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Mesenchymal stromal cells (MSC) represent a promising treatment option for tendon
disorders and joint diseases, primarily osteoarthritis. Since MSC are highly context-
sensitive to their microenvironment, their therapeutic efficacy is influenced by their
tissue-specific pathologically altered targets. These include not only cellular
components, such as resident cells and invading immunocompetent cells, but also
components of the tissue-characteristic extracellular matrix. Although numerous in vitro
models have already shown potential MSC-related mechanisms of action in tendon and
joint diseases, only a limited number reflect the disease-specific microenvironment and
allow conclusions about well-directed MSC-based therapies for injured tendon and joint-
associated tissues. In both injured tissue types, inflammatory processes play a pivotal
pathophysiological role. In this context, MSC-mediated macrophage modulation seems to
be an important mode of action across these tissues. Additional target cells of MSC
applied in tendon and joint disorders include tenocytes, synoviocytes as well as other
invading and resident immune cells. It remains of critical importance whether the context-
sensitive interplay between MSC and tissue- and disease-specific targets results in an
overall promotion or inhibition of the desired therapeutic effects. This review presents the
authors’ viewpoint on disease-related targets of MSC therapeutically applied in tendon and
joint diseases, focusing on the equine patient as valid animal model.
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INTRODUCTION

The former idea behind the application of mesenchymal stromal cells (MSC) in injured tissue was to
transplant a source of undifferentiated progenitor cells and thereby achieve local effects, which were
deemed to be a direct integration ofMSC, further leading to restoration and regeneration at the site of
injury. In musculoskeletal conditions, this is supported by studies investigating the retention and fate
of locally applied MSC and by the repeated proof of MSC differentiation potential into osteogenic,
chondrogenic, adipogenic and myogenic cell lines (Forest et al., 2010; Sole et al., 2013; Vieira et al.,
2014). However, this assumption is more and more supplemented by findings about the ability of
MSC to communicate transcellularly by direct cell-to-cell contact and release of soluble factors and
extracellular vesicles (Islam et al., 2012; Liu et al., 2018; Witwer et al., 2019). With the knowledge of
these transcellular communication mechanisms, the idea of a locally acting MSC requires a broader
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explanation than the plausible cell replacement theory alone.
Moreover, locally applied MSC seem to be adaptive and
promote context-sensitive cell communication. To predict
MSC-target interaction, the cell and matrix composition and
immunological state of the target tissue are pivotal. However,
due to the complex pathophysiological mechanisms in the
course of inflammation, cell and matrix destruction as
characteristics at the site of injury are inconsistent,
depending on the type of tissue, the grade of cell destruction
and the grade of local inflammatory reaction (Ackerman et al.,
2021; Scanzello and Goldring, 2021). Furthermore, though not
being addressed within the present work, tissue specific resident
MSC have already been shown to react context-sensitive in the
respective pathophysiological microenvironment and may also
be relevant for target interaction of applied MSC (Costa-
Almeida et al., 2019).

Animal models play a vital role in providing information
about tissue-context-sensitivity of MSC. Particularly the
clarification of the MSC mode of action in injured tendons
and joints forced scientists to study artificially induced lesions
in various species (Delling et al., 2015; Ahrberg et al., 2018; Kwon
et al., 2018; Kim et al., 2019; Khan et al., 2020). Nevertheless, all
artificial disease models remain an approximation and do not
allow to investigate the naturally occurring pathophysiological
circumstances. Therefore, we consider it crucial to include animal
models based on naturally occurring tendon and joint diseases in
basic research strategies, for which the horse is most suitable and
repeatedly used (Becerra et al., 2013; Smith et al., 2013; Berner
et al., 2016; Broeckx et al., 2019). However, the so far limited
number of existing pre-clinical and clinical studies focus on
clinically detectable effects and safety, thereby only indirect
conclusions about target specific cellular mechanisms of action
can be drawn.

Understanding the context-sensitive mode of action of
MSC specifically in tendons and joints will form the basis
for their future successful application. Here, we discuss
selected therapeutic targets and mechanisms of MSC
applications in tendon and joint diseases and illustrate
their mutual interplay. Due to its high relevance with
respect to investigating naturally occurring diseases, we
focus on research in the equine model.

