization. U represents
the gene set in a certain cell.

Sample Level Standardization

We diminished gene features to avert the dimension disaster
problem in the single-cell expression matrix. First, the logarithm
of gene expression means and variances was calculated. Next, we
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TABLE 1 | Single-cell RNA-seq data of UGIC.

Pan-Cancer Reveals CSCs in UGICs

Species Tumor type Tissue Sequence type Cell number Sample PubMed ID
Human EC Esophagus Smart-seq2 366 5 30223068 Wu et al. (2018)
Human HNSCC Oral cavity Smart-seq2 4762 15 29198524 Puram et al. (2017)
Human Early GC Stomach 10x Genomics 4110 1 32209487 Zhang et al. (2019a)
Human GC Stomach 10x Genomics 29817 9 32532891 Zhang et al. (2021a)
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FIGURE 1 | Expression profiling of 39,057 single cells in UGIC. (A) Workflow of sample processing, cell type annotation, and functional analysis for 30 samples in
UGIC. (B) t-SNE of 39,057 cells profiled here, with each cell color-coded for the associated cell type. (C) Heatmap of the expression pattern in each cell type. (D)
Expression of marker genes for the cell types defined above each panel. (E) Expression trend of marker genes for each cell type in the violin chart.
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fitted a line regression model to represent the relationship
between the two values using the local polynomial regression.
Next, we normalized the gene expression value through the mean
value and expected variance of the model. Finally, the top variable
2000 gene features were selected for the subsequent analysis based
on the normalized expression value.

Study Level Standardization

We conducted an integrated analysis of multiple samples, by
looking for similar sites between cells. First, the dimensionality
was reduced by using canonical correlation analysis (CCA)
(Andrew et al., 2013). Next, similarity anchor points were
constructed, according to the similarity of sample expression
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matrixes. Finally, the data were integrated between different
studies, according to the identified anchor points.

UGIC Cell Type Identification

After PCA dimensionality reduction was performed on
39,057 UGIC cells, nine cell sets were obtained by
T-distributed stochastic neighbor embedding (t-SNE)
clustering. In order to identify the cell types, we calculated
highly expressed genes on each cluster through the
FindMarkers (Butler et al., 2018) function in Seurat. Then,
through the artificial gene annotation on the CellMarker
(RRID:SCR_018503) database (Zhang X. et al., 2019), the
marker genes and the corresponding cell type were finally
annotated. We show the statistical graph of cell types
identified by EPCAM in the published articles as an
example in the CellMarker (RRID:SCR_018503) database
(Supplementary Figure S5). Then, we analyzed the
subtypes of cancer stem cells, obtained a total of six
subclasses, and calculated the differentially expressed genes
(DEGs) of each subclass.

Other Cancer Cell Type Identification

A total of 71 single-cell sequencing data (Supplementary Table
S2) from six other cancers were collected. We used the same
method to process other tumor single-cell data to ensure the
consistency of the analysis process. First, the quality control of
single-cell data obtained a total of 215291 cells. After
standardization at the cell level, sample level, and study level,
we used PCA and t-SNE visualization to reduce the dimension of
those single-cell data and obtained 29 cell collections. We
calculated the highly expressed genes of 29 cell collections and
used the CellMarker database (Zhang X. et al., 2019) to annotate
the cell types. Then, we marked cancer stem cells, which are
subtypes 4 and 7. The relevant marker annotations are shown in
Supplementary Figure S3.

UGIC Transcriptome Sequencing Analysis
We gathered bulk RNA-seq data of UGICs in the TCGA database
(Aldape et al., 2015). We obtained the expression matrix data
using the cBioPortal (Cerami et al., 2012; Gao et al, 2013),
including 522 HNSCC samples, 185 EC samples, and 415 GC
samples. Three types of UGICs were congregated with the data
label “hnsc_tcga,” “esca_tcga,” and “stad_tcga”. DESeq2 (RRID:
SCR_000154) (Love et al.,, 2014) (1.26.0) software was used to
measure the DEGs in the cancer sample and the corresponding
normal sample.

Gene Function Annotation

We annotated the function and pathway information of the
significantly different genes in the Gene Ontology (GO)
(Ashburner et al., 2000; Ashburner, 2021) database and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (RRID:
SCR_012773) (Kanehisa et al, 2021) database using the
clusterProfiler (RRID:SCR_016884) (Yu et al., 2012) (3.14.3)
package in R (3.6.2) software. The top 15 terms are presented
in Figure 4.

Pan-Cancer Reveals CSCs in UGICs

Gene Enrichment Analysis
We adjusted the gene set enrichment score between the specific

differential genes and the cancer-related gene sets through the
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005)
software (4.1.0). “C6: oncogenic signatures” was selected as the
existing cancer-related gene set in GSEA software. We filtered
several parameters to draw gene enrichment results. The
normalized enrichment score (NES) was larger than 1. The
normalized significance level (NSL) p-value was lower than 0.05.

Protein Interaction Network Analysis

We collected all human entries in the String database (RRID:
SCR_005223) and deleted low-quality and text mining entries
(Szklarczyk et al., 2021). After removing the duplicated edges and
self-loops, we constructed a human protein-protein interaction
network (PPIN) with 19,267 proteins and 1,689,887 edges by
Cytoscape software (RRID:SCR_003032) (Shannon et al., 2003)
(3.7.1). Then, 174 genes specifically expressed in UGCSC were
mapped to the PPIN. After removing outlier proteins, a
regulatory sub-network composed of 144 protein nodes and
545 edges was constructed. Next, we appraised the topological
attributes of the network and selected the degree and clustering
coefficient (CC) to measure the function of the sub-network
(Sporns, 2013). The degree represents the number of connections
through a particular node, which measures the importance of the
node in the network. CC represents the closeness of connections
between a node and the surrounding nodes, which demonstrates
the network closeness and function similarity. The formula (2) is
described as follows:

2e;

REICA) @
where C; represents the CC of gene i. d; represents the count of
adjacent nodes of gene i e; represents the number of
interconnected nodes among all adjacent nodes of gene i.

Construction of the Hub Gene Function
Network

We manually reviewed the tumor-related literature studies
published since 2000 to screen functions and pathways of
DEGs. Then, we formulated UGCSC function networks by
integrating different genes and the known inflammation and
Wnt pathways (Figure 6).

RESULT
Landscape of UGIC Single-Cell Data

We collected 39,057 tumor single-cell sequencing data from 30
patients including 4762 HNSCC cells, 366 EC cells, and 33,927
GC cells (Figure 1A). It is noteworthy that EC samples applied
Smart-seq2 single-cell sequencing technology (Picelli et al., 2014)
which is manually sequencing each cell. So the EC group has few
cells but higher confidence. After quality filtering (see Methods)
and removing the batch effect, more than 70 million transcripts
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were obtained from 39,057 cells. Subsequently, we classified
cells into different clusters by using T-distributed stochastic
neighbor embedding (t-SNE) methods in Seurat software
(Supplementary Figure S1). Through marker genes, these
identified cell clusters could be assigned to known cell
lineages: T cells, B cells, epithelial cells, natural killer cells,
fibroblasts, plasma cells, cancer stem cells, mast cells, and
endothelial cells (Figure 1B). To corroborate these profiles,
we showed the high expression gene distribution heatmap of
each cell type and the expression abundance of marker genes of
each type (Figure 1C; Supplementary Table S1). Each cell
type has specific marker genes: CD3D, KRT8, MS4Al,
PDGFRA, IGHG3, EPCAM, ECSCR, TPSB2, and CCL3
(Figure 1D). The violin plot of marker genes shows that the
expression of most marker genes is specific, which indicates
that the classification of cell types is accurate and is very
helpful for subsequent analysis (Figure 1E). Taken together,
these results indicate that the cell classification was accurate,
and most of the cells were classified into the correct cell type.
The distribution of samples and cancer types is shown in
Supplementary Figures S1, S2. We also counted the

number and frequency of all cell types in HNSCC, EC, and
GC and provided the results in Supplementary Figure S6.