TARGETS AND MECHANISMS OF MSC IN
TENDON AND JOINT DISEASE

The desired targets of MSC in therapeutic applications can be
deviated from the pathophysiological mechanisms driving the
respective disease. However, it is important to note that the
desired targets are not necessarily the targets that are actually
addressed, and even if so, the effect on the target might not be as
initially expected. In this line, it must be considered that MSC are
highly sensitive to their environment, which will be further
addressed below. Nevertheless, aiming at a well-directed cell
therapy, the first step must be to identify pathophysiological
key players and to observe the effects of MSC after
transplantation.

Possible Targets of MSC in Acute and
Chronic Tendon Disease
Possible targets of MSC in tendon disease include cellular
components on the one hand, such as the resident tenocytes,
invading immune cells and endothelial cells, and the extracellular
matrix (ECM) on the other hand. Regeneration of the highly
specialized matrix must always be the central goal, as it is
responsible for tendon function. However, a functional
replacement of cells and ECM by the MSC alone is unlikely to
be achieved. Rather, the MSC should support a milieu which
allows the tendon to regenerate. In this line, the cellular targets
could be in the foreground in phases of active inflammation and
acute injury, whereas the scarred ECMmay need to be focused in
chronic tendon disease.

In acute tendon disease or injury, activated tenocytes and
invading immune cells, namely macrophages, foster a milieu of
inflammation and further matrix degradation. Indeed, in a canine
model of acute tendon injury, macrophages could be identified as
a target of MSC treatment, which promoted their M1/M2
phenotype switch (Shen et al., 2016; Gelberman et al., 2017).
While the identification of the underlying molecular mechanisms
and targets is more complex, this effect appeared to be mediated
by interleukin (IL)-4 (Shen et al., 2016; Gelberman et al., 2017).
The specific interplay of tenocytes and MSC in vivo has not been
elucidated in much detail so far, yet besides direct tenocyte
targeting, a protection of tenocytes via macrophage
modulation and overall reduction of pro-inflammatory stimuli
can be assumed (Manning et al., 2015). Furthermore,
neovascularization plays a critical and often controversially
discussed role in tendon healing, as it is crucial to successful
healing but persistently increased vascularization negatively
impacts long-term outcomes (Korntner et al., 2019; Liu et al.,
2021). A transiently increased vascularization has repeatedly been
observed as a response to MSC treatment of equine tendon
lesions (Conze et al., 2014; Ahrberg et al., 2018). This suggests
that vascular endothelial cells are targeted in a beneficial way,
which likely is related to increased vascular endothelial growth
factor (VEGF) levels (Okamoto et al., 2010; Yuksel et al., 2016).

In chronic tendon disease, failed ECM repair has led to scar
tissue within the tendon. Its inferior biomechanical properties
predispose to re-injury and its altered biophysical and
biochemical properties fail to provide the appropriate guidance
for regeneration to resident cells. Therefore, it appears
advantageous to target the matrix remodeling process, with
enzymatic degradation of scar matrix components and
promotion of collagen I fibrillogenesis and cross-linking. So
far, some insights into MSC-driven matrix remodeling in vivo
can be deduced from studies dealing with acute equine tendon
disease, but suitable models for chronic disease are lacking. Here,
it could not only be shown that the tendon matrix has an
improved architecture and composition after MSC injection
(Schnabel et al., 2009; Crovace et al., 2010; Smith et al., 2013),
but also that the treatment reduced collagenase [matrix
metalloproteinase (MMP)13] activity (Smith et al., 2013) and
upregulated stromelysin (MMP3) gene expression (Romero et al.,
2017). This might indicate a selective and beneficial support of
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enzymatic tendonmatrix remodeling, but data are still scarce and,
importantly, these results were obtained after treatment of (sub)
acute lesions but not after treatment of chronic disease.