UGIC-Specific Cancer Stem Cell

Identification

We focused on cancer stem cell types in order to reveal the
pathogenesis and distant metastasis mechanism of UGIC. We
collected a total of 1,586 CSCs (Figures 2A,B) including 136
HNSCC cells, 23 EC cells, and 1427 GC cells. Due to the
heterogeneity of CSCs, there are differences in the same type
of cancer while similarities exist in different types of cancers,
coincident with the characteristics of the remote metastasis and
recurrence of the cancers. Therefore, we performed a cluster
analysis of CSCs, and a total of six sub-clusters were found. After
annotating and analyzing all sub-clusters, sub-cluster 0 is
ubiquitous in UGICs, including 19 EC stem cells, 356 GC
stem cells, and 114 HNSCC stem cells, which proves that sub-
cluster 0 preliminarily meets the characteristics of common CSCs
(Figures 2C,D). Therefore, we concentrated on sub-cluster 0 in
the follow-up analysis.
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FIGURE 3 | Expression profiing of 215,291 single cells in six cancer types. (A) t-SNE plot of 215,291 single cells in six cancer types, color-coded by 29 clusters.
Clusters 4 and 7 are cancer stem cells, which are marked by a red circle. (B) Box plot shows the expression of the CSC marker gene CXCR4. The x-axis represents the
cell type. The y-axis represents the log value of the normalized CXCR4 expression. (C) t-SNE plot of other cancer cells, color-coded by the cancer type. (D) t-SNE plot of
all CSCs, color-coded by clusters. (E) t-SNE plot of all CSCs, color-coded by the CSC type. (F) t-SNE plot of all CSCs, color-coded by cancer types.
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To verify whether sub-cluster 0 reflects the characteristics of
UGIC rather than only GC, we performed a down-sampling
process in sub-cluster 0 since there are more than 70% GC stem
cells in sub-cluster 0. We randomly selected the same number of
GC cells as the HNSCC cells and named new sub-cluster 0.
Subsequently, we compared the differential genes between sub-
cluster 0 and the new sub-cluster 0 in CSCs. The merge ratio is
77.14% (Figure 2E), which means these two sub-clusters share
the same differential gene set. These results indicate that the
differentially expressed genes (DEGs) of sub-cluster 0 represent
the features of UGICs.

To validate the specificity of UGCSCs, we compared UGCSCs
with other tumor cells. We collected 71 samples (215,291 cells)
from six types of cancers including glioma (GLM), melanoma
(MELA), osteosarcoma (OSTC), breast cancer (BC), ovarian
cancer (OVC), and stellate cell cancer (SCC) (Supplementary
Table S2). After normalizing the cells and removing the batch
effect (see Method), all the cells were gathered into 29 sub-clusters
(Figures 3A,C). After annotating all cancer cells in the
CellMarker database, we noticed that there are plenty of cell
types due to the complexity of tissue types involved. Therefore, we
only annotated CSCs by using marker genes. The tumor stem
cells were obviously aggregated with CXCR4 markers (Figure 3B;
Supplementary Figure S3), which are sub-clusters 4 and 7 and
contain 21323 cells, as circled in Figure 3A. We compared CSCs
of other cancers with CSCs of UGICs. We re-clustered and
obtained 31 sub-clusters in all CSCs, which reveals the
differences between CSCs of different tumor types

(Figure 3D). But at the same time, the cluster distribution of
CSCs from different tissues is uniform, which indicates that there
are similarities between different tissues in CSCs (Figures 3E,F).
This phenomenon is also coincident with the heterogeneity of
tumors. The cluster annotation of cancer types shows that the
UGCSC is self-clustering and far away from other tumor CSCs
(Figure 3E). Therefore, the UGCSC is the specific cancer stem cell
in UGIC while UGCSC does not exist in other cancers.

UGCSC Function Analysis

We comprehensively analyzed the distribution and function of
UGCSCs. The cell sources of UGCSC cancers were analyzed and
counted (Figure 4A). As shown in Figure 4, UGCSCs are
averagely expressed in UGIC patients, including 10 GC
patients, four EC patients, and nine HNSCC patients. In
summary, the UGCSCs are distributed uniformly, which
proves that the UGCSC is common in upper gastrointestinal
patients.