Possible Targets of MSC in Osteoarthritis
Osteoarthritis (OA) was originally understood as a classical “wear
and tear” disease, mainly related to degenerative changes in the
articular cartilage. However, nowadays OA is referred to as a
complex, multisystem disease affecting the whole joint and
detailed pathophysiological mechanisms are still not
completely understood. Nevertheless, it is beyond doubt that
inflammatory processes in the synovial membrane play a crucial
role in the initiation of OA and in promoting subsequent cartilage
damage and pain at least in the inflammation-driven subset of
patients (de Lange-Brokaar et al., 2012). Therefore, the previously
suggested differentiation potential of MSC into chondrocytes
aiding cartilage regeneration (Satué et al., 2019; Song et al.,
2021) was pushed into the background against the ability of
the MSC to target local immunocompetent cells.

OA-related synovitis is mainly driven by the innate immune
system, which should therefore be targeted by MSC therapies,
again with an outstanding role of macrophages. Themacrophages
potentially targeted by MSC include invading pro-inflammatory
monocyte-derived macrophages within the synovial fluid and
adjacent joint tissue as well as resident immunomodulatory
synovial macrophages consisting of several subgroups of cells
(van den Bosch, 2021). Besides their pivotal role in OA-related
synovitis, synovial macrophages are considered critical for tissue
homeostasis, thus being reasonably involved in the re-
establishment of immune homeostasis within the injured joint.
Recent studies in the mouse model indicate different roles of
invading monocyte-derived and tissue resident synovial
macrophages during homeostasis as well as disease. It was
shown that locally renewing resident macrophages within the
inner synovial lining formmembrane-like structures as protective
physical barrier between the intraarticular space and the synovial
capillary network (Culemann et al., 2019). These resident
synovial macrophages maintain their immune-regulatory
function even within an inflammatory environment. However,
the specific pathogenetic role of these cells has not yet been
addressed in OA (Haubruck et al., 2021). Tracking ferumoxytol-
labeled murine MSC in a model of induced OA, MSC-treated
joints were reported to show a reduced number of pro-
inflammatory macrophages in favor of an increased
proportion of homeostatic polarized macrophages (Hamilton
et al., 2019). In co-culture models, it has been shown that
MSC reduce M1-like-activating factors such as IL-1β and
tumor necrosis factor (TNF)-α and induce typical M2-like
macrophage markers such as IL-10, cluster of differentiation
(CD)163 and CD206, partially through the prostaglandin E2/
cyclooxygenase two pathway. Since this was shown in contact as
well as in trans-well cultures, the authors suggest different MSC-
mediated phases of immunomodulation including firstly an
interaction via soluble factors and secondly a direct adhesion
to the synovium (Manferdini et al., 2017). Yet so far, it remains to
be understood whether applied MSC rather support tissue-
resident macrophages or regulate primarily the inflammatory

phenotype of the invading, mainly pro-inflammatory
macrophages. In vivo and ex vivo models, ideally based on
naturally occurring OA, could shed more light on these MSC-
macrophage interactions.

Polymorphonuclear cells could represent a further target for
MSC applied during OA-related synovitis. In a murine model of
induced OA of the knee, locally applied MSC attracted
colocalizing polymorphonuclear cells within the synovium.
This was likely due to an IL-1β-mediated increased chemokine
release of the applied MSC and led to the up-regulation of the
phagocytic activity as well as the down-regulation of the pro-
inflammatory cytokine release of the locally clustered
polymorphonuclear cells (Van Dalen et al., 2019). This
upregulation of the phagocytic activity might contribute to the
removal of cartilage fragments from the synovial fluid, thus
breaking the vicious inflammatory circle in OA.

ADAPTION OF MSC TO THEIR TARGETS IN
PATHOPHYSIOLOGICAL CONTEXTS

MSCare highly sensitive to their environment, which entails a
mutual interplay between the transplanted cells and their
pathologically altered targets. The latter represent a crucial
part of the disease milieu that will influence the MSC once
transplanted (Table 1). It remains a central question whether
their adaptation to the disease milieu leads to a promotion or
inhibition of the desired effects on the respective targets.

Inflammatory conditions, which are often present in tendon as
well as joint disease, are well-known to impact on MSC. MSC
harvested from inflammatory environments show a decreased
and variable fitness, which we have demonstrated for equine
synovial fluid-derived MSC from osteoarthritic joints (Burk et al.,
2017). In humans, the inflammatory state of synovial fluid in OA-
affected knees modulates not only the proliferation of synovial
fluid-derived MSC, but also induced a reduced differentiation
potential, which is suggested to result in a lower ability to reverse
OA (de Sousa et al., 2019). Additionally, MSC from discarded
articular cartilage collected from OA patients during joint
replacement therapy showed a rapid and strong mineralization
upon chondrogenic induction, while markers of chondrocyte
hypertrophy and stem cell osteogenesis were induced. These
complex mechanisms demonstrate that MSC differentiation
within the inflammatory environment might be coupled with
undesired chondrocyte hypertrophy and osteogenesis (Hu et al.,
2019).

Subjecting healthy MSC to inflammatory conditions impacts
on their mode of action. This includes a decreased differentiation
potential but can, up to a certain extent of inflammation, promote
MSC immunomodulatory and protective mechanisms. With
regard to tenogenic differentiation, we have shown that not
only the presence of pro-inflammatory cytokines, namely IL-
1β, but also the presence of leukocytes decreased the expression of
the tendon transcription factor scleraxis in equine MSC (Brandt
et al., 2018). Similarly, chondrogenic differentiation in pellet
culture was decreased in the presence of the pro-inflammatory
cytokines (Brandt et al., 2018), corresponding to findings in
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human MSC (Kondo et al., 2013; Liu et al., 2017). On the other
hand, interestingly, chondrogenically differentiated equine MSC
responded less to IL-1β stimulation than their naïve counterparts
(Bundgaard et al., 2020). However, most likely more important
than differentiation, pro-inflammatory stimulation has
repeatedly been shown to increase MSC immunomodulatory
potential. In a co-culture model using equine MSC and
stimulated or non-stimulated leukocytes, we could show that
the modulatory MSC mechanisms depended on the extent of
inflammatory stimulation. Mild inflammatory conditions increased
the percentage of MSC synthesizing the anti-inflammatory IL-10,
while stronger inflammatory conditions promoted the regulatory
effects of MSC on T cells, possibly via prostaglandin E2. However,
not all effects observed in strong inflammatory conditions were
strictly anti-inflammatory (Hillmann et al., 2019). With respect to
joint disease, recent data has shown that synovial fluid collected from
OA-affected joints influences the immunomodulatory properties of
the MSC secretome and thereby promotes an anti-inflammatory
subset of immune cells including an enhanced macrophage
polarization into the M2-like phenotype (Cifù et al., 2020).
Hypoxic conditions strongly influenced the migration and
cytokine receptor expression of MSC cultured in synovial fluid
collected from OA patients (Manferdini et al., 2020).

Extracellular matrices also have a strong impact on MSC
properties and behavior (Li et al., 2021). However, the effects
of pathologically altered ECM on MSC are still widely
unknown, despite their relevance for treating chronic
fibrotic conditions, attempting to specifically target the
ECM. We observed that culturing equine MSC on
decellularized tendon ECM failed to display synergistic
effects with the tenogenic transforming growth factor
(TGF)-β3 (Roth et al., 2018). This may be due to inhibitory
effects of integrin/Rho/Rho-associated protein kinase (Rho/
ROCK) axis activation by the extracellular matrix on canonical
TGF-β3/smad2/3 signaling (Melzer et al., 2021), providing an
example of cell-ECM interactions that could interfere with
assumed mechanisms. Recently, we could also demonstrate
that MSC undergo pathological adaptions upon exposure to
scarred ECM. When culturing equine MSC on decellularized
tendon matrices obtained from tendons with naturally
occurred chronic disease, tenogenic differentiation was
evident despite the ECM alterations in the tendon matrix,
but the gene expression and activity of MMP was decreased

(Doll et al., 2021). This effect was transient, but could hamper
effective targeting of the scar tissue within the ECM.

DISCUSSION

Our growing understanding of pathophysiology and MSC
behavior will promote the development of the next generation
of MSC-based therapies. However, investigating target and
therapeutic cells should go hand in hand and reflects naturally
occurring disease. Deciphering the mutual interplay between
MSC and their targets in relevant disease environments could
provide the missing link for consistent therapeutic success.
Recently, an interesting step in this direction was taken with
the development of a bioassay, by which the effect of a patient’s
OA joint microenvironment on the ability of MSC to support
cartilage formation could be deduced. MSC-based cartilage
formation was modified by the OA joint microenvironment,
which could be useful to predict the therapeutic outcome
(Neefjes et al., 2021). Such approaches may help to identify
“non-responders” in advance and eventually lead to
personalized OA treatments. Nevertheless, further strategies to
deal with putative non-responders will still be required.