We analyzed the expression network of UGCSCs. First, we
compared the expression profiles of UGCSCs and all other tumor
stem cells and obtained 174 genes with significant differences,
including 33 upregulated genes and 141 downregulated genes
(Supplementary Data S1). We uncovered that the gene
information function reflects the characteristics of UGCSCs as
a digestive system and as cancer stem cells by analyzing the
function annotation (Ashburner et al., 2000) of DEGs (Figures
4B,D). The upregulated genes are related to antibacterial
response, such as “antibacterial humoral response,”
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“antibacterial humoral immune response-mediated,” and
“mucosal immune response,” which are consistent with the
function of the digestive tract in the human body. In addition,
the functions of downregulated genes mainly focus on reducing
the activity of T cells and lymphocytes and downregulating cell
killing which could reduce the body’s immune response and
enhance the survival rate of tumor cells, and these are also the
characteristics of cancer stem cells. The downregulated genes also
play a role in the regulation of cell-cell adhesion to facilitate the

distant metastasis of tumors, which is in line with the feature of
metastasis. Through the analysis of the KEGG pathway (Kanehisa
et al, 2021), we observed that the significantly differentially
expressed genes are enriched in inflammation-related mucosal
infections such as “Staphylococcus aureus infection,” “epithelial
cell signaling in Helicobacter pylori infection,” “IL-17 signaling
pathway,” and “chemokine signal pathway” (Figure 4C). These
results uncovered a potential carcinogenic factor of UGIC, that is,
mucosal damage induced activation and mutation in
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inflammatory pathways. Through gene set enrichment analysis
(GSEA), we found that the significantly differentially expressed
genes were significantly enriched in ATF2- and ERBB2-related
cancer genes (Figures 4E,F). To further confirm the reliability of
these genes, we calculated the DEGs between UGCSCs and 30,267
cells of normal tissues in the upper alimentary tract (Cillo et al.,
2020; Zhang X. et al.,, 2021) (Supplementary Figure S7A). The
DEGs of UGCSCs and tumor cells are few and share fewer genes
with the DEGs of UGCSCs and normal cells (Supplementary
Figure S7B). Also, the functional analysis of DEGs of UGCSCs
and normal cells indicates that the functional pathways are
related to cell development, which is a common feature of
tumors (Supplementary Figure S7C). In summary, these
results indicate that the DEGs of UGCSCs and tumor cells are
oncogenes related to the function of the digestive tract.

UGIC Carcinogenic Mechanism Detection

In order to study the pathogenic mechanisms that may exist in
UGCSCs, we mapped 174 proteins into the human protein—protein
interaction network (PPIN). We constructed PPIN and deleted low-
quality text mining terms in the String database (Szklarczyk et al,,
2021). After mapping 174 DEGs in UGCSCs into PPIN, an
interaction network consisting of 144 proteins and 545 edges was
obtained (Figure 5A). Through the analysis of the topological
properties of the network, we found that the degree of DEGs in
PPIN is 362.174, which is significantly higher than 175.418 in the
human total network (Figure 5B). This result indicates that the
shortest path through different genes is significantly higher than the
average value (Figure 5B), which implied that these genes are hub
genes in the UGCSC network. Furthermore, another topological
property, the clustering coefficient (CC), is significantly higher than
the background network, which points out that the 144 genes are
closely linked compared with the random gene set in the network.
The close interaction means a similar or synergistic function in cells.

Through the comprehensive analysis of degree and CC, we inferred
that the 144 genes are tightly connected hub genes in PPIN, which
means that they play an important function in UGCSCs as a co-
operative hub gene set.

We have performed functional annotations on the possible
functions of these genes and inferred regulatory pathways with
the aim to explore the possible pathogenic mechanisms and
potential therapeutic targets in UGIC. We analyzed the
regulation pathway of those genes through published articles
and proved that the upregulated genes are basically related to
cancer (Supplementary Table S3). Here are some exciting
discoveries. Some genes are related to inflammatory pathways,
such as CXCL8 (Ha et al, 2017), BPIFB1 (Li J. et al, 2020),
PIGR (Kakiuchi et al., 2020), CXCL3, and RNASE1 (Wang et al,
2006), and some genes are related to specific functions of the
digestive tract, such as GAST (Giraud et al, 2016), REG1A (Sha
et al, 2019), and TFF3 (Braga Emidio et al., 2020). These results
illustrated that there may have similar pathogenic mechanisms and
common regulatory pathways in some UGICs. We speculated that
mucosal damage is induced by long-term unhealthy eating habits,
which include smoking, drinking, and hot food breed inflammation.
Persistent inflammation leads to carcinogenic mutations and early
gastrointestinal tumors. These conjectures have been confirmed in
the specific regulatory network of UGCSCs. Based on the detected
differentially expressed genes and the mining of relevant research
literature studies, we speculated the pathogenesis of the disease, as
shown in the Figure 6. Inflammation-associated interleukin (CXCL8
and CXCL3) and inflammation defense-related BPIFB1, PIGR, and
RNASE1 are activated in UGCSCs. Combined with the
epidemiological investigation of gastrointestinal cancer, there is a
hypothesis that chronic inflammation is incited by mucosal damage
due to long-term bad eating habits. We present that the cancerous
chronic inflammation is activated by GAST, REG1A, TFF3, and
ZG16B in the Wnt signaling pathway. Upregulated hPG80 and TFF3
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induce PI3K/Ras and lead to tumor cell growth and invasion, which
may be one reason for the poor prognosis of UGIC. Hence, this
resource provides a novel view for the occurrence and development
of UGIC and the advancement of gastrointestinal cancer diagnosis
and therapy.