MSC priming, a promising strategy to enhance MSC potency
and efficacy, directly results from the context-sensitive nature of
the MSC, and aims to train the cells for their therapeutic task by
subjecting them to pathophysiological stimuli. So far, this strategy
has mainly been investigated with regard to inflammatory
priming or “licensing” to enhance MSC immunomodulatory
potential. For example, equine bone marrow-derived MSC
primed with interferon (IFN)-γ were similarly activated as by
co-culture withM1-polarized macrophages (Cassano et al., 2018).
As the effects of IFN-γ were more consistent and also led to a
chondroprotective secretome, the authors suggested that MSC
priming before transplantation could be more successful than
having the MSC activated by the pathological in vivo
environment (Cassano et al., 2018), i.e., by their cellular
targets, alone. In this line, in an equine model of chemically
induced OA of the radio-carpal joint, inflammatory priming
with TNF-α and IFN-γ led to an increased anti-inflammatory
and regulatory effect of applied MSC. However, the repeated
intraarticular application of inflammatory primed allogeneic
MSC resulted in a slight transient inflammatory response,

TABLE 1 | Overview of microenvironmental factors and their effect on MSC potential mechanisms of action in tendon and joint disease.

Microenvironmental factors influencing MSC mode of action in tendon and joint diseases

Soluble components Cellular components Extracellular environment

Cytokines, chemokines, enzymes,
exosomes

Damaged resident cells, invading leukocytes Extracellular matrix composition and architecture, oxygen tension

Putative effects on therapeutically applied MSC in tendon and joint diseases

Differentiation potential ↓ Immunomodulatory function ↑ Angiogenic effects ↑ Matrix remodeling ↓
• Reduced by inflammation • Stimulated by inflammation • Stimulated by hypoxia and

inflammation
• Reduced by fibrotic

extracellular matrix• Possible misrouted osteogenic
differentiation

• Production of anti-/pro-inflammatory cytokines
• Regulatory effects on cells of the adaptive and innate immune
system, including macrophages

• Growth factor release
• Support of endothelial cells

• Altered matrix-degrading
enzyme activity
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possibly indicative for an increased immunogenicity of primed
MSC (Barrachina et al., 2018). This must be carefully
considered, along with the risk of exacerbation upon
excessive stimulation, which might affect therapeutic safety
of primedMSC. So far, a therapy with non-primedMSC, which
naturally adapt to the disease environment, appears to be
sufficient to target the immune cells in most patients and
represents the safer option until more knowledge is available.
However, MSC priming may help non-responding patients
and this concept in general appears highly valuable for future
therapies.

Aiming to further improveMSC priming approaches, it will be
interesting whether priming regimes can be tailored for specific
targeting of certain cell types or ECM components. With respect
to tendon and OA therapies, macrophages remain the most
promising cell type to modulate or alter their functional
phenotype, as key regulatory cells in tendon as well as OA-
related inflammation. However, little is known about the
conditions of the disease environment in which MSC target
inflammation and decrease the pro-inflammatory state of
macrophages at their best (van den Bosch, 2021). Therefore,
pre-treatment options to improve MSC efficacy by targeted
influencing of tendon and joint-associated macrophages
should be set on the scientific agenda. This implies optimizing
MSC and target macrophage communication applicable for
different disease stages, including conditions with an
unfavourable environment such as the exacerbated OA-related
synovitis.

We conclude that the mode of action of locally applied MSC is
influenced by the cellular andmolecular microenvironment at the

injured site and vice versa. In this context, MSC-mediated
macrophage modulation represents a key tool to positively
influence inflammation in injured tendons and joints.
However, a broad range of additional target cells as well as the
ECM also have to be addressed. The best possible outcome for any
MSC recipient will be achieved when the target tissue is
characterized and the applied MSC, including potential
priming, are matched with each other as specifically as possible.
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