CONCLUSION

In this article, we collectively analyzed single-cell sequencing data
of HNSCC, EC, and GC and identified a specific cancer stem cell
type in UGIC: UGCSCs. Then, we presented the unique
expression pattern and hub gene set in UGCSCs by comparing
it with other tumors’ single-cell RNA-seq data. We declared the
common carcinogens of UGICs that the mucosa damage of the
digestive tract induces chronic inflammation due to unhealthy
eating habits. The hub gene set provides promising entry points
for the design of novel therapies including CXCL8, CXCL3,
GAST, TFF3, PIGR, and RNASE].

DISCUSSION

Here, we provided a comprehensive catalog of human UGICs at
single-cell resolution. In the integrative analysis of UGICs, we

confirmed that there are specific cancer stem cells in UGIC, which
are named UGCSCs. This discovery provides a new perspective
for scientific analysis of the poor prognosis and easy recurrence of
UGIC. By comparing the tumor stem cells of six cancers, we
extracted the core gene set that plays an important role in
UGCSCs and explored the possible pathogenic pathway of
UGIC and core genes including GAST, CXCL8, CXCL3, PIGR,
REGIA, and TFF3. With further in-depth research, these genes
can also be used as diagnostic markers or possible therapeutic
targets for gastrointestinal cancers.

However, all cell types and subtypes cannot possibly be
described here; some key results emerge. On one hand, the
distribution of all cell types in UGIC is shown in the cell
clustering figure (Figure 1B). On the other hand, through the
comparative analysis with bulk RNA-seq sequencing data, the
DEGs between single-cell data and bulk RNA-seq data varied
significantly. Therefore, we performed further research only
on cancer stem cells. Intriguing questions remain as to whether
there are specific immune cells in UGIC and whether the
immune cell counts would have an impact on the prognosis
of UGIC.

The single-cell data of UGIC and the six cancer types are
composed of cells from different patients. Some sub-clusters of
cell types have different abundances due to sample differences,
according to the results of cell clustering. We removed batch
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effects and deleted outlier cells from the clustering result. In this
way, the impact of samples from different patient sources is
reduced.

We performed the same analysis on bulk RNA sequencing data;
however, due to the varieties of cell types and the low proportion of
CSCs in cancer tissues, the pathways and therapeutic targets were
not discovered. We collected 1,122 patients and 1,966 normal
samples of bulk RNA-seq data in TCGA database. The
differentially expressed genes of the three cancers were
compared with those of UGCSCs. The result suggests that the
merge ratio is only 0.79%. Moreover, the function of differentially
expressed genes is mostly about cell cycle-related pathways in bulk
RNA-seq data (Supplementary Figure S4). We inferred that
plenty of cell types in UGIC generates noises in UGIC
expression profile information and makes some core pathways
and genes undetectable, while single-cell RNA-seq can filter noise
signals by extracting specific cell types.

Last, we constructed a regulatory network of UGCSCs under
the framework of the existing experimental knowledge atlas.
More and other types of data such as downstream genes and
mutation information of the core regulatory network need to be
further studied. However, we proposed UGCSCs and their
regulatory networks based on the analysis of single-cell data
from more than 100 patients and more than 25,000 cells,
which has strong robustness. These data build a framework
for a deeper understanding of the molecular mechanisms of
UGCSCs and the regulation network of hub genes and might
be applied to screen for molecular target drugs to improve the
efficacy and outcomes for UGIC patients.
